Cambridge University Press 978-1-316-63564-3 — Principles of Engineering Physics 1 Md Nazoor Khan , Simanchala Panigrahi Frontmatter <u>More Information</u>

Principles of Engineering Physics 1

This is a textbook for an introductory course in engineering physics. It provides a coherent treatment of the basic principles and theories of engineering physics and offers a balance between theoretical concepts and their applications. Beginning with a comprehensive discussion on oscillations and waves with applications in the field of mechanical and electrical engineering, it goes on to explain basic concepts such as Huygen's principle, Fresnel's biprism, Fraunhofer diffraction and polarization.

All chapters are interspersed with rich pedagogical features such as solved problems, unsolved exercises and multiple choice questions with answers. It will help undergraduate students of engineering acquire skills for solving difficult problems in quantum mechanics, electromagnetism, nanoscience, energy systems and other engineering disciplines.

Md. N. Khan is Associate Professor at the Department of Physics, Indira Gandhi Institute of Technology (IGIT), Odisha. He has more than 22 years of teaching experience and has taught courses on engineering physics, physics of semiconductor devices and materials science. His areas of interest include X-ray scattering and materials science.

S. Panigrahi is Senior Professor at the Department of Physics and Astronomy, National Institute of Technology (NIT), Rourkela. He has more than two decades of teaching and research experience in the field of solid state physics, materials science and ferroelectrics.

Principles of Engineering Physics 1

Md. N. Khan S. Panigrahi

Cambridge University Press 978-1-316-63564-3 — Principles of Engineering Physics 1 Md Nazoor Khan , Simanchala Panigrahi Frontmatter <u>More Information</u>

University Printing House, Cambridge CB2 8BS, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, vic 3207, Australia 4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi – 110002, India 79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781316635643

© Cambridge University Press 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2016

Printed in India

A catalogue record for this publication is available from the British Library

ISBN 978-1-316-63564-3 Paperback

Additional resources for this publication at www.cambridge.org/9781316635643

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> To all our beloved people who have sacrificed their lives for the betterment of the world through science, technology and social service.

Contents

Pre		xxi				
Ack	Acknowledgment					
1.	Oscil	and Waves				
	1.1	Introduction		1		
		1.1.1	Parameters of an oscillatory system	1		
	1.2 Simple Harmonic Oscillation (SHO)			2		
		1.2.1	Energy of a simple harmonic oscillator	4		
		1.2.2	Characteristics of SHO	6		
	1.3	d Harmonic Oscillation (DHO)	10			
		1.3.1	Damping of an oscillator	14		
	1.4	1.4 Forced Vibrations		21		
		1.4.1	Velocity of the forced harmonic oscillator	25		
		1.4.2	Total energy of the forced harmonic oscillator	25		
		1.4.3	Power of the forced harmonic oscillator	27		
	1.5	Displac	cement Resonance	30		
		1.5.1	Resonant amplitude	31		
		1.5.2	Sharpness of resonance	32		
		1.5.3	Quality factor of a forced harmonic oscillator	33		
		1.5.4	Examples of resonance	34		
	1.6	Couple	d Oscillators	36		
		1.6.1	Experiment on a two-body coupled oscillator	43		
	1.7	Analog	y of Mechanical and Electrical Oscillations	44		

viii Contents

	1.8	Wave a	as a Periodic Variation Quantity in Space and Time	48
		1.8.1	Wave equation	48
		1.8.2	Wave equation in differential form	49
	1.9	Longit	udinal and Transverse Waves	50
		1.9.1	Longitudinal waves	50
		1.9.2	Transverse waves	50
		1.9.3	Difference between longitudinal waves and transverse waves	52
		1.9.4	Characteristic of progressive waves	52
	1.10	Station	nary Waves	53
		1.10.1	Formation of stationary waves	53
		1.10.2	Characteristics of stationary waves	56
		1.10.3	Differences between progressive and stationary waves	56
	1.11	Reflect	ion of a Wave at the Boundary of Two Media	57
		1.11.1	Reflection of transverse waves	57
		1.11.2	Reflection of longitudinal waves	59
	1.12	Refract	tion of a Wave at the Boundary of Two Media	60
		1.12.1	Refraction of transverse waves	60
		1.12.2	Refraction of longitudinal waves	61
	1.13	Wave I	Packet	64
	1.14	Phase V	Velocity and Group Velocity	66
		1.14.1	Phase velocity	66
		1.14.2	Group velocity	66
		1.14.3	Relation between phase velocity and group velocity	68
	1.15	Uncert	ainty Principle	70
		1.15.1	Uncertainty principle for classical waves	70
		1.15.2	Heisenberg's uncertainty principle	72
	1.16	Superposition of Waves		
		1.16.1	Basis for the principle of superposition	76
		1.16.2	Principle of superposition	77
		1.16.3	Two beams superposition in one direction	77
		1.16.4	Multiple beam superpositions	82
		1.16.5	Coherent and incoherent superposition	85
Que	estions			87
Prol	blems			91
Mul	ltiple (Choice Q	Juestions	94
Ans	wers			97
2.		rference		
	2.1	Introdu		98
	2.2	Huyge	ns' Principle	98

			Contents	ix
	2.2.1	Explanation		99
	2.2.2	Construction of a new wavefront		101
	2.2.3	Absence of backward waves		102
	2.2.4	Applications		103
2.3	Interfer	ence of Water Waves		103
2.4	Young's	s Double Slit Experiment		104
2.5	-	nt Sources		105
	2.5.1	Methods of practical realization of coherent sources		106
2.6	Classific	cation of the Interference Phenomenon		106
2.7	Theory	of Interference		107
	2.7.1	Constructive interference $(I = I_{max})$		109
	2.7.2	Destructive interference $(I = I_{min})$		110
	2.7.3	Fringe spacing β		110
	2.7.4	Intensity distribution curve		114
2.8	Conserv	vation of Energy in Interference		114
2.9	Conditi	ons for Interference of Light		115
2.10	Shape o	f Interference Fringes		118
	2.10.1	Shape of interference fringes on XY-plane (Hyperbolic)		119
2.11	Interfer	ence Fringes in 3-D Space		123
	2.11.1	Shape of interference fringes on the ZX-plane (Circular)		125
	2.11.2	Shape of interference fringes on the XY-plane (Hyperbolic)		126
	2.11.3	Shape of interference fringes on the YZ-plane (Hyperbolic)		127
2.12	Newton	's Rings		127
	2.12.1	Experimental setup		127
	2.12.2	Theory		129
	2.12.3	Calculations		130
	2.12.4	Diameter of the <i>n</i> th order Newton's ring		135
	2.12.5	Diameter of the <i>n</i> th order bright Newton's ring		136
	2.12.6	Diameter of the <i>n</i> th order dark Newton's ring		136
	2.12.7	Central fringe as seen by the reflected light		137
2.13	Newton	's Rings by Transmitted Light		137
	2.13.1	Diameter of the <i>n</i> th order Newton's ring		141
	2.13.2	Diameter of the <i>n</i> th order bright Newton's ring		141
	2.13.3	Diameter of the <i>n</i> th order dark Newton's ring		142
	2.13.4	Central fringe as seen by the transmitted light		142
	2.13.5	Discussions		143
2.14	Determi	ination of Wavelength of Light using Newton's Ring		153
	2.14.1	Theory for the experiment		154

Contents

2.15	Determ	Determination of Refractive Index of Liquids using Newton's Rings		
	2.15.1	Theory for the experiment	156	
2.16	Fresnel	's Biprism	158	
	2.16.1	Determination of wavelength of light using a biprism	158	
2.17	Interferometers		163	
	2.17.1	Michelson interferometer	163	
Questions			174	
Problems			178	
Multiple (Choice Q	uestions	181	
Answers			185	

3. Diffraction 3.1 Introduction 186 3.2 Classification of Diffraction 186 Fresnel's Explanation of Rectilinear Propagation of Light 3.3 187 3.3.1 Fresnel's assumptions 187 3.3.2 Calculation of the resultant amplitude 188 Average distance of the *n*th Fresnel's half period zone from the pole 3.3.3 191 3.3.4 Phase difference among half period zones 192 3.3.5 Schuster's method of summing the series 194 3.4 Zone Plate 197 3.4.1 Types of zone plates 197 3.4.2 Action of the zone plate 198 3.4.3 Principle behind zone plates 203 3.4.4 Multiple foci of a zone plate 203 Presence of odd numbered foci 3.4.5 204 3.4.6 Intensity of fifth order focus 206 3.4.7 Absence of even numbered foci 208 Intensity of the fourth order focus 3.4.8 209 3.4.9 Comparison of a zone plate with a convex lens 210 3.5 Fraunhofer Diffraction 215 3.5.1 Fraunhofer diffraction due to a single slit 215 3.5.2 Intensity distribution 220 3.5.3 Width of the principal maximum 225 3.6 Plane Diffraction Grating 231 3.6.1 Theory of plane diffraction grating under normal incidence 231 3.6.2 Theory of plane diffraction grating under oblique incidence 237 Angular width of the principal maxima 238 3.6.3 3.6.4 Formation of spectra by diffraction grating 241

3.7 Dispersion

256

			Content	s xi
	3.8	Determ	nination of Wavelength of Light by Grating	260
	5.0	3.8.1	Theory	260
		3.8.2	Adjustments	261
		3.8.3	Measurement of θ	262
		3.8.4	Calculation of λ	263
		3.8.5	Alternative application	263
Ou	estions			263
-	blems			266
		Choice O	Juestions	268
	swers	\		271
4.		rization		272
	4.1	Introdu		272
	4.2		ation of Waves	272
		4.2.1	Mechanical demonstration of polarization of waves	273
		4.2.2	Demonstration of optical polarization of waves	274
		4.2.3	Pictorial representation of light Few definitions	274
	4.2	4.2.4		275
	4.3		ication of Polarized Light	275
		4.3.1	Plane polarized light	276
		4.3.2	Circularly polarized light	277
		4.3.3	Elliptically polarized light	277
	4.4		ation by Reflection	277
		4.4.1	Explanation of polarization by reflection	277
	4.5	4.4.2	Brewster's law	279
	4.5		ation by Refraction	281
		4.5.1	Malus's law	282
	4.6		ation by Scattering	284
	4.7		e Refraction	285
		4.7.1	Few terms connected with the double refraction phenomenon	287
		4.7.2	Difference between ordinary ray and extraordinary ray	290
		4.7.3	Polarization by double refraction	290
		4.7.4	Huygens' experiment on polarization by double refraction	291
		4.7.5	Huygens' theory of double refraction	293
		4.7.6	Phenomenon of double refraction at normal incidence	294
		4.7.7	Phenomenon of double refraction at oblique incidence	297
		4.7.8	Special cases	299
	4.8	Nicol F		305
		4.8.1	Principle	305

Cambridge University Press 978-1-316-63564-3 – Principles of Engineering Physics 1 Md Nazoor Khan , Simanchala Panigrahi Frontmatter More Information

xii Contents

		4.8.2	Construction	305
		4.8.3	Action of a Nicol prism	305
		4.8.4	Limitations	306
		4.8.5	Parallel and crossed Nicol prisms	306
	4.9	Retarda	ation Plates	309
		4.9.1	Half-wave plate	311
		4.9.2	Quarter-wave plate	312
	4.10	Produc	tion of Circularly Polarized Light	314
		4.10.1	Principle	314
		4.10.2	Production	315
		4.10.3	Analysis of circularly polarized light	316
	4.11	Produc	tion of Elliptically Polarized Light	317
		4.11.1	Principle	317
		4.11.2	Production	318
		4.11.3	Analysis of elliptically polarized light	319
	4.12	Analys	is of Light	321
	4.13	Optical	l Rotation	321
		4.13.1	Laws of optical rotation	322
		4.13.2	Fresnel's theory of optical rotation	323
		4.13.3	Mathematical analysis of Fresnel's theory of optical rotation	325
		4.13.4	Calculation of the angle of optical rotation	328
		4.13.5	Specific rotation	329
	4.14	Polarin	neter	332
		4.14.1	Laurent's half-shade polarimeter	333
Que	estions			341
Pro	blems			344
Mu	ltiple (Choice Q	uestions	346
Ans	swers			353
5.	Elect	romagn	etism	
	5.1	Introdu		354
			Calculus	354
	5.2	5.2.1	Line integrals	355
		5.2.2	Surface integrals	353
		5.2.3	Volume integral	359
		5.2.4	Gradient of scalar function	361
		5.2.5	Divergence of a vector function	364
		5.2.6	Curl of a vector function	368
		5.2.7	Gauss's divergence theorem	373
		5.2.8	Stokes' theorem	375
		5.2.0		570

			Contents	xiii
		5.2.9	Green's theorem	379
		5.2.10	Useful vector relations	383
	5.3	Gauss's		387
		5.3.1	Gauss's law of electrostatics in free space	387
		5.3.2	Gauss's law of electrostatics in a dielectric medium	388
		5.3.3	Applications of Gauss's law	388
	5.4	Magne	tic Induction	401
		5.4.1	Units of magnetic induction	403
		5.4.2	Special cases of magnetic induction	403
	5.5	Magne	tic Field Strength (Intensity)	405
	5.6	Amper	e's Circuital Law	406
		5.6.1	Ampere's circuital law in differential form	408
		5.6.2	Applications of Ampere's circuital law	408
	5.7	Farada	y's Law of Electromagnetic Induction	413
		5.7.1	Integral form of Faraday's law	414
		5.7.2	Differential form of Faraday's law	415
	5.8	Displac	cement Current	417
		5.8.1	Physical significance of displacement current	419
		5.8.2	Distinction between conduction current and displacement current	420
	5.9	Maxwe	ll's Electromagnetic Equations	427
		5.9.1	Maxwell's electromagnetic equations in differential form	427
		5.9.2	Special cases	429
		5.9.3	Maxwell's electromagnetic equations in integral form	432
Qu	estions			433
Pro	blems			438
Ми	ltiple (Choice Q	uestions	441
Ans	swers			446
6.	Floct	romaan	etic Waves	
0.	6.1	Introdu		447
	6.2		magnetic Energy Density	447
	0.2	6.2.1	Interpretation of the left-hand side of Eq. (6.8)	447
		6.2.2	Interpretation of the right-hand side of Eq. (6.8)	451
	6.3		ng's Vector	451
	6.4	'	ng's Theorem	454
	6.5	•	Potential and Scalar Potential	454
	0.5	6.5.1	Magnetic scalar potential	454
		6.5.2	Magnetic vector potential	454
	6.6		magnetic Wave Equations for \vec{E} and \vec{B}	455
	0.0	6.6.1	Electromagnetic wave equations for \vec{E}	460
		0.0.1	Electromagnetic wave equations for E	100

xiv Contents

		6.6.2	Electromagnetic wave equations for \overrightarrow{H}	460			
		6.6.3	Electromagnetic wave equations for \vec{B}	461			
	6.7	Wave E	Equation in Terms of Scalar and Vector Potentials	461			
		6.7.1	Wave equation in terms of vector potential \vec{A}	462			
		6.7.2	Wave equation in terms of scalar potential $\varphi_{_{E}}$	463			
	6.8	Plane E	lectromagnetic Waves	464			
	6.9	Transve	erse Nature of Electromagnetic Waves	466			
		6.9.1	Transverse nature of vector \vec{E}	466			
		6.9.2	Transverse nature of vector \overrightarrow{H}	467			
		6.9.3	Relative orientation of \vec{E} and \vec{H}	467			
	6.10	Speed o	f Electromagnetic Waves	473			
	6.11	Average	e Value of Poynting's Vector	475			
	6.12	Propag	ation of Electromagnetic Waves in Plasma Medium	478			
		6.12.1	Conductivity of ionized medium	480			
		6.12.2	Wave equation in ionized medium	481			
		6.12.3	Propagation constant in an ionized medium	482			
	6.13	Reflection and Refraction of Electromagnetic Waves at Non-conducting					
		and Co	nducting Boundaries	487			
		6.13.1	Reflection and refraction of electromagnetic waves at a non-conducting surface	488			
		6.13.2	Reflection and refraction of electromagnetic waves at a conducting surface	512			
Qu	estions			537			
Pro	blems			541			
Mи	ltiple (Choice Q	uestions	544			
	swers			548			
_	F 1						
7.		nentary Concepts of Quantum Physics					
	7.1	Introdu		549			
	7.2		or Quantum Physics	549			
	7.3		s and Waves	550			
	7.4		Aspect of Waves	551			
			Blackbody radiation	551			
		7.4.2	Photoelectric effect	563			
		7.4.3	Compton effect	568			
		7.4.4	Pair production	574			
		7.4.5	Characteristics of photon	576			
	7.5		Aspect of Particles	576			
		7.5.1	Matter waves	576			
		7.5.2	Davisson-Germer experiment	580			
		7.5.3	Properties of matter wave	583			

			Contents	xv
	7.6	Atom N	Iodels	586
		7.6.1	Rutherford's atom model	586
		7.6.2	Bohr's atom model	587
	7.7	Heisent	erg's Uncertainty Principle	598
		7.7.1	Statement	598
		7.7.2	Explanation	599
		7.7.3	Experimental illustration of the uncertainty principle	599
		7.7.4	Applications of uncertainty principle	602
	7.8	Transiti	on from Deterministic Classical Physics to Probabilistic Quantum Physics	606
	7.9	Wave F	unction ψ	607
		7.9.1	Characteristics of the wave function of a matter wave	608
		7.9.2	Probability density	608
		7.9.3	Dimensional analysis of a wave function	611
	7.10	Superpo	osition Principle	612
	7.11	Normal	ization	612
		7.11.1	Procedures for calculation of the normalization constant	612
	7.12	Observa	ables and Operators	617
	7.13	Eigenva	lues	618
	7.14	Eigenfu	nctions	618
	7.15	Operato	ors, Eigenfunctions and Eigenvalues	619
	7.16	Expecta	tion Value	622
		7.16.1	Procedures for calculation of the expectation value	625
	7.17	Schrödi	nger's Equation	632
		7.17.1	Schrödinger's time-dependent equation	632
		7.17.2	Schrödinger's time-independent equation	633
		7.17.3	Newton's equation and Schrödinger's equation	634
Que	estions			634
Proi	blems			639
Mui	ltiple (Choice Q	uestions	641
Ans	wers			645
8.	Appl	ications	of Quantum Mechanics	
	8.1	Introdu	ction	646
	8.2	One-Di	mensional Problems	646
	8.3	Bounda	ry Conditions on ψ	647
	8.4	Free Par	rticle	648
	8.5	Potentia	al Steps	650
		8.5.1	Reflection and transmission at the boundary at $x = 0$	655
		8.5.2	Potential energy barrier	666

	8.6	Infinit	y Deep Potential Well	687	
		8.6.1	Quantization of de Broglie wavelengths	690	
		8.6.2	Quantization of energy (energy eigenvalues)	690	
		8.6.3	Quantization of speed (speed eigenvalues)	692	
		8.6.4	Eigenfunctions	692	
Que	estions	;		694	
Pro	blems			698	
Mи	ltiple (Choice (Questions	698	
Ans	swers			700	
9.	Speci	ial Theo	ory of Relativity		
	9.1	Introd	uction	701	
	9.2	Frame	of Reference	701	
		9.2.1	Inertial frame of reference	701	
		9.2.2	Non-inertial frame of reference	702	
	9.3	Galilea	an Transformation	702	
	9.4	Michel	lson–Morley Experiment	703	
	9.5	Einstei	in's Principles of Relativity	707	
	9.6	Lorent	z Transformation	707	
		9.6.1	Mathematics of the Lorentz transformation	707	
		9.6.2	Consequences of the Lorentz transformation equations	711	
	9.7	Relativ	vity of Simultaneity	714	
	9.8	Relativistic Addition of Velocity			
	9.9	Relativ	ristic Momentum	720	
	9.10	Variati	ion of Mass with Speed	724	
	9.11	Mass-	Energy Equivalence	726	
	9.12	Massle	ess Particles ($m_0 = 0$)	729	
	9.13	Genera	alization of Newton's Second Law	730	
Que	estions	;		731	
Pro	blems			732	
Mи	ltiple (Choice (Questions	733	
Ans	swers			735	
10.	Arch	itectura	al Acoustics		
	10.1	Introd	uction	736	
	10.2	Basic I	Requirements of an Acoustically Good Hall	736	
	10.3	Revert	peration and Reverberation Time	737	
		10.3.1	Sabine's formula for reverberation time	738	
	10.4	Sound	Absorption	744	
		10.4.1	Room averaged sound absorption coefficient	745	

			Contents	xvii
	10.4.2	Measurement of absorption coefficient		746
10.5		Affecting the Acoustics of Buildings		747
		Requisites for good acoustics		749
10.6	Decibel S	Scale		749
10.7	Acoustic	Quieting		753
	10.7.1	Aspects of acoustic quieting		753
	10.7.2	Methods of quieting		754
	10.7.3	Quieting for specific observers		756
	10.7 4	Mufflers		756
10.8	Soundpr	oofing		758
	10.8.1	Airborne soundproofing		759
	10.8.2	Structure-borne soundproofing		759
Questions	;			760
Problems				761
Multiple (Choice Qu	estions		761
Answers				763
11. Ultra	sonics			
	Introduc	tion		764
		on of Ultrasonic Waves		764
		Galton's whistle		764
	11.2.2	Magnetostriction oscillator		766
		Piezoelectric oscillator		767
11.3	Detection	n of Ultrasonic Waves		769
11.4	Propertie	es of Ultrasonic Waves		770
11.5	Wavelen	gth Determination of Ultrasonic Waves		770
11.6	Ultrasou	nd Cavitation		773
	11.6.1	Parameters affecting ultrasonic cavitation		773
	11.6.2	Consequences of ultrasonic cavitation		774
11.7	Applicat	ions of Ultrasonic Waves		775
11.8	Sonogram	ms		779
11.9	Sonar			779
	11.9.1	Applications of sonar		780
11.10) Hazards	of Ultrasound		782
Questions	;			782
Problems				783
Multiple (Choice Qu	estions		783
Answers				784

Cambridge University Press 978-1-316-63564-3 — Principles of Engineering Physics 1 Md Nazoor Khan , Simanchala Panigrahi Frontmatter <u>More Information</u>

xviii Contents

12.	Non-	Destruc	tive Testing		
	12.1	Introdu	ction	785	
	12.2	Objectiv	ves of NDT	785	
	12.3	Method	ls of NDT	786	
		12.3.1	Visual and optical testing (VOT)	786	
		12.3.2	Dye penetrant testing (DPT)	787	
		12.3.3	Magnetic particle testing	788	
		12.3.4	Electromagnetic or eddy current testing	789	
		12.3.5	Radiographic testing	790	
		12.3.6	Ultrasonic testing	791	
		12.3.7	Pulse–echo system	795	
	12.4	Relative	e Merits of Various NDT Methods	800	
	12.5	Non-De	estructive Testing Methods and Applications	801	
Que	estions			802	
Pro	blems			802	
Multiple Choice Questions					
	Answers 8				
12	Nucl	ear Acce	larators		
13.		Introdu		805	
			Nuclear Accelerators	805	
			lechanism of a Nuclear Accelerator	806	
			omponents	807	
	15.1	13.4.1	-	807	
		13.4.2	Accelerating tube	807	
	135		nance Index	808	
			f Accelerators	808	
			ccelerators	808	
		13.7.1		809	
		13.7.2	Van de Graaff accelerator (D.C. accelerator)	811	
		13.7.3	Tandem accelerator (D.C. accelerator)	816	
	13.8		celerators	818	
		13.8.1	Linear accelerators	818	
		13.8.2	Cyclotron	822	
	13.9		n Accelerators	827	
		13.9.1	Betatron	828	
	13.10		tions of Accelerators	836	
			Radiation processing of materials	837	
			Uses of isotopes	838	
			-		

				Contents	xix
Questions					840
Problems				842	
Multiple Choice Questions				843	
Answers				845	
14	Holography				
	14.1	l Introduction			846
	14.2	Basic Principles of Holography			846
	14.3	Types of Holograms			853
		14.3.1	Reflection holograms		853
		14.3.2	Transmission holograms		853
		14.3.3	Comparison of transmission and reflection holograms		854
	14.4	White	Light Holograms		855
	14.5	Necessity of Laser Source			856
	14.6	Basic Requirements of a Holographic Laboratory			856
	14.7	Viewing a Hologram			857
	14.8	B Difference between Photography and Holography			857
	14.9	Applications of Holography			858
		14.9.1	Common applications of holography		858
		14.9.2	Application of holographic interferometry		860
		14.9.3	Application of holographic microscopy		861
Questions				862	
Multiple Choice Questions				862	
Answers				863	
Bibliography				865	
Index				867	

Preface

Science in general may be described as organized common sense. In the real world of science, nothing prevails except rationality and logics. Science does not believe in miracles. Clear understanding of the basic principles of science is essential for technological and social development. Once upon a time, the base of engineering was mainly empirical; however, now it is completely scientific. Physics is a fundamental aspect of science on which all engineering sciences have been built upon. Nowadays, more stress is given to the understanding of the basic principles rather than on remembering specific procedures. The fundamental concepts of physics have paved the way for the development of technologies. All modern technological advances from laser micro surgery to television, from computers to dishwashers to mobile phones, from remote controlled toys to space vehicles, trace back directly to the principles of physics. Accordingly, the syllabus of engineering courses includes physics as an essential ingredient.

This book, entitled *Principles of Engineering Physics 1*, is designed as a textbook keeping in view the engineering physics course curricula prescribed by most technical universities of India. The present book begins with oscillations and waves and ends with holography, containing altogether fourteen chapters. This book is written in a logical and coherent manner for easy understanding. The concepts of physics are mathematized without losing the beauty of the physical ideas involved. Emphasis has been given to an understanding of the basic concepts and their applications to a number of engineering problems. Each topic has been discussed in detail, both conceptually and mathematically, so that students do not face any kind of difficulties. All the derivations and solutions of numerical examples are given in detail. Each chapter contains a large number of solved numerical examples, unsolved numerical problems with answers, practical applications that are not included directly in the syllabi have also been included in the book for the sake of continuity and completeness. The scope of the book thus has been expanded beyond the basic needs of undergraduate engineering students. We hope this book will be of immense help not only to the students but also to the teachers.

The authors sincerely request the readers for their constructive criticisms via emails *mdnkhan1964@yahoo.com* and *spanigrahi@nitrkl.ac.in* for future modification of the book.

Acknowledgment

It is a pleasure to express our deep appreciation to the engineering students (both continuing and passed out) of IGIT Sarang and NIT Rourkela who have borne with us in our class teachings. Many suggestions from our colleagues, students and reviewers have gone a long way in the development of this book. Our sincere thanks are due to them. We gratefully acknowledge the ideas received from a number of standard books on physics as given in the bibliography. We sincerely thank the editorial team at Cambridge University Press, India, for their keen interest in publishing this book in a nice format. We particularly wish to thank Gauravjeet Singh Reen for many helpful suggestions and improvements.