#### Water and Wastewater Engineering

A major challenge for the twenty-first century is to provide safe and adequate drinking water to everyone. Preventing pollution of the environment due to rampant and untreated discharges of wastewater is another challenge for most developing countries, including India. The water– energy connection is also being recognized as another growing challenge. The design of water and wastewater treatment facilities must be environmentally sensitive, energy efficient and sustainable into the future.

Conceived as a textbook for undergraduate and graduate students who need to understand the basic concepts and design principles related to water and wastewater engineering, this book begins with an introduction to water resources and the need for water and wastewater treatment. This is followed by an evaluation of water demand in terms of quantity and quality. Major mass transfer and transformation processes that are necessary for understanding the complexity of water pollution issues and treatment processes are dealt with in detail. Treatment processes that are used in water and/or wastewater treatment are detailed subsequently so that they can be designed by the student. A few examples of specific water treatment requirements are provided to enable the student to choose and apply only relevant treatment processes in their design. Conventional and non-conventional treatment schemes for water and wastewater treatment are covered to complete the overview of treatment processes. Collection, transportation and distribution aspects of drinking water supply systems are covered along with wastewater collection systems. Problems and issues arising from the inadequacies of conventional treatment practices, and potential methods for resolving these problems have also been incorporated into this text. An overview of relevant regulations, Indian and other, is also provided.

**Sudha Goel** is Associate Professor, Department of Civil Engineering (Environmental Engineering and Management), Indian Institute of Technology Kharagpur, India. She has published more than 50 papers in journals and conferences of national and international repute. Her areas of research include water quality and treatment, environmental impact and risk assessment, and solid and hazardous waste management.

# Water and Wastewater Engineering

Sudha Goel



© in this web service Cambridge University Press & Assessment



Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781316639030

© Cambridge University Press & Assessment 2019

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2019

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data Names: Goel, Sudha, author. Title: Water and wastewater engineering / Sudha Goel. Description: Cambridge, United Kingdom ; New York, NY, USA : Cambridge University Press, 2019. | Includes bibliographical references and index. Identifiers: LCCN 2019016364 | ISBN 9781316639030 (paperback : alk. paper) Subjects: LCSH: Water--Purification. | Sewage--Purification. | Water-zsupply. Classification: LCC TD430 .G63 2019 | DDC 628.1--dc23 LC record available at https://lccn.loc.gov/2019016364

ISBN 978-1-316-63903-0 Paperback

Additional resource for this publication at www.cambridge.org/9781316639030

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

While every effort has been made to eliminate errors, the author and publisher will not be held responsible for any actions or consequence thereof due to the contents of this book.

### Contents

| Preface                                       | xi  |
|-----------------------------------------------|-----|
| Acknowledgments                               |     |
| Abbreviations                                 |     |
| Symbols and Dimensions                        | xix |
| Part I Concepts Related to Water              | 1   |
| 1. Water Resources                            | 3   |
| 1.1 Groundwater                               | 6   |
| 1.1.1 Quantifying Groundwater Flow            | 8   |
| 1.1.2 Design and Construction of Wells        | 13  |
| 1.1.3 Darcy's Law and Pumped Wells            | 15  |
| 1.1.4 Groundwater Pollution                   | 18  |
| 1.2 Surface Water                             | 21  |
| 1.2.1 Surface Water Intakes                   | 22  |
| 1.2.2 Surface Water Contamination             | 28  |
| 1.3 Source Water Protection                   | 30  |
| 1.3.1 Groundwater Protection                  | 31  |
| 1.3.2 Surface Water Protection                | 32  |
| 2. Water Demand                               | 35  |
| 2.1 Design of Water Supply Systems            | 36  |
| 2.2 Water Uses and Requirements               | 37  |
| 2.2.1 Factors Affecting Water Use             | 40  |
| 2.2.2 Calculating Water Demand                | 43  |
| 2.2.3 Factors Affecting Water Losses          | 44  |
| 2.3 City-Level and Higher Scales of Water Use | 48  |
| 2.4 Urban and Rural Water Supplies in India   | 50  |
| 2.5 Population Forecasting                    | 50  |
| 2.5.1 Arithmetic Progression Method           | 51  |
| 2.5.2 Exponential Method                      | 51  |

Cambridge University Press & Assessment 978-1-316-63903-0 — Water and Wastewater Engineering Sudha Goel Frontmatter <u>More Information</u>

| vi |            | Contents                            |     |
|----|------------|-------------------------------------|-----|
|    | 2.5.3      | Geometric Progression Method        | 51  |
|    |            | Incremental Increase Method         | 51  |
|    | 2.5.5      | Logistic Curve Method               | 52  |
|    | 2.5.6      | Changing Rate of Increase Method    | 53  |
|    | 2.5.7      | Curve-Fitting or Best-Fit Method    | 53  |
|    | 2.5.8      | Ratio Method                        | 53  |
|    | 2.6 Variat | tions in Water Demand               | 60  |
|    | 2.6.1      | Seasonal and Monthly Variations     | 60  |
|    | 2.6.2      | Weekly, Daily and Hourly Variations | 60  |
| 3. | Water Qu   | uality                              | 67  |
|    | 3.1 Gener  | ral                                 | 69  |
|    | 3.1.1      | pH                                  | 69  |
|    | 3.1.2      | Ionic Strength                      | 71  |
|    | 3.1.3      | Electrical Conductivity             | 72  |
|    | 3.1.4      | Solids                              | 74  |
|    | 3.1.5      | Temperature                         | 75  |
|    | 3.1.6      | Dissolved Oxygen                    | 76  |
|    | 3.1.7      | Turbidity                           | 77  |
|    | 3.1.8      | Alkalinity                          | 78  |
|    |            | Hardness                            | 79  |
|    | 3.1.10     | 0 Color                             | 80  |
|    | 3.2 Organ  | nics                                | 86  |
|    | 3.2.1      | Theoretical Oxygen Demand (ThOD)    | 86  |
|    | 3.2.2      | Chemical Oxygen Demand (COD)        | 87  |
|    | 3.2.3      | Biochemical Oxygen Demand (BOD)     | 88  |
|    | 3.2.4      | Total Organic Carbon (TOC)          | 90  |
|    | 3.2.5      |                                     | 91  |
|    | 3.3 Inorga | anics                               | 99  |
|    | 3.3.1      | Macronutrients                      | 99  |
|    | 3.3.2      | Micronutrients                      | 101 |
|    | 3.3.3      | Toxic Heavy Metals                  | 102 |
|    | 3.4 Micro  | bbes                                | 103 |
|    |            | Virus                               | 107 |
|    | 3.4.2      | Bacteria                            | 107 |
|    |            |                                     | 114 |
|    |            | Algae                               | 114 |
|    |            | Fungi                               | 114 |
|    | 3.5 Water  | r Quality in Flowing Water Bodies   | 115 |
|    | 3.5.1      | Dissolved Oxygen Sag Curve          | 115 |
|    |            | Nitrogen Species in Rivers          | 118 |
|    | 3.5.3      | Environmental Flows (E-flows)       | 118 |

Cambridge University Press & Assessment 978-1-316-63903-0 — Water and Wastewater Engineering Sudha Goel Frontmatter <u>More Information</u>

|               |      | Contents                                                    | vii |
|---------------|------|-------------------------------------------------------------|-----|
|               | 20   |                                                             | 102 |
|               | 3.0  | Water Quality in Standing Water Bodies                      | 123 |
|               |      | 3.6.1 Eutrophication                                        | 123 |
|               | 27   | 3.6.2 Thermal Stratification                                | 124 |
|               | 3./  | Water Quality Index (WQI)                                   | 129 |
| 4.            | Ma   | ss Transfer and Transformation                              | 135 |
|               | 4.1  | Mass Transfer: Using Mass Balances                          | 136 |
|               |      | 4.1.1 Transport by Advection                                | 137 |
|               |      | 4.1.2 Transport by Diffusion                                | 138 |
|               |      | 4.1.3 Transport by Eddy or Turbulent Diffusion              | 139 |
|               |      | 4.1.4 Transport by Dispersion                               | 140 |
|               | 4.2  | Mass Transformation                                         | 143 |
|               |      | 4.2.1 Types of Reactions                                    | 144 |
|               |      | 4.2.2 Reaction Kinetics                                     | 145 |
|               | 4.3  | Ideal Reactors                                              | 153 |
|               |      | 4.3.1 Batch Reactors                                        | 154 |
|               |      | 4.3.2 Continuously Stirred Tank Reactors (CSTR)             | 154 |
|               |      | 4.3.3 Plug Flow Reactors (PFR)                              | 156 |
|               |      | 4.3.4 Tracer Curves                                         | 157 |
|               | 4.4  | Bacterial Growth and Kinetics                               | 165 |
|               |      | 4.4.1 Metabolic Pathways                                    | 165 |
|               |      | 4.4.2 Bacterial Growth Phases                               | 166 |
|               |      | 4.4.3 Bacterial Growth Kinetics and Yields                  | 167 |
| Pa            | rt I | I Water and Wastewater Treatment Processes                  | 175 |
| 5.            | Phy  | vsico-Chemical Processes for Water and Wastewater Treatment | 177 |
|               | 5.1  | Balancing Storage or Flow Equalization                      | 178 |
|               | 5.2  | Aeration                                                    | 181 |
| 5.3 Screening |      | 189                                                         |     |
|               | 5.4  | Settling                                                    | 196 |
|               |      | 5.4.1 Discrete Settling (Type 1)                            | 197 |
|               |      | 5.4.2 Design of Settling Tanks                              | 204 |
|               | 5.5  | Coagulation–Flocculation                                    | 209 |
|               |      | 5.5.1 The Stability of Particles                            | 209 |
|               |      | 5.5.2 Coagulation Theory                                    | 210 |
|               |      | 5.5.3 Flocculation                                          | 214 |
|               |      | 5.5.4 Design considerations                                 | 216 |
|               | 5.6  | Sedimentation or Clarification                              | 220 |
|               |      | 5.6.1 Flocculant Settling Analysis (Type 2)                 | 221 |
|               |      | 5.6.2 Design of Clariflocculator                            | 221 |

Cambridge University Press & Assessment 978-1-316-63903-0 — Water and Wastewater Engineering Sudha Goel Frontmatter <u>More Information</u>

| viii | Contents                                                                      |            |
|------|-------------------------------------------------------------------------------|------------|
| 5    | 7 Softening: Chemical                                                         | 224        |
|      | 8 Softening: Ion Exchange                                                     | 230        |
|      | 9 Granular Media Filtration                                                   | 235        |
|      | 5.9.1 Types of Granular Media Filters                                         | 236        |
|      | 5.9.2 Design Considerations                                                   | 239        |
| 5    | 10 Membrane Filtration                                                        | 244        |
|      | 5.10.1 Types of Membrane Filters                                              | 245        |
|      | 5.10.2 Osmosis and Reverse Osmosis                                            | 246        |
|      | 5.10.3 Electrodialysis and Electrodialysis Reversal                           | 247        |
|      | 5.10.4 Design of Membrane Filters                                             | 248        |
|      | 5.10.5 Operation of Membrane Filters                                          | 250        |
|      | 5.10.6 Membrane Fouling                                                       | 252        |
| 6. B | iological Processes for Water and Wastewater Treatment                        | 263        |
| 6    | 1 Wastewater Characteristics                                                  | 264        |
|      | 6.1.1 Quantity Generated                                                      | 266        |
|      | 6.1.2 Quality                                                                 | 268        |
| 6.   | 2 Secondary Treatment: Suspended Growth Processes                             | 272        |
|      | 6.2.1 Activated Sludge Process                                                | 272        |
|      | 6.2.2 Sequential Batch Reactors (SBR)                                         | 281        |
|      | 6.2.3 Aerated Lagoons                                                         | 282        |
| 6.   | 3 Secondary Treatment: Fixed Film Processes                                   | 282        |
|      | 6.3.1 Trickling Filters (TF)                                                  | 282        |
|      | 6.3.2 Rotating Biological Contactors (RBC)                                    | 290        |
|      | 6.3.3 Membrane Bioreactors (MBR)                                              | 295        |
| 6.   | 4 Clarification: Type 3 and Type 4 Settling                                   | 295        |
|      | 6.4.1 Hindered Settling (Type 3)                                              | 296        |
| (    | 6.4.2 Compression Settling (Type 4)                                           | 296        |
| 0.   | 5 Sludge Treatment: Thickening                                                | 300        |
|      | 6.5.1 Co-settling Thickening                                                  | 301        |
|      | <ul><li>6.5.2 Gravity Thickening</li><li>6.5.3 Flotation Thickening</li></ul> | 301<br>301 |
|      | 6.5.4 Centrifugal Thickening                                                  | 303        |
|      | 6.5.5 Gravity-Belt Thickening                                                 | 304        |
|      | 6.5.6 Rotary-Drum Thickening                                                  | 304        |
| 6    | 6 Sludge Treatment: Digestion                                                 | 306        |
| 0    | 6.6.1 Anaerobic Digestion                                                     | 307        |
|      | 6.6.2 Design Considerations                                                   | 312        |
|      | 6.6.3 Aerobic Digestion                                                       | 315        |
|      | 0                                                                             | 0-9        |

Cambridge University Press & Assessment 978-1-316-63903-0 — Water and Wastewater Engineering Sudha Goel Frontmatter <u>More Information</u>

|    |      | Contents                                                         | ix  |
|----|------|------------------------------------------------------------------|-----|
|    | 6.7  | Sludge Dewatering and Disposal                                   | 319 |
|    |      | 6.7.1 Sludge Dewatering                                          | 319 |
|    |      | 6.7.2 Sludge Disposal                                            | 322 |
|    | 6.8  | Disinfection                                                     | 322 |
|    |      | 6.8.1 Disinfection of Drinking Water                             | 322 |
|    |      | 6.8.2 Disinfection of Wastewater                                 | 330 |
| 7. | Str  | ategies for Water and Wastewater Treatment                       | 343 |
|    | 7.1  | Conventional Drinking Water Treatment Schemes                    | 344 |
|    |      | 7.1.1 Conventional Treatment for Surface Water                   | 344 |
|    |      | 7.1.2 Conventional Treatment for Groundwater                     | 348 |
|    | 7.2  | Non-conventional Water Treatment Schemes                         | 349 |
|    |      | 7.2.1 Arsenic in Groundwater and Its Removal                     | 349 |
|    |      | 7.2.2 Fluoride in Groundwater and Its Removal                    | 363 |
|    |      | 7.2.3 Nitrate Contamination and Its Removal                      | 367 |
|    | 7.0  | 7.2.4 Total Organic Carbon (TOC) and Its Removal                 | 370 |
|    | /.3  | Municipal Wastewater Systems                                     | 373 |
|    |      | 7.3.1 Municipal Wastewater Treatment: Primary and Secondary      | 373 |
|    |      | 7.3.2 Municipal Wastewater Treatment: Tertiary and Higher Levels | 375 |
| 8. | Wa   | ter Transport and Distribution Systems                           | 382 |
|    | 8.1  | Transport of Water                                               | 383 |
|    | 8.2  | Distribution Reservoirs                                          | 388 |
|    |      | 8.2.1 Surface Reservoirs                                         | 389 |
|    |      | 8.2.2 Elevated Reservoirs                                        | 389 |
|    | 8.3  | Distribution Networks                                            | 389 |
| 9. | Mu   | nicipal Wastewater Collection and Disposal                       | 397 |
|    | 9.1  | Municipal Wastewater Collection Systems                          | 398 |
|    | 9.2  | Wastewater Disposal and Reuse                                    | 401 |
|    |      | 9.2.1 Disposal of Municipal Wastewater                           | 401 |
|    |      | 9.2.2 Reuse of Treated Municipal Wastewater                      | 402 |
|    | Арр  | pendix A                                                         | 411 |
|    | Арр  | pendix B                                                         | 413 |
|    | Арр  | pendix C                                                         | 414 |
|    | App  | pendix D                                                         | 418 |
|    | Refe | rences                                                           | 421 |
|    | Inde | 22                                                               | 431 |
|    | Col  | or Plates                                                        | 439 |

© in this web service Cambridge University Press & Assessment

### Preface

'Water and Wastewater Engineering' is a core course in undergraduate programs in civil engineering. The course objective is to ensure that a student is able to evaluate different water resource options for their sustainability, quantity and quality, and to design appropriate municipal water supply and wastewater systems. These water supply systems will necessarily require sourcing of water, its collection, treatment and distribution. Wastewater generated within these systems has to be treated in treatment plants so that it can be reused or disposed of on land or in water bodies after achieving discharge standards. Wastewater reuse has become an extremely important topic these days due to severe water scarcity in many parts of the world, including India.

This textbook covers all aspects of municipal water and wastewater systems and is designed for a one-semester course. Prior to designing water and wastewater treatment plants, it is necessary to identify and develop an appropriate water source. For this, the student must be familiar with different types of water resources: surface water and groundwater, and concepts related to their quantity and quality. These are covered in the first and second chapters of this book. Fundamental concepts from chemistry, microbiology, and chemical engineering are covered in the first part of the book (Chapters 3 and 4) as these are necessary for understanding water quality issues, and designing water and wastewater systems. The second part of the book includes the design of conventional water treatment plants with unit processes like aeration, sedimentation, coagulation, filtration, and disinfection; design of conventional wastewater treatment plants with unit processes like screening, sedimentation, biological processes, activated sludge process and trickling filters or biofilters, sludge treatment, and disposal; water distribution methods; wastewater collection, reuse, and disposal options; and non-conventional treatment strategies for removal of specific pollutants like fluoride, arsenic, nitrate, and natural organic matter.

This textbook started as a spin-off of an online course of the same name. However, several topics that could not be covered in the online course are also included in the textbook. The text material has been expanded and the number of problems increased. Solutions to all problems are provided. Some of the problems will require the use of spreadsheets or other software for graphing and calculations. A word about notation in this book: \* symbolizes multiplication in MS Excel and has been retained in all equations instead of 'x'. The online course can be accessed at the following link: http://www.ide.iitkgp.ernet.in/Pedagogy\_view/example.jsp?USER\_ID=52.

xii

#### Preface

Several pedagogical features have been incorporated in the book, including learning objectives, study outline, and study questions. Learning objectives help the students identify what the outcome of their study should be, while the study outline provides a concise summary of what is important. Several photographs and schematic diagrams are included along with graphical solutions to problems to help the student visualize concepts and solve problems. The book covers only theoretical and empirical principles as they are applied in the field. The practical 'nuts and bolts' of engineering cannot be provided by this textbook! The student should always bear in mind that what is done in practice, i.e., what works, does not always seem to be compatible with theory, i.e., the how and why of what works and what does not work. Research and development is all about bridging the gap between theory and practice.

Finally, while every effort has been made to eliminate typographical and other mistakes from the book, the reader is encouraged to point these out by writing to the author at the following address: sudhagoelcup@gmail.com.

## Acknowledgments

As mentioned in the preface, this book is a spin-off of an online course that was created under a National Mission Project on Education through Information and Communication Technology, sponsored by the Ministry of Human Resource Development, Government of India. The author is grateful to the principal investigators of this project (Professor Anup Kumar Roy and Professor Bani Bhattacharya) for giving her an opportunity to develop an online course. Several students were part of developing the online course and include Aashay Arora, Abhishek Ashish, Akhilesh Yadav, Allen Dan Babu, Ankit Surekha, Hiray Kunal Satish, Manas Kansal, Manoj Kumar Mondal, Neelesh Agrawal, Rohit Rout, Prateek Kumar, Shaikh Elias, and Syed Salman Hyder.

Other students who have contributed to this book long after the above-mentioned project was completed include Abhishek Singhal, Rahul Meena, Tandra Mohanta, Ved P. Ranjan, Kruttika Apshankar Kher, and Naseeba Parveen. Experimental data for several problems were obtained from students and their work is referenced at relevant points in the book. The author is grateful to all these students for their contributions to this book. Colleagues and staff at IIT Kharagpur and in other institutions have also supported this endeavor and their help is gratefully acknowledged.

Last but not least, the author is grateful to her family, friends, and teachers who have supported her through all these years.

# Abbreviations

| AL   | aerated lagoon                                        |
|------|-------------------------------------------------------|
| AODC | acridine orange direct cell count                     |
| APHA | American Public Health Association                    |
| ASP  | activated sludge process                              |
| ATAD | auto thermal aerobic digestion                        |
| AWWA | American Water Works Association                      |
| BCM  | billion cubic meters                                  |
| BFR  | brominated fire retardants                            |
| BOD  | biochemical oxygen demand or biological oxygen demand |
| BODu | ultimate biochemical oxygen demand                    |
| CBOD | carbonaceous biochemical oxygen demand                |
| CEA  | Central Electricity Authority                         |
| COD  | chemical oxygen demand                                |
| CPCB | Central Pollution Control Board                       |
| CSO  | combined sewer overflow                               |
| CSTR | continuously stirred tank reactor                     |
| CWC  | Central Water Commission                              |
| CWS  | continuous water supply                               |
| DAF  | dissolved air flotation                               |
| DBPs | disinfection by-products                              |
| DDT  | dichloro-diphenyl-trichloroethane                     |
| DF   | demand factor                                         |
| DNA  | deoxyribose nucleic acid                              |
| DO   | dissolved oxygen                                      |
| DOC  | dissolved organic carbon                              |
| DW   | drinking water                                        |
|      |                                                       |

xvi

Abbreviations

| ED    | electron donor                                         |
|-------|--------------------------------------------------------|
| ED    | electrodialysis                                        |
| EDR   | electrodialysis reversal                               |
| FAO   | Food and Agriculture Organization                      |
| FICCI | Federation of Indian Chambers of Commerce and Industry |
| FSS   | fixed suspended solids                                 |
| GI    | galvanized iron                                        |
| GW    | groundwater                                            |
| HAA   | haloacetic acids                                       |
| HAN   | haloacetonitriles                                      |
| HPC   | heterotrophic plate count                              |
| IS    | Indian Standards                                       |
| ISO   | International Organization for Standardization         |
| IWS   | intermittent water supply                              |
| Lpcd  | liters per capita per day                              |
| LUST  | leaking underground storage tank                       |
| MBR   | membrane bioreactor                                    |
| MLD   | million liters per day                                 |
| MLSS  | mixed liquor suspended solids                          |
| MLVSS | mixed liquor volatile suspended solids                 |
| MSL   | mean sea level                                         |
| NBOD  | nitrogenous biochemical oxygen demand                  |
| NOM   | natural organic matter                                 |
| NTU   | nephelometric turbidity units                          |
| PCP   | personal care products                                 |
| PF    | peaking factor                                         |
| PFR   | plug flow reactor                                      |
| RBC   | rotating biological contactor                          |
| RNA   | ribose nucleic acid                                    |
| SAR   | sodium absorption ratio                                |
| SBR   | sequencing batch reactor                               |
| SEM   | scanning electron microscope                           |
| SF    | solids flux                                            |
| SOC   | synthetic organic compounds (compounds)                |
| SOP   | synthetic organic polymers                             |
| SS    | steady-state                                           |
|       |                                                        |

Cambridge University Press & Assessment 978-1-316-63903-0 — Water and Wastewater Engineering Sudha Goel Frontmatter <u>More Information</u>

#### Abbreviations

xvii

| SVI  | sludge volume index                     |
|------|-----------------------------------------|
| SW   | surface water                           |
| TDS  | total dissolved solids                  |
| TEA  | terminal electron acceptor              |
| TEM  | transmission electron microscope        |
| TF   | trickling filter                        |
| TFS  | total fixed solids                      |
| THM  | trihalomethanes                         |
| ThOD | theoretical oxygen demand               |
| TKN  | total Kjeldahl nitrogen                 |
| TOC  | total organic carbon                    |
| TOX  | total organic halogen                   |
| TS   | total solids                            |
| TSS  | total suspended solids                  |
| TVS  | total volatile solids                   |
| uPVC | unplasticized polyvinyl chloride        |
| UV   | ultraviolet                             |
| VC   | viable cells                            |
| VLOM | village level operation and maintenance |
| VOC  | volatile organic compounds              |
| VSS  | volatile suspended solids               |
| WHO  | World Health Organization               |
| WQI  | water quality index                     |
|      |                                         |

### Symbols and Dimensions (Mass, Length and Time-MLT system where possible)

| a              | activity                                                                                        |
|----------------|-------------------------------------------------------------------------------------------------|
| А              | area, L <sup>2</sup>                                                                            |
| А              | specific light absorbance, dimensionless                                                        |
| A/V            | = a = specific surface area, $1/L$                                                              |
| $A_p$          | projected area or cross-sectional area of particle in flow direction, $\boldsymbol{L}^2$        |
| b              | endogenous decay coefficient, 1/T                                                               |
| С              | concentration, M/L <sup>3</sup>                                                                 |
| $C_d$          | coefficient of drag, dimensionless                                                              |
| D              | dispersion coefficient                                                                          |
| D <sub>e</sub> | eddy diffusion coefficient                                                                      |
| D <sub>m</sub> | molecular diffusion coefficient, L <sup>2</sup> /T                                              |
| e              | electron charge, 1.60219 *10 <sup>-19</sup> Coulombs                                            |
| E <sub>a</sub> | activation energy for a reaction, kJ/mol                                                        |
| F              | flow rate for fire-fighting or fire demand, L <sup>3</sup> /T                                   |
| F/M            | food to microorganism ratio, kg BOD5/kg MLVSS-d                                                 |
| G              | velocity gradient, 1/T                                                                          |
| h              | elevation or height, L                                                                          |
| h <sub>f</sub> | head loss through filter, L                                                                     |
| Ι              | current, amperes                                                                                |
| Ι              | impermeability factor or runoff coefficient (ratio of runoff to rainfall)                       |
| Ι              | ionic strength, M/L <sup>3</sup>                                                                |
| k              | Boltzmann constant, 1.38066*10 <sup>-23</sup> J/degree Kelvin                                   |
| К              | hydraulic conductivity or coefficient of permeability, L/T                                      |
| k              | maximum substrate utilization rate per unit mass of microbes, mg substrate/mg cells-time, M/M-T |
| k              | reaction rate constant, units vary with reaction order                                          |
|                |                                                                                                 |

Cambridge University Press & Assessment 978-1-316-63903-0 — Water and Wastewater Engineering Sudha Goel Frontmatter <u>More Information</u>

XX

Symbols and Dimensions

| k <sub>d</sub>  | deoxygenation constant, 1/T                                                                                         |
|-----------------|---------------------------------------------------------------------------------------------------------------------|
| K <sub>L</sub>  | overall mass transfer coefficient, M/T                                                                              |
| k <sub>o</sub>  | oxygenation or reaeration constant, 1/T                                                                             |
| K <sub>ow</sub> | octanol-water partitioning coefficient                                                                              |
| K <sub>s</sub>  | half-velocity constant, M/L <sup>3</sup>                                                                            |
| L               | length, L                                                                                                           |
| L <sub>0</sub>  | ultimate carbonaceous BOD (CBOD) and $L_t$ = ultimate CBOD at time t                                                |
| М               | molality of a solution, moles/L                                                                                     |
| n               | any number                                                                                                          |
| n               | Manning's coefficient or coefficient of roughness                                                                   |
| Ν               | number of microbes or cells/L                                                                                       |
| N <sub>A</sub>  | Avogadro's number, 6.02205*10 <sup>23</sup> molecules/mol                                                           |
| Р               | population, persons; $P_0$ = population at t = 0; $P_s$ = saturation population in the logistic model               |
| Р               | power or pressure                                                                                                   |
| Q               | flow rate, $L^3/T$ or heat flux, Joules/cm <sup>2</sup> -s                                                          |
| q               | hydraulic loading rate or surface overflow rate, L/T                                                                |
| R               | electrical resistance, ohms                                                                                         |
| R               | ideal gas constant, 8.314 J/mol–K                                                                                   |
| R               | rainfall intensity, L/T                                                                                             |
| r               | rate of change, M/T                                                                                                 |
| R <sub>0</sub>  | maximum instantaneous growth rate in the logistic model, 1/T                                                        |
| Re              | Reynolds number, dimensionless                                                                                      |
| r <sub>H</sub>  | hydraulic radius, L                                                                                                 |
| S               | growth limiting substrate concentration in solution, M/L <sup>3</sup>                                               |
| S               | slope or hydraulic gradient, or drop in head or head loss per unit length = –h <sub>L</sub> /L, length of pipe, L/L |
| Т               | temperature                                                                                                         |
| t               | time, T                                                                                                             |
| t <sub>c</sub>  | critical time,                                                                                                      |
| V               | velocity, L/T                                                                                                       |
| V               | volume of a solution, L <sup>3</sup>                                                                                |
| $v_{s}$         | settling velocity of particle, M/T                                                                                  |
| Х               | increment or mass or mass fraction or biomass or cell concentration                                                 |
| Y               | maximum yield coefficient, dimensionless                                                                            |
|                 |                                                                                                                     |

Cambridge University Press & Assessment 978-1-316-63903-0 — Water and Wastewater Engineering Sudha Goel Frontmatter <u>More Information</u>

#### Symbols and Dimensions

| Z                      | charge of ion                                                    |
|------------------------|------------------------------------------------------------------|
| γ (gamma)              | activity coefficient, dimensionless                              |
| η (eta)                | porosity (% of total volume) or Coulombic efficiency, %          |
| $\Theta$ (theta)       | temperature correction factor or normalized time, i.e., $t/\tau$ |
| $\kappa^{-1}(1/kappa)$ | double layer thickness, L                                        |
| μ (mu)                 | dynamic viscosity                                                |
| П (рі)                 | osmotic pressure                                                 |
| $\rho$ (rho)           | density of water or other materials, M/L <sup>3</sup>            |
| τ (tau)                | V/Q = design hydraulic residence time, T                         |
| Ø (phi)                | sphericity of the particle, dimensionless                        |
|                        |                                                                  |

xxi