
Cambridge University Press
978-1-316-64123-1 — Python for Scientists
John M. Stewart 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1 Introduction

The title of this book is “Python for Scientists”, but what does that mean? The dictio-

nary defines “Python” as either (a) a non-venomous snake from Asia or Saharan Africa

or (b) a computer scripting language, and it is the second option which is intended here.

(What exactly this second definition means will be explained later.) By “scientist”, I

mean anyone who uses quantitative models either to obtain conclusions by processing

pre-collected experimental data or to model potentially observable results from a more

abstract theory, and who asks “what if?”. What if I analyse the data in a different way?

What if I change the model? Thus the term also includes economists, engineers and

mathematicians among others, as well as the usual concept of scientists. Given the vol-

ume of potential data or the complexity (non-linearity) of many theoretical models, the

use of computers to answer these questions is fast becoming mandatory.

Advances in computer hardware mean that immense amounts of data or ever more

complex models can be processed at increasingly rapid speeds. These advances also

mean reduced costs so that today virtually every scientist has access to a “personal

computer”, either a desktop work station or a laptop, and the distinction between the

two is narrowing quickly. It might seem to be a given that suitable software will also be

available so that the “what if” questions can be answered readily. However, this turns

out not always to be the case. A quick pragmatic reason is that, while there is a huge

market for hardware improvements, scientists form a very small fraction of it and so

there is little financial incentive to improve scientific software. But for scientists, this

issue is important and we need to examine it in more detail.

1.1 Scientific Software

Before we discuss what is available, it is important to note that all computer software

comes in one of two types: proprietary and open-source. The first is supplied by a com-

mercial firm. Such organizations have both to pay wages and taxes and to provide a re-

turn for their shareholders. Therefore, they have to charge real money for their products,

and, in order to protect their assets from their competitors, they do not tell the customer

how their software works. Thus, the end-users have little chance of being able to adapt

or optimize the product for their own use. Since wages and taxes are recurrent expendi-

tures, the company needs to issue frequent charged-for updates and improvements (the

Danegeld effect). Open-source software is available for free or at nominal cost (media,

www.cambridge.org/9781316641231
www.cambridge.org


Cambridge University Press
978-1-316-64123-1 — Python for Scientists
John M. Stewart 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 Introduction

postage etc.). It is usually developed by computer literate individuals, often working

for universities or similar organizations, who provide the service for their colleagues. It

is distributed subject to anti-copyright licences, which give nobody the right to copy-

right it or to use it for commercial gain. Conventional economics might suggest that

the gamut of open-source software should be inferior to its proprietary counterpart, or

else the commercial organizations would lose their market. As we shall see, this is not

necessarily the case.

Next we need to differentiate between two different types of scientific software. Com-

puters operate according to a very limited and obscure set of instructions. A program-

ming language is a somewhat less limited subset of human language in which sequences

of instructions are written, usually by humans, to be read and understood by computers.

The most common languages are capable of expressing very sophisticated mathematical

concepts, albeit with a steep learning curve. Only a few language families, e.g., C and

Fortran, have been widely accepted, but they come with many different dialects, e.g.,

Fortran77, Fortran90, Ansi C, C++ etc. Compilers then translate code written by humans

into machine code which can be optimized for speed and then processed. As such, they

are rather like Formula 1 racing cars. The best of them are capable of breathtakingly fast

performance, but driving them is not intuitive and requires a great deal of training and

experience. Note that compilers need to be supplemented by libraries of software pack-

ages which implement frequently used numerical algorithms, and graphics packages

will usually be needed. Fast versatile library packages are usually expensive, although

good public domain packages are starting to appear.

A racing car is not usually the best choice for a trip to the supermarket, where speed

is not of paramount importance. Similarly, compiled languages are not always ideal for

trying out new mathematical ideas. Thus for the intended readers of this book the direct

use of compilers is likely to be unattractive, unless their use is mandatory. We there-

fore look at the other type of software, usually called “scientific packages”. Proprietary

packages include Mathematica and Matlab, and open-source equivalents include Max-

ima, Octave, R and SciLab. They all operate in a similar fashion. Each provides its own

idiosyncratic programming language in which problems are entered at a user interface.

After a coherent group of statements, often just an individual statement, has been typed,

the package writes equivalent core language code and compiles it on the fly. Thus errors

and/or results can be reported immediately back to the user. Such packages are called

“interpreters”, and older readers may remember, perhaps with mixed feelings, the BA-

SIC language. For small projects, the slow operation compared with a fully compiled

code is masked by the speed of current microprocessors, but it does become apparent

on larger jobs.

These packages are attractive for at least two reasons. The first is their ability to post-

process data. For example, suppose that x is a real variable and there exists a (possibly

unknown) function y(x). Suppose also that for an ordered set X of discrete instances of

x we have computed a corresponding set Y of instances of y. Then a command similar to

plot(X,Y) will display instantly a nicely formatted graph on the screen. Indeed, those

generated by Matlab in particular can be of publication quality. A second advantage is

the apparent ability of some of the proprietary packages to perform in addition some

www.cambridge.org/9781316641231
www.cambridge.org


Cambridge University Press
978-1-316-64123-1 — Python for Scientists
John M. Stewart 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.1 Scientific Software 3

algebraic and analytic processes, and to integrate all of them with their numerical and

graphical properties. A disadvantage of all of these packages is the quirky syntax and

limited expressive ability of their command languages. Unlike the compiled languages,

it is often extremely difficult to program a process which was not envisaged by the

package authors.

The best of the proprietary packages are very easy to use with extensive on-line help

and coherent documentation, which has not yet been matched by all of the open-source

alternatives. However, a major downside of the commercial packages is the extremely

high prices charged for their licences. Most of them offer a cut down “student version”

at reduced price (but usable only while the student is in full-time education) so as to

encourage familiarity with the package. This largesse is paid for by other users.

Let us summarize the position. On the one hand, we have the traditional compiled

languages for numerics which are very general, very fast, very difficult to learn and do

not interact readily with graphical or algebraic processes. On the other, we have standard

scientific packages which are good at integrating numerics, algebra and graphics, but are

slow and limited in scope.

What properties should an ideal scientific package have? A short list might contain:

1. a mature programming language which is both easy to understand and which has

extensive expressive ability,

2. integration of algebraic, numerical and graphical functions,

3. the ability to generate numerical algorithms running with speeds within an order of

magnitude of the fastest of those generated by compiled languages,

4. a user interface with adequate on-line help, and decent documentation,

5. an extensive range of textbooks from which the curious reader can develop greater

understanding of the concepts,

6. open-source software, freely available,

7. implementation on all standard platforms, e.g., Linux, Mac OS X, Unix, Windows,

8. a concise package, and so implementable on even modest hardware.

The bad news is that no single “scientific package” quite satisfies all of these criteria.

Consider, e.g., the requirement of algebraic capability. There are two mature open-

source packages, wx-Maxima and Reduce, with significant algebraic capabilities worthy

of consideration, but Reduce fails requirement 4 and both fail criteria 3 and 5. They are,

however, extremely powerful tools in the hands of experienced users. Python, via the

add-on SymPy, see Chapter 7, almost achieves a high standard of algebraic capability.

SageMath fulfils all but the last of the criteria listed above. It is completely based on

Python and its add-ons, and also includes wx-Maxima. For further details see Chapter

7. Thus a rational strategy is to first master Python. If its, admirably few, weaknesses are

crucial for your work, then investigate SageMath. The vast majority of scientists will

find plenty of utility in Python.

In 1991, Guido van Rossum created Python as an open-source platform-independent

general purpose programming language. It is basically a very simple language sur-

rounded by an enormous library of add-on modules, including complete access to the

underlying operating system. This means that it can manage and manipulate programs

www.cambridge.org/9781316641231
www.cambridge.org


Cambridge University Press
978-1-316-64123-1 — Python for Scientists
John M. Stewart 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 Introduction

built from other complete (even compiled) packages, i.e., it is a scripting language. This

versatility has ensured both its adoption by power users such as Google, and a real army

of developers. It means also that it can be a very powerful tool for the scientist. Of

course, there are other scripting languages, e.g., Java™ and Perl®, but none has the

versatility or user-base to meet criteria 3–5 above.

Ten years ago it would not have been possible to recommend Python for scientific

work. The size of the army of developers meant that there were several mutually incom-

patible add-on packages for numerical and scientific applications. Fortunately, reason

has prevailed and there is now a single numerical add-on package, NumPy, and a single

scientific one, SciPy, around which the developers have united. When the first edition

of this book was written SymPy, the Python approach to algebraic manipulation, was

still in a phase of rapid development, and so it was not included. While SymPy has yet

to achieve the capabilities of wx-Maxima and Reduce, it now handles many algebraic

tasks reliably

1.2 The Plan of This Book

The purpose of this intentionally short book is to show how easy it is for the working

scientist to implement and test non-trivial mathematical algorithms using Python. We

have quite deliberately preferred brevity and simplicity to encyclopaedic coverage in

order to get the inquisitive reader up and running as soon as possible. We aim to leave

the reader with a well-founded framework to handle many basic, and not so basic, tasks.

Obviously, most readers will need to dig further into techniques for their particular

research needs. But after reading this book, they should have a sound basis for this.

This chapter and Appendix A discuss how to set up a scientific Python environment.

While the original Python interpreter was pretty basic, its replacement IPython is so

easy to use, powerful and versatile that Chapter 2 is devoted to it, adopting a hands-on

approach.

We now describe the subsequent chapters. As each new feature is described, we try

to illustrate it first by essentially trivial examples and, where appropriate, by more ex-

tended problems. This author cannot know the mathematical sophistication of potential

readers, but in later chapters we shall presume some familiarity with basic calculus,

e.g., the Taylor series in one dimension. However, for these extended problems we shall

sketch the background needed to understand them, and suitable references for further

reading will be given.

Chapter 3 gives a brief but reasonably comprehensive survey of those aspects of the

core Python language likely to be of most interest to scientists. Python is an object-

oriented language, which lends itself naturally to object-oriented programming (OOP),

which may well be unfamiliar to most scientists. We shall adopt an extremely light

touch to this topic. We should perhaps point out that the container objects introduced

in Section 3.5 do not all have precise analogues in, say, C or Fortran. Again the brief

introduction to Python classes in Section 3.9 may be unfamiliar to users of those two

families of languages. The chapter concludes with two implementations of the sieve

www.cambridge.org/9781316641231
www.cambridge.org


Cambridge University Press
978-1-316-64123-1 — Python for Scientists
John M. Stewart 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 The Plan of This Book 5

of Eratosthenes, which is a classical problem: enumerate all of the prime numbers1

less than a given integer n. A straightforward implementation takes 17 lines of code,

but takes inordinately long execution times once n > 105. However, a few minutes of

thought and using already described Python features suggests a shorter 13-line program

which runs 3000 times faster and runs out of memory (on my laptop) once n > 108.

The point of this exercise is that choosing the right approach (and Python often offers

so many) is the key to success in Python numerics.

Chapter 4 extends the core Python language via the add-on module NumPy, to give

a very efficient treatment of real and complex numbers. In the background lurk C/C++

routines to execute repetitive tasks with near-compiled-language speeds. The empha-

sis is on using structures via vectorized code rather than the traditional for-loops or

do-loops. Vectorized code sounds formidable, but, as we shall show, it is much eas-

ier to write than the old-fashioned loop-based approach. Here too we discuss the input

and output of data. First, we look at how NumPy can read and write text files, human-

readable data and binary data. Secondly, we look, very superficially, at data analysis.

We summarize also miscellaneous functions and give a brief introduction to Python’s

linear algebra capabilities. Finally, we review even more briefly a further add-on module

SciPy, which greatly extends the scope of NumPy.

Chapter 5 gives an introduction to the add-on module Matplotlib. This was inspired

by the striking graphics performance of the Matlab package and aspires to emulate or

improve on it for two-dimensional (x, y)-plots. Indeed, almost all of the figures in the

later chapters of the book were produced using Matplotlib. The original figures were

produced in colour using the relevant code snippets. The exigencies of book publish-

ing have required conversion to black, white and many shades of grey. After giving a

range of examples to illustrate its capabilities, we conclude the chapter with a slightly

more extended example, a fully functional 49-line code to compute and produce high-

definition plots of Mandelbrot sets.

The difficulties of extending the discussion to three-dimensional graphics, e.g., rep-

resentations of the surface z = z(x, y) are discussed in Chapter 6. Some aspects of this

can be handled by the Matplotlib module, but for more generality we need to invoke the

Mayavi add-on module, which is given a brief introduction together with some exam-

ple codes. If the use of such graphics is a major interest for you, then you will need to

investigate further these modules.

The final introductory chapter, Chapter 7, is an introduction to the algebraic capabil-

ities of SymPy, and, despite its limitations, you may be pleasantly surprised.

If you already have some Python experience, you can of course omit parts of these

chapters. However, their ethos is a hands-on approach. You are encouraged strongly to

try out the relevant code snippets.2 Once you have understood them, you can deepen

your understanding by modifying them. These “hacking” experiments replace the exer-

cises traditionally included in textbooks.

1 The restriction to integer arithmetic in this chapter is because our exposition of Python has yet to deal

with serious calculations involving real or complex numbers efficiently.
2 All but the shortest code snippets in this book (but not the explanatory surrounding text) are freely

available from http://www.cambridge.org/PfS2.

www.cambridge.org/9781316641231
www.cambridge.org


Cambridge University Press
978-1-316-64123-1 — Python for Scientists
John M. Stewart 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 Introduction

These first chapters cover the basic tools that Python provides to enhance the scien-

tist’s computer experience. How should we proceed further?

A notable omission is that apart, from a brief discussion in Section 4.5, the vast

subject of data analysis will not be covered. There are three main reasons for this.

(a) Recently an add-on module called Pandas has appeared. This uses NumPy and Mat-

plotlib to tackle precisely this issue. It comes with comprehensive documentation,

which is described in Section 4.5.

(b) One of the authors of Pandas has written a book, McKinney (2012), which reviews

IPython, NumPy and Matplotlib and goes on to treat Pandas applications in great

detail.

(c) I do not work in this area, and so would simply have to paraphrase the sources

above.

Instead, I have chosen to concentrate on the modelling activities of scientists. One

approach would be to target problems in bioinformatics or cosmology or crystallogra-

phy or engineering or epidemiology or financial mathematics or . . . etc. Indeed, a whole

series of books with a common first half could be produced called “Python for Bioin-

formatics” etc. A less profligate and potentially more useful approach would be to write

a second half applicable to all of these fields, and many more. I am relying here on the

unity of mathematics. Problems in one field when reduced to a core dimensionless form

often look like a similarly reduced problem from another field.

This property can be illustrated by the following example. In population dynamics,

we might study a single species whose population N(T ) depends on time T . Given a

plentiful food supply, we might expect exponential growth, dN/dT = kN(T ), where the

growth constant k has dimension 1/time. However, there are usually constraints limiting

such growth. A simple model to include these is the “logistic equation”

dN

dT
(T ) = kN(T ) (N0 − N(T )) (1.1)

which allows for a stable constant population N(T ) = N0. The biological background to

this equation is discussed in many textbooks, e.g., Murray (2002).

In (homogeneous spherically symmetric) cosmology, the density parameter Ω de-

pends on the scale factor a via

dΩ

da
=

(1 + 3w)

a
Ω(1 −Ω), (1.2)

where w is usually taken to be a constant.

Now mathematical biology and cosmology do not have a great deal in common, but

it is easy to see that (1.1) and (1.2) represent the same equation. Suppose we scale the

independent variable T in (1.1) by t = kN0T , which renders the new time coordinate

t dimensionless. Similarly, we introduce the dimensionless variable x = N/N0 so that

(1.1) becomes the logistic equation

dx

dt
= x(1 − x). (1.3)

In a general relativistic theory, there is no reason to prefer any one time coordinate to

www.cambridge.org/9781316641231
www.cambridge.org


Cambridge University Press
978-1-316-64123-1 — Python for Scientists
John M. Stewart 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 The Plan of This Book 7

any other. Thus we may choose a new time coordinate t via a = et/(1+3w), and then,

on setting x = Ω, we see that (1.2) also reduces to (1.3). Thus the same equations

can arise in a number of different fields.3 In Chapters 8–10, we have, for brevity and

simplicity, used minimal equations such as (1.3). If the minimal form for your problem

looks something like the one being treated in a code snippet, you can of course hack the

snippet to handle the original long form for your problem.

Chapter 8 looks at four types of problems involving ordinary differential equations.

We start with a very brief introduction to techniques for solving initial value problems

and then look at a number of examples, including two classic non-linear problems, the

van der Pol oscillator and the Lorenz equations. Next we survey two-point boundary

value problems and examine both a linear Sturm–Liouville eigenvalue problem and an

exercise in continuation for the non-linear Bratu problem. Problems involving delay dif-

ferential equations arise frequently in control theory and in mathematical biology, e.g.,

the logistic and Mackey–Glass equations, and a discussion of their numerical solution

is given in the next section. Finally in this chapter we look briefly at stochastic calcu-

lus and stochastic ordinary differential equations. In particular, we consider a simple

example closely linked to the Black–Scholes equation of financial mathematics.

There are two other major Python topics relevant to scientists that I would like to

introduce here. The first is the incorporation of code written in other languages. There

are two aspects of this: (a) the reuse of pre-existing legacy code, usually written in

Fortran, (b) if one’s code is being slowed down seriously by a few Python functions, as

revealed by the profiler, how do we recode the offending functions in Fortran or C? The

second topic is how can a scientific user make worthwhile use of the object-oriented

programming (OOP) features of Python?

Chapter 9 addresses the first topic via an extended example. We look first at how

pseudospectral methods can be used to attack a large number of evolution problems

governed by partial differential equations, either initial value or initial-boundary value

problems. For the sake of brevity, we look only at problems with one time and one

spatial dimension. Here, as we explain, problems with periodic spatial dependence can

be handled very efficiently using Fourier methods, but for problems which are more

general, the use of Chebyshev transforms is desirable. However, in this case there is

no satisfactory Python black box available. It turns out that the necessary tools have

already been written in legacy Fortran77 code. These are listed in Appendix B, and we

show how, with an absolutely minimal knowledge of Fortran77, we can construct ex-

tremely fast Python functions to accomplish the required tasks. Our approach relies on

the NumPy f2py tool which is included in all of the recommended Python distributions.

If you are interested in possibly reusing pre-existing legacy code, it is worthwhile study-

ing this chapter even if the specific example treated there is not the task that you have

in mind. See also Section 1.3 for other uses for f2py.

One of the most useful features of object-oriented programming (OOP) from the

point of view of the scientist is the concept of classes. Classes exist in C++ (but not

3 This example was chosen as a pedagogic example. If the initial value x(0) = x0 is specified, then the exact

solution is x(t) = x0/[x0 + (1 − x0)e−t]. In the current context, x0 � 0. If x0 � 1, then all solutions tend

monotonically towards the constant solution x = 1 as t increases. See also Section 8.5.3.

www.cambridge.org/9781316641231
www.cambridge.org


Cambridge University Press
978-1-316-64123-1 — Python for Scientists
John M. Stewart 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 Introduction

C) and Fortran90 and later (but not Fortran77). However, both implementations are

complicated and so are usually shunned by novice programmers. In contrast, Python’s

implementation is much simpler and more user-friendly, at the cost of omitting some of

the more arcane features of other language implementations. We give a very brief intro-

duction to the syntax in Section 3.9. However, in Chapter 10 we present a much more

realistic example: the use of multigrid to solve elliptic partial differential equations in

an arbitrary number of dimensions, although for brevity the example code is for two di-

mensions. Multigrid is by now a classical problem which is best defined recursively, and

we devote a few pages to describing it, at least in outline. The pre-existing legacy code

is quite complicated because the authors needed to simulate recursion in languages,

e.g., Fortran77, which do not support recursion. Of course, we could implement this

code using the f2py tool outlined in Chapter 9. Instead, we have chosen to use Python

classes and recursion to construct a simple clear multigrid code. As a concrete example,

we use the sample problem from the corresponding chapter in Press et al. (2007) so

that the inquisitive reader can compare the non-recursive and OOP approaches. If you

have no particular interest in multigrid, but do have problems involving linked math-

ematical structures, and such problems arise often in, e.g., bioinformatics, chemistry,

epidemiology and solid-state physics among others, then you should certainly peruse

this final chapter to see how, if you state reasonably mathematically precisely what your

problems are, then it is easy to construct Python code to solve them.

1.3 Can Python Compete with Compiled Languages?

The most common criticism of Python and the scientific software packages is that they

are far too slow, in comparison with compiled code, when handling complicated realistic

problems. The speed-hungry reader might like to look at a recent study4 of a straight-

forward “number-crunching” problem treated by various methods. Although the figures

given in the final section refer to one particular problem treated on a single processor,

they do give a “ball park” impression of performance. As a benchmark, they use the

speed of a fully compiled C++ program which solves the problem. A Python solution

using the technique of Chapter 3, i.e., core Python, is about 700 times slower. Once

you use the floating-point module NumPy and the techniques described in Chapter 4

the code is only about ten times slower, and the Matlab performance is estimated to be

similar. However, as the study indicates, there are a number of ways to speed up Python

to about 80% of the C++ performance. Some of these are very rewarding exercises in

computer science.

One in particular, though, is extremely useful for scientists: the f2py tool. This is

discussed in detail in Chapter 9, where we show how we can reuse legacy Fortran code.

It can also be used to access standard Fortran libraries, e.g., the NAG libraries.5 Yet

another use is to speed up NumPy code and so improve performance! To see how this

works, suppose we have developed a program such as those outlined in the later sections

4 See http://wiki.scipy.org/PerformancePython.
5 See, e.g., http://www.nag.co.uk/doc/TechRep/pdf/TR1_08.pdf.

www.cambridge.org/9781316641231
www.cambridge.org


Cambridge University Press
978-1-316-64123-1 — Python for Scientists
John M. Stewart 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.4 Limitations of This Book 9

of the book, which uses a large number of functions, each of which carries out a simple

task. The program works correctly, but is unacceptably slow. Note that getting detailed

timing data for Python code is straightforward. Python includes a “profiler” which can

be run on the working program. This outputs a detailed list of the functions ordered by

the time spent executing them. It is very easy to use, and this is described in Section 2.5.

Usually, there are one or two functions which take a very long time to execute simple

algorithms.

This is where f2py comes into its own. Because the functions are simple, even begin-

ners can soon create equivalent code in, say, Fortran77 or Ansi C. Also, because what

we are coding is simple, there is no need for the elaborate (and laborious to learn) fea-

tures of, say, Fortran95 or C++. Next we encapsulate the code in Python functions using

the f2py tool, and slot them into the Python program. With a little experience, we can

achieve speeds comparable to that of a program written fully in, say, Fortran95.

1.4 Limitations of This Book

A comprehensive treatment of Python and its various branches would occupy several

large volumes and would be out of date before it reached the bookshops. This book

is intended to offer the reader a starting point which is sufficient to be able to use the

fundamental add-on packages. Once the reader has a little experience with what Python

can do, it is time to explore further those areas which interest the reader.

I am conscious of the fact that I have not even mentioned vitally important concepts,

e.g., finite-volume methods for hyperbolic problems,6 parallel programming and real-

time graphics to name but a few areas in which Python is very useful. There is a very

large army of Python developers working at the frontiers of research, and their endeav-

ours are readily accessed via the internet. Please think of this little book as a transport

facility towards the front line.

1.5 Installing Python and Add-ons

Users of Matlab and Mathematica are used to a customized Integrated Development

Environment (IDE). From the start-up screen, you can investigate code, write, edit and

save segments using the built-in editor, and run actual programs. Since the operating

systems Mac OS X and most flavours of Linux include a version of core Python as a

matter of course, many computer officers and other seasoned hackers will tell you that

it is simple to install the additional packages, and you can be up and coding within the

hour, thus ameliorating the difference.

Unfortunately, the pundits are wrong. The Python system being advocated in this

book runs the language to its extreme limits, and all of the add-ons must be compatible

with each other. Like many others, this author has endured hours of frustration trying to

6 The well-regarded Clawpack package http://depts.washington.edu/clawpack, which is

Fortran-based, has switched from Matlab to Python Matplotlib for its graphics support.

www.cambridge.org/9781316641231
www.cambridge.org


Cambridge University Press
978-1-316-64123-1 — Python for Scientists
John M. Stewart 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 Introduction

pursue the pundits’ policy. Please save your energy, sanity etc., and read Appendix A,

which I have quite deliberately targeted at novices, for the obvious reason!

Admittedly, there is an amount, albeit slight and low-level, of hassle involved here.

So what’s the payoff? Well, if you follow the routes suggested in Appendix A, you

should end up with a system which works seamlessly. While it is true that the original

Python interpreter was not terribly user-friendly, which caused all of the established IDE

purveyors to offer a “Python mode”, the need which they purported to supply has been

overtaken by the enhanced interpreter IPython. Indeed, in its latest versions IPython

hopes to surpass the facilities offered by Matlab, Mathematica and the Python-related

features of commercial IDEs. In particular, it allows you to use your favourite editor,

not theirs, and to tailor its commands to your needs, as explained in Appendix A and

Chapter 2.

www.cambridge.org/9781316641231
www.cambridge.org

