Contents

Preface

Preface
page xix

Part I DSLRs for Astrophotography

1 Welcome to DSLR Astrophotography
1.1 What is a DSLR?
1.1.1 Digital Single-Lens Reflex Cameras
1.1.2 DSLRs without Mirrors: MILCs
1.2 DSLRs versus Other Cameras
1.2.1 Dedicated Astrocameras
1.2.2 Fixed-Lens Digital Cameras?
1.2.3 What about Film?
1.3 Choosing a DSLR
1.3.1 Canon vs. Nikon vs. Others
1.3.2 Camera Features
1.3.3 Shopping Strategy
1.4 Choosing Software
1.5 Choosing the Computer
1.6 Choosing the Telescope or Lens
1.6.1 The Aperture Counterrevolution
1.6.2 The 500-mm Optimum
1.6.3 Ease of Use
1.7 Choosing the Mount
1.8 The Craft of Astrophotography
1.8.1 Building your Skill and Judging your Achievements
1.8.2 Pushing Limits or Staying within Them
1.8.3 Testing as a Means or an End
1.8.4 Philosophical and Ethical Issues
1.8.5 Amateur or Professional?
Contents

2 Digital Image Technology

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 What is a Digital Image?</td>
<td>21</td>
</tr>
<tr>
<td>2.1.1 Bit Depth</td>
<td>21</td>
</tr>
<tr>
<td>2.1.2 Linear or Gamma-corrected?</td>
<td>22</td>
</tr>
<tr>
<td>2.1.3 Color Encoding</td>
<td>23</td>
</tr>
<tr>
<td>2.1.4 The Alpha Channel</td>
<td>23</td>
</tr>
<tr>
<td>2.1.5 Frames</td>
<td>23</td>
</tr>
<tr>
<td>2.2 File Formats</td>
<td>24</td>
</tr>
<tr>
<td>2.2.1 File Size</td>
<td>24</td>
</tr>
<tr>
<td>2.2.2 Compression</td>
<td>24</td>
</tr>
<tr>
<td>2.2.3 Raw Files</td>
<td>24</td>
</tr>
<tr>
<td>2.2.4 dcraw and Adobe DNG</td>
<td>25</td>
</tr>
<tr>
<td>2.2.5 JPEG</td>
<td>25</td>
</tr>
<tr>
<td>2.2.6 TIFF</td>
<td>26</td>
</tr>
<tr>
<td>2.2.7 PNG</td>
<td>26</td>
</tr>
<tr>
<td>2.2.8 FITS</td>
<td>26</td>
</tr>
<tr>
<td>2.2.9 XISF</td>
<td>27</td>
</tr>
<tr>
<td>2.3 Color Imaging in Detail</td>
<td>27</td>
</tr>
<tr>
<td>2.3.1 The Bayer Matrix (CFA)</td>
<td>27</td>
</tr>
<tr>
<td>2.3.2 Low-pass Filtering</td>
<td>28</td>
</tr>
<tr>
<td>2.3.3 Nebulae are Blue or Pink, not Red</td>
<td>28</td>
</tr>
<tr>
<td>2.3.4 Color Balance (White Balance)</td>
<td>30</td>
</tr>
<tr>
<td>2.3.5 Gamut</td>
<td>30</td>
</tr>
<tr>
<td>2.4 Image Size and Resizing</td>
<td>31</td>
</tr>
<tr>
<td>2.4.1 Dots per Inch</td>
<td>31</td>
</tr>
<tr>
<td>2.4.2 Resampling</td>
<td>31</td>
</tr>
<tr>
<td>2.4.3 Binning</td>
<td>32</td>
</tr>
<tr>
<td>2.4.4 The Drizzle Algorithm</td>
<td>32</td>
</tr>
<tr>
<td>2.5 Histograms, Brightness, and Contrast</td>
<td>32</td>
</tr>
<tr>
<td>2.5.1 Histograms</td>
<td>32</td>
</tr>
<tr>
<td>2.5.2 Histogram Equalization</td>
<td>33</td>
</tr>
<tr>
<td>2.5.3 Curve Shape</td>
<td>33</td>
</tr>
<tr>
<td>2.5.4 Gamma Correction in Detail</td>
<td>34</td>
</tr>
<tr>
<td>2.6 Sharpening</td>
<td>35</td>
</tr>
<tr>
<td>2.6.1 Edge Enhancement</td>
<td>35</td>
</tr>
<tr>
<td>2.6.2 Unsharp Masking</td>
<td>35</td>
</tr>
<tr>
<td>2.6.3 Spatial Frequency and Wavelet Transforms</td>
<td>37</td>
</tr>
<tr>
<td>2.6.4 Multiscale Processing</td>
<td>37</td>
</tr>
<tr>
<td>2.6.5 Deconvolution</td>
<td>40</td>
</tr>
</tbody>
</table>

3 DSLR Operation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Taking a Picture Manually</td>
<td>43</td>
</tr>
<tr>
<td>3.1.1 Shutter Speed and Aperture</td>
<td>43</td>
</tr>
<tr>
<td>3.1.2 Manual Focusing</td>
<td>44</td>
</tr>
</tbody>
</table>
Contents

3.1.3 ISO Speed 45
3.1.4 Do You Want an Automatic Dark Frame? 46
3.2 Menu Settings 47
3.2.1 Things to Set Once and Leave Alone 47
3.2.2 Settings for an Astrophotography Session 48
3.3 How to See that Tiny Screen 49
3.4 More Features of the Camera Body 50
3.4.1 The Eyepiece Dioptr 50
3.4.2 The Strap and Eyepiece Cover 51
3.4.3 Limiting Light Emission from the Camera 51
3.5 Tripping the Shutter without Shaking the Telescope 52
3.5.1 Self-timers and Remote Controls 52
3.5.2 Mirror Lock and Prefire 55
3.5.3 Electronic First-curtain Shutter (EFCS) 55
3.5.4 Other Tricks 56
3.5.5 Vibration-reducing Lenses 57
3.6 Focusing 57
3.6.1 Magnified Preview on the Screen 57
3.6.2 Stars and Spikes 57
3.6.3 Computer Focusing 58
3.6.4 Focusing Telescopes with Moving Mirrors 59
3.7 Other Image Quality Issues 59
3.7.1 Grain 59
3.7.2 Star Eaters 60
3.7.3 Dust on the Sensor 60
3.8 The Camera as Your Logbook 62

4 Five Simple Projects 63
4.1 Telephoto Moon 63
4.2 Afocal Moon 65
4.3 Stretching – The Processing Technique to Learn Now 66
4.4 Stars from a Fixed Tripod 69
4.5 Nightscapes 71
4.6 Piggybacking 71
4.7 Going Further 74

Part II Equipment and Techniques 77

5 Deep-sky Image Acquisition 79
5.1 How to Avoid Most of This Work 79
5.2 How Long to Expose 80
5.3 Dithering 82
5.4 Taking Calibration Frames 82
5.4.1 Dark Frames 82
Table of Contents

5.4.2 Flats 83
5.4.3 Flat Darks 86
5.4.4 Bias Frames 86

6 Coupling Cameras to Telescopes 88
6.1 Optical Configurations 88
6.1.1 Types of Telescopes 88
6.1.2 Newer Telescopes 90
6.1.3 Types of Coupling 94
6.2 Fitting it All Together 97
6.2.1 Types of Adapters 97
6.2.2 Sensor Position Matters 100
6.3 Optical Parameters 100
6.3.1 Focal Length 100
6.3.2 Aperture 101
6.3.3 f-Ratio and Image Brightness 101
6.3.4 Field of View 103
6.3.5 Sensor Size 104
6.3.6 Arc-seconds per Pixel 105
6.3.7 “What is the Magnification of This Picture?” 106
6.4 Edge-of-field Quality and Vignetting 107

7 Camera Lenses 108
7.1 Why You Need Another Lens 108
7.1.1 Big Lens or Small Telescope? 110
7.1.2 Field of View 110
7.1.3 f-Ratio 112
7.1.4 Zoom or Non-zoom? 112
7.2 Lens Quality 113
7.2.1 Sharpness, Vignetting, Distortion, and Bokeh 113
7.2.2 Reading MTF Curves 114
7.2.3 Telecentricity 116
7.2.4 Construction Quality 116
7.3 Which Lenses Fit Which Cameras? 117
7.3.1 Canon 117
7.3.2 Nikon 117
7.3.3 Lens Mount Adapters 119
7.3.4 What if there’s no Aperture Ring? 120
7.3.5 Adapter Quality 120
7.3.6 The Classic M42 Lens Mount 121
7.4 Supporting and Mounting a Lens 122
7.5 Testing a Lens 124
7.5.1 How to Test 124
7.5.2 Limitations of the Lens Design 124
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5.3 Defects of a Particular Lens</td>
<td>126</td>
</tr>
<tr>
<td>7.6 Diffraction Spikes around the Stars</td>
<td>127</td>
</tr>
<tr>
<td>7.7 Understanding Lens Design</td>
<td>129</td>
</tr>
<tr>
<td>7.7.1 How Lens Designs Evolve</td>
<td>129</td>
</tr>
<tr>
<td>7.7.2 The Triplet and its Descendants</td>
<td>132</td>
</tr>
<tr>
<td>7.7.3 The Double Gauss</td>
<td>133</td>
</tr>
<tr>
<td>7.7.4 Telephoto and Retrofocus Lenses</td>
<td>134</td>
</tr>
<tr>
<td>7.8 Special Lenses</td>
<td>134</td>
</tr>
<tr>
<td>7.8.1 Macro Lenses</td>
<td>134</td>
</tr>
<tr>
<td>7.8.2 Mirror Lenses</td>
<td>134</td>
</tr>
<tr>
<td>7.8.3 Image Stabilization (Vibration Reduction)</td>
<td>135</td>
</tr>
<tr>
<td>7.8.4 Diffractive Optics</td>
<td>135</td>
</tr>
<tr>
<td>8 Tracking the Stars</td>
<td>138</td>
</tr>
<tr>
<td>8.1 Two Ways to Track the Stars</td>
<td>138</td>
</tr>
<tr>
<td>8.2 The Rules Have Changed</td>
<td>141</td>
</tr>
<tr>
<td>8.3 Types of Equatorial Mounts</td>
<td>141</td>
</tr>
<tr>
<td>8.3.1 Fork Mounts on Wedges</td>
<td>141</td>
</tr>
<tr>
<td>8.3.2 Sky Trackers</td>
<td>142</td>
</tr>
<tr>
<td>8.3.3 German Equatorial Mounts (GEMs)</td>
<td>143</td>
</tr>
<tr>
<td>8.4 Hardware</td>
<td>146</td>
</tr>
<tr>
<td>8.4.1 Dovetails</td>
<td>146</td>
</tr>
<tr>
<td>8.4.2 Counterweights</td>
<td>148</td>
</tr>
<tr>
<td>8.5 Setting up a Computerized Equatorial Mount</td>
<td>148</td>
</tr>
<tr>
<td>8.5.1 The Difference Between Polar and Go-to Alignment</td>
<td>149</td>
</tr>
<tr>
<td>8.5.2 Don’t Judge it by the First Star</td>
<td>149</td>
</tr>
<tr>
<td>8.5.3 Must You Level the Tripod?</td>
<td>150</td>
</tr>
<tr>
<td>8.5.4 Hints for Go-to Alignment</td>
<td>150</td>
</tr>
<tr>
<td>8.5.5 Go-to Alignment with just a Telephoto Lens</td>
<td>151</td>
</tr>
<tr>
<td>8.5.6 Using Go-to Alignment to Refine Polar Alignment</td>
<td>151</td>
</tr>
<tr>
<td>8.6 Classic Methods</td>
<td>152</td>
</tr>
<tr>
<td>8.6.1 Finding the Pole in the Sky</td>
<td>152</td>
</tr>
<tr>
<td>8.6.2 More about Polar Scopes</td>
<td>152</td>
</tr>
<tr>
<td>8.6.3 The Drift Method</td>
<td>154</td>
</tr>
<tr>
<td>8.6.4 Automated Drift Method</td>
<td>155</td>
</tr>
<tr>
<td>8.6.5 Why the Drift Method is Best</td>
<td>155</td>
</tr>
<tr>
<td>8.7 How Accurately Must We Polar-align?</td>
<td>155</td>
</tr>
<tr>
<td>9 Precision Tracking and Guiding</td>
<td>157</td>
</tr>
<tr>
<td>9.1 Why Telescopes Do not Track Perfectly</td>
<td>157</td>
</tr>
<tr>
<td>9.2 Must We Make Guiding Corrections?</td>
<td>158</td>
</tr>
<tr>
<td>9.2.1 Sometimes, no</td>
<td>158</td>
</tr>
<tr>
<td>9.2.2 A Futile Quest</td>
<td>158</td>
</tr>
<tr>
<td>9.3 Mount Performance</td>
<td>158</td>
</tr>
</tbody>
</table>
Contents

9.3.1 How Tracking Error is Measured 158
9.3.2 Periodic Gear Error 160
9.3.3 Backlash 161
9.3.4 Flexure 162
9.4 Periodic-error Correction (PEC) 162
9.5 Autoguiding 164
9.5.1 The Concept 164
9.5.2 Subpixel Accuracy 164
9.5.3 Communication with the Mount 165
9.5.4 Autoguiding Software 165
9.6 Cameras, Guidescopes, and Off-axis Guiders 166
9.6.1 The Guide Camera 166
9.6.2 Guidescopes 166
9.6.3 Off-axis Guiders 167
9.6.4 On-axis Guiding 168
9.7 Using an Autoguider 169
9.7.1 Choosing a Guide Star 169
9.7.2 Hot Pixels and Dark Frames 169
9.7.3 Calibration 170
9.7.4 Autoguider Settings 170
9.7.5 Algorithms 171
9.7.6 Quality of Guiding 171
9.7.7 Interpreting Guiding Graphs 172
9.7.8 Right Ascension and Declination are Different 174
9.7.9 PEC while Autoguiding? 174
9.7.10 Good Autoguiding, Bad Pictures 175
9.8 The Challenge of Round Star Images 175
9.8.1 What Should a Star Image Look Like? 175
9.8.2 How Roundness is Measured 176
9.8.3 Some Practical Tips 176
9.8.4 Downsampling 178
9.8.5 Deconvolution 179

10 Power and Camera Control in the Field 182
10.1 Portable Electric Power 182
10.1.1 Power for the Telescope 182
10.1.2 DC Power Connectors 184
10.1.3 Voltage 185
10.1.4 Powering the Computer and Camera 186
10.1.5 Care of Li-ion Batteries 187
10.1.6 Ground Loop Problems 187
10.1.7 Safety 188
10.2 Camera Control 188
10.2.1 How Camera Control is Done 188
Contents

10.2.2 Choosing a Laptop 189
10.2.3 Cables 189
10.2.4 Camera Control Software 190
10.3 Networking Everything Together 191
10.4 Operating at Very Low Temperatures 191

Part III Image Processing 193

11 Deep-sky Image Processing 195
11.1 Processing Workflow 195
11.2 Calibration 195
11.2.1 Image Arithmetic 195
11.2.2 Components of a Raw Image 197
11.2.3 Master Darks, Flats, Flat Darks, and Bias Frames 198
11.2.4 Should Flats Be Binned or Smoothed? 198
11.2.5 Method 0: Just Lights and Darks 199
11.2.6 Method 1: Lights, Darks, Flats, and Flat Darks 199
11.2.7 Method 2: Lights, Darks, Flats, and Bias 200
11.2.8 Method 3: Lights, Darks, Flats, Flat Darks, and Bias 200
11.2.9 Scaling the Dark Frames 201
11.3 Cosmetic Correction 202
11.4 DeBayerization 202
11.5 Stacking 203
11.5.1 The Concept 203
11.5.2 Confusing Term: Integration 203
11.5.3 How Images Are Combined 204
11.6 Before We Stack, We Align 206
11.7 Nonlinear Stretching (Gamma Correction) 206
11.7.1 The Concept 206
11.7.2 Digital Development Processing (DDP) 207
11.8 Postprocessing 208

12 Workflow with Specific Software 209
12.1 Before We Start 209
12.1.1 Screen Stretch 209
12.1.2 Methods and ISO Settings 209
12.2 DeepSkyStacker 210
12.2.1 User Interface 211
12.2.2 Setting up 211
12.2.3 Calibrating and Stacking Images 211
12.2.4 Viewing and Selecting Images to Stack 212
12.2.5 Stretching 213
12.3 Nebulosity 214
12.3.1 User Interface 215
Contents

12.3.2 Basic File Editing 216
12.3.3 Calibration 216
12.3.4 DeBayering 216
12.3.5 Choosing Images to Stack 217
12.3.6 Aligning and Stacking Images 218
12.3.7 Stretching 220

12.4 *MaxIm DL* 220
12.4.1 User Interface 221
12.4.2 Basic File Editing 222
12.4.3 Choosing Images to Stack 222
12.4.4 Calibration and Stacking 222
12.4.5 Stretching 225

12.5 *PixInsight* 226
12.5.1 User Interface 226
12.5.2 Basic File Editing 228
12.5.3 Choosing Images to Stack 229
12.5.4 Raw or FITS? 229
12.5.5 Calibration and Stacking 229
12.5.6 Stacking (Integration) as a Separate Step 234
12.5.7 Stretching 234
12.5.8 *PixInsight* Workflow Summary 236

13 More Image Processing Techniques 239
13.1 Flattening the Background 239
13.1.1 The Concept 239
13.1.2 Subtract or Divide? 241
13.1.3 Linear or Gamma-corrected? 241
13.1.4 Nebulosity 241
13.1.5 *MaxIm DL* 241
13.1.6 *PixInsight* 242

13.2 Removing Noise 242
13.2.1 The Concept 242
13.2.2 Luminance vs. Chrominance 242
13.2.3 Linear or Gamma-corrected? 243
13.2.4 Nebulosity 244
13.2.5 *MaxIm DL* 245
13.2.6 *PixInsight* 245

13.3 Color Saturation 246
13.3.1 The Concept 246
13.3.2 Linear or Gamma-corrected? 246
13.3.3 Nebulosity 246
13.3.4 *MaxIm DL* 246
13.3.5 *PixInsight* 246

13.4 Masks 247
Contents

13.5 Who Moved? The Difference between Two Pictures 249
 13.5.1 The Concept 249
 13.5.2 Preparing the Images 249
 13.5.3 PixInsight 250
 13.5.4 MaxIm DL 252
 13.5.5 Nebulosity 252
 13.5.6 Photoshop 253

13.6 High Dynamic Range (HDR) 253

14 Sun, Moon, Eclipses, and Planets 255
 14.1 Full-face Lunar and Solar Images 255
 14.1.1 Optics and Field of View 255
 14.1.2 Exposure 256
 14.1.3 Tracking 256
 14.1.4 Stacking 258
 14.1.5 The Moon 258
 14.1.6 The Sun 259
 14.1.7 Eclipses, Solar and Lunar 259
 14.2 High-resolution Video: How it’s Done 263
 14.2.1 Overview of the Process 263
 14.2.2 Acquiring the Images 264
 14.2.3 How Long to Expose 265
 14.2.4 Preparation and Stacking 268
 14.2.5 Multiscale Sharpening 268
 14.2.6 RGB Alignment 270
 14.3 High-resolution Video: Technical Matters 271
 14.3.1 Matching Focal Length to Pixel Size 271
 14.3.2 Why High-resolution Video Works 271

Part IV Advanced Topics 275

15 Sensor Performance 277
 15.1 Generations of DSLRs 277
 15.2 How Sensors Work 278
 15.2.1 Photoelectrons 278
 15.2.2 CCD and CMOS Sensors 279
 15.2.3 What We Don’t Know 279
 15.3 Sensor Performance Basics 281
 15.3.1 Pixel Size 281
 15.3.2 Quantization and DNs (ADUs) 281
 15.3.3 Bias (Offset), Dark Clipping, and Compression 282
 15.3.4 Linearity 282
 15.3.5 ISO Speed Adjustment 283
 15.3.6 Gain 283
Table of Contents

15.3.7 Color Balance (White Balance) 284
15.3.8 The Anti-aliasing Filter 284
15.4 Image Flaws 285
15.4.1 Bad Pixels 285
15.4.2 Pixel Inequality 285
15.4.3 Blooming 286
15.4.4 Amplifier Glow (Electroluminescence) 287
15.4.5 Cosmic Rays 287
15.4.6 Degradation with Age 289
15.5 Noise, in Detail 289
15.5.1 What Noise Is 289
15.5.2 Signal-to-noise Ratio (SNR) 289
15.5.3 Shot Noise 290
15.5.4 Read Noise 291
15.5.5 Dark Current (Thermal Noise) 292
15.5.6 Chrominance Noise 292
15.5.7 Effect of Stacking, Binning, and Downsampling 292

16 Testing Sensors 294
16.1 ISO Invariance 294
16.2 True ISO Speed 295
16.3 Dynamic Range 295
16.4 Noise Analysis 297
16.5 Quantum Efficiency and Other Parameters 298
16.6 Obtaining Data from Your Own Sensor 299
16.6.1 Overview 299
16.6.2 PixInsight 300
16.6.3 MaxIm DL 301
16.7 Specific Tests 301
16.7.1 Dynamic Range from One Light Frame and One Flat Dark 301
16.7.2 Read Noise in DN from Two Flat Darks or Bias Frames 302
16.7.3 Gain in DN/e− from a Pair of Generously Exposed Flats 303
16.7.4 Read Noise Measured in Electrons 304
16.8 Going Further 304

17 Spectral Response and Filter Modification 306
17.1 DSLR Spectral Response 306
17.2 Filter Modification 307
17.2.1 What Filter Modification Achieves 307
17.2.2 Is Filter Modification Necessary? 308
17.3 Filters to Cut Light Pollution 310
17.3.1 How Light Pollution can be Removed 310
17.3.2 Filters to Favor Nebulae 313
17.3.3 The Middle Ground 314
Contents

17.4 How Filters Are Made 315
 17.4.1 Dye Filters 315
 17.4.2 Interference Filters 316
 17.4.3 Didymium Glass 316
 17.4.4 Precautions 317

18 Tools for Astronomical Research 318
 18.1 Star Maps 318
 18.2 *Simbad, Aladin, and VizieR* 320
 18.3 Case Study: An Unnamed Nebula in Monoceros 320
 18.4 Plate Solving for Identification and Position 323
 18.5 Case Study: Have I Discovered a Star Cluster? 324
 18.6 Variable-star Photometry 325
 18.6.1 Acquiring Images 326
 18.6.2 Aperture Photometry 326
 18.6.3 Photometry Software 327
 18.6.4 Example: Light Curve of EH Librae 328
 18.7 Asteroid or Nova? 329
 18.8 Research Literature On Line 330

Part V Appendices 331

A Digital Processing of Film Images 333

B Exposure Tables 336
 B.1 Sun 336
 B.2 Moon 336
 B.3 Planets 337
 B.4 Deep-sky Objects 337
 B.5 How Exposures are Calculated 338

Index 339