

Fundamentals of Machine Design Volume I

Machine design is a part of Engineering Design. Fundamentals of Machine Design is compiled in two volumes. Vol. I provides extensive coverage and comprehensive discussion on the fundamental concepts and processes of machine design. Unit 1 of this volume starts by giving a background to the subject and then discusses the types of materials, their properties and their selection criteria for designing. Unit 2 covers different types of stresses including direct stress, bending stress, torsional stress and combined stress in detail. Unit 3 covers different types of temporary and permanent joints including pin joint, cotter joint, threaded joint, riveted joint and welded joint. The final unit covers the design procedure for keys, cotters, couplings, shafts, levers and springs in detail. It discusses applications of different types of joints used in boilers, bridges, power presses, automobile springs, screw jacks and couplings.

The chapters in the book are rich in pedagogical features like outcomes in beginning of a chapter summary at its end, many solved examples, review questions, multiple choice questions, design problems and questions of previous competition examinations are also provided. This textbook is primarily meant for undergraduate students of mechanical engineering for an introductory course on machine design. Design engineers will also find it useful. It is accompanied with teaching resources including a solutions manual for instructors.

Ajeet Singh was Professor and retired as Head at the Department of Mechanical Engineering, from Motilal Nehru National Institute of Technology (MNNIT), Allahabad. In addition to teaching, he worked in many administrative positions like Dean Academic, Dean Research and Consultancy etc. He has about three decades of teaching experience at undergraduate, graduate and doctoral level in India and 15 years abroad. He taught courses in machine drawing, machine design, internal combustion engines, tribology, computer aided design and engineering processes. He has been consultant to industries like BHEL, TEW etc. Besides publishing several papers in national and international journals, he has published three textbooks: *Working with AutoCAD 2000 with updates to AutoCAD 2000i* (2002), *Machine Drawing: Includes AutoCAD 2005* (2005) and *Machine Drawing; Includes AutoCAD 2010* (2012).

Fundamentals of Machine Design Volume I

Ajeet Singh

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781316630402

© Cambridge University Press & Assessment 2017

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

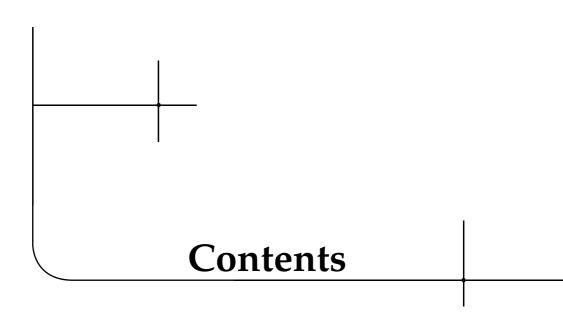
First published 2017

A catalogue record for this publication is available from the British Library

ISBN 978-1-316-63040-2 Paperback

 $Additional\ resources\ for\ this\ publication\ at\ www.cambridge.org/9781316630402$

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.


Dedicated to my wife Mrs Kanwaljeet

Daughters Preety, Diljeet and Maneet

and our grand children

Gaganjit, Karanjit, Ananya, Neha, Tanvi and Simar

Preface xxiii
Acknowledgment xxvii

Unit 1 - Concepts of Design

1.	Intro	duction to Machine Design	
1.	.1 I	ntroduction	1
1.	.2 S	Stages in Design	2
1.	.3 I	Design Considerations	3
1.	.4 Т	Гуреs of Design	4
1.	.5 L	Jnits	5
1.	.6 S	Standardization	8
	1	1.6.1 Objectives of standardization	9
	1	1.6.2 Advantages of standardization	9
1.	.7 L	Jse of Standards in Design	10
1.	.8 S	Standard Mechanical Component Designations	11
1.	.9 F	Preferred Numbers	12
2.	Engiı	neering Materials	
2.	.1 I	ntroduction	21
2.	.2 N	Material Properties	21
2.	.3	Classification of Engineering Materials	22
2.	.4 F	Ferrous Metals	23

viii	Co	ontents			
	2.5	Wrought Iron	24		
	2.6	Carbon Steels	24		
	2.0	2.6.1 Bureau of Indian Standards designation of steels	24		
		2.6.2 Applications of steels	26		
		2.6.3 Selecting a steel	28		
	2.7	Cast Iron	28		
	2.7	2.7.1 Code designation for ferrous castings	29		
		2.7.2 Types of cast iron	30		
		2.7.3 Applications of cast iron	31		
		2.7.4 Effects of impurities on properties of cast iron	32		
	2.8	Alloy Steels	32		
	2.0	2.8.1 Alloy steels designation	32		
		2.8.2 Properties of alloy steels	33		
		2.8.3 Applications of alloy steel	34		
		2.8.4 Guidelines for selecting alloy steel	35		
	2.9	Stainless Steels	35		
	2.10				
	2.11				
	2.12	Spring Steels	36		
		Non-Ferrous Metals	37		
		Aluminum and its Alloys	38		
		2.14.1 Aluminum designation	38		
		2.14.2 Applications of aluminum alloys	38		
		2.14.3 Mechanical properties of aluminum alloys	39		
	2.15	Copper and its Alloys	40		
	2.16	Tin	41		
	2.17	Zinc Alloys	41		
	2.18	Nickel Alloys	41		
	2.19	Bearing Materials	42		
		Lead	42		
	2.21	Non Metals	43		
	2.22	Elastomers (Rubber)	44		
	2.23	Wood	44		
	2.24	Selecting a Material	45		
3.		nits, Tolerances and Fits			
	3.1	Introduction	55		
	3.2	Terminology	55		
	3.3	International Tolerance Grade (IT Grade)	57		

			Contents	ix
				ļ
	3.4	Tolerances and Manufacturing Processes		59
	3.5	Fundamental Tolerances		60
		3.5.1 Letter symbol for holes		60
		3.5.2 Letter symbol for shafts		61
	3.6	Indication of Tolerance on a Drawing		67
	3.7	Fits		70
	3.8	Systems of Fits		70
		3.8.1 Hole basis		70
		3.8.2 Shaft basis		70
	3.9	Specifying a Fit		71
	3.10			71
	3.11	Selection of Fits		72
	3.12	Interchangeability		74
4.) Ma	nufacturing Aspects in Design		
	4.1	Introduction		82
	4.2	Manufacturing Processes		83
	4.3	Selection of Processes		83
	4.4	Shaping Processes		86
		4.4.1 Sand casting		86
		4.4.2 Design considerations in sand castings		87
		4.4.3 Factors controlling casting tolerances		90
		4.4.4 Die casting		91
	4.5	Forging Processes		92
		4.5.1 Hot and cold forging		93
		4.5.2 Forging in dies		93
		4.5.3 Rolling		94
		4.5.4 Drawing		94
		4.5.5 Extrusion		94
		4.5.6 Design aspects in forging		94
	4.6	Joining Processes		98
		4.6.1 Design considerations for welded parts		99
	4.7	Material Removal Processes		100
		4.7.1 Design considerations in machining		101
	4.8	Jigs		102
	4.9	Fixtures		102
	4.10			103
	4.11	1		103
		4.11.1 CNC machines		103
		4.11.2 Rapid prototyping		104

x Contents

Cambridge University Press & Assessment 978-1-316-63040-2 — Fundamentals of Machine Design Ajeet Singh Frontmatter <u>More Information</u>

4.12	Heat Treatment Processes	104
4.13	Surface Finishing Processes	105
4.14	Design for Assembly	106
	4.14.1 Approaches to design for assembly	107
	4.14.2 Assembly methods	107
	4.14.3 Cost of design for assembly	108
	4.14.4 Guidelines for design for assembly	109
	Unit 2– Designing for Strength	
. Sin	nple Stresses	
5.1	Introduction to Design	117
5.2	Types of Loads	118
5.3	Tensile Stress	119
5.4	Strength and Stiffness	119
5.5	Tensile Strain – Linear / Lateral	119
5.6	Stress - Strain Curve	120
5.7	Factor of Safety	121
	5.7.1 Factor of ignorance	121
5.8	Poisson's Ratio	122
5.9	Young's Modulus of Elasticity	123
5.10	Compressive Stresses	127
5.11	Compressive Stresses in Long Columns	129
	5.11.1 Euler's formula	129
	5.11.2 Rankine's formula	130
5.12	Bearing Stresses	133
5.13	Shear Stresses	134
5.14	Shear Strain	138
5.15	Shear Modulus of Rigidity	138
5.16	Bulk Modulus	139
5.17	Resilience	139
5.18	Thermal Stresses	140

5.21.2 Thick-walled vessels

5.20.1 Sphere to sphere contact

5.20.2 Cylinder to cylinder contact

5.19 Stresses due to Impact

5.21.1 Thin wall

5.20 Hertz Stresses

5.21 Hoop Stress

143

146

146

147

148

148

149

			Contents	xi
6.	Ber	nding Stresses		
	6.1	Bending Stresses		160
	6.2	Flexural Strength		161
	6.3 Bending Moment			161
	6.4 Moment of Area			167
	6.5	Beam Supports		169
	6.6	Shear Stress in Beams		169
		6.6.1 Shear force diagram		170
	6.7	Bending Moment Diagram		171
	6.8	Deflection of Beams		173
	6.9	Eccentric Loading		178
	6.10	Curved Beams		179
	6.11	Neutral and Central Axis		180
	6.12	Analysis of Curved Beam		182
	6.13	C - Clamp		183
	6.14	Machine Frame		185
7.	To	rsional Stresses		
	7.1	Torsional Shear Stresses		198
	7.2	Design for Rigidity		200
	7.3	Design of a Hollow Shaft		201
	7.4	Torsion of Non-Circular Shafts		204
	7.5	Torsion in Thin Sections		205
		7.5.1 Closed thin sections		205
		7.5.2 Open thin sections		208
8.	Co	mbined Stresses		
	8.1	Introduction to Combined Stresses		214
	8.2	Bending with Axial Load		214
	8.3	Principal Stresses		216
	8.4	Torsion with Axial Load		219
	8.5	Bending with Torsion		221
	8.6	Torsion and Bending Combined with Axial Load		224
	8.7	Mohr's Circle		226
		8.7.1 Two-dimensional stresses		226
		8.7.2 One-dimensional stress		228
		8.7.3 Three-dimensional stresses		230

XII	100	ontents	
	8.8	Theories of Failure	233
		8.8.1 Maximum principal strain theory	233
		8.8.2 Maximum shear stress theory	234
		8.8.3 Maximum strain energy theory	236
		8.8.4 Maximum distortion energy theory	237
		8.8.5 Maximum principal stress theory	244
	8.9	Summary of Failure Theories	247
9.	Str	ess Concentration	
	9.1	Introduction	255
	9.2	Stress Concentration Areas	255
	9.3	Parameters Causing Stress Concentration	256
	9.4	Stress Concentration Factor	256
	9.5	Localized Stress Concentration with an Elliptical Hole	257
	9.6	Stress Concentration with a Circular Hole	258
	9.7	Axial Loads on Flats with Holes	258
		9.7.1 Axial loads on flats with circular holes	258
		9.7.2 Axial load with two circular holes	260
	9.8	Axial Loads on Flats with a Fillet	263
	9.9	Axial Loads on Flats with a Notch	265
	9.10	Axial Loads on Cylinders	266
		9.10.1 Cylinder with a fillet or a shoulder	266
		9.10.2 Cylinder with a notch	267
	9.11	Stress Concentration in Bending	268
	9.12	Cylinder with a Notch	272
	9.13	Stress Concentration in Torsion	274
	9.14	Stress Concentration due to Keyway in a Shaft	276
	9.15	Stress Concentration in Screw Threads	277
	9.16	Stress Concentration in Gears	277
	9.17	Methods of Reducing Stress Concentration	277
	9.18	Actual Stress Concentration	278
	9.19	Notch Sensitivity	278
		9.19.1 Notch factor	280
10.	End	lurance Strength	
	10.1	Variable Loads	286
	10.2	Endurance Strength	287
	10.3	Fatigue Strength Testing	288
	10.4	S-N Curve	288

		Contents xiii
		'
10.5	Endurance Limit for Reversed Stresses	289
10.6	Number of Cycles and Fatigue Strength	290
10.7	Endurance Strength for Given Number of Cycles	292
10.8	Endurance Strength Modifying Factors	294
	10.8.1 Load factor (K_{load})	294
	10.8.2 Size factor (K_{size})	294
	10.8.3 Reliability factor (K_{rel})	295
	10.8.4 Surface finish factor (K_{surf})	295
	10.8.5 Temperature factor (K_{temp})	296
	10.8.6 Notch factor (K_{notch})	297
	10.8.7 Miscellaneous factor (K_m)	297
10.9	Approximate Endurance Strength	297
10.10	Cumulative Design	302
11. Fluo	ctuating Stresses	
11.1	Designing for Fluctuating Loads	312
11.2	Safe and Unsafe Zones	313
	11.2.1 Soderberg line	314
	11.2.2 Goodman line	314
	11.2.3 Modified Goodman line	314
	11.2.4 Gerber parabola	315
	11.2.5 ASME elliptical curve	316
11.3	Axial Fluctuating Loads	316
11.4	Bending Fluctuating Loads	321
11.5	Modified Goodman Line for Torsional Shear Stresses	324
11.6	Torsional Varying Loads	325
11.7	Axial and Bending Fluctuating Loads	328
11.8	Torsional and Axial Fluctuating Loads	333
11.9	Torsional and Bending Fluctuating Loads	335
11.10	Fatigue Design under Combined Loads	338
11.11	1 Two Dimensional Varying Loads	341
	Unit 3 - Joints	
12. Cot	ter Joints	
12.1	Cotter Joint	352
12.2	Types of Cotter Joints	352
12.3	Cotter	353

xiv C	ontents	
10.4		2.50
12.4	3	353
12.5	3	354
12.6	1 8 3	359
12.7	0 100	360
12.8	<u> </u>	369
12.9	Design of a Gib and Cotter Joint	370
13.) Pin	Joints	
13.1	Introduction to Pin Joints	378
13.2	Knuckle Joint	378
13.3	Design Procedure for a Knuckle Joint	378
14. Riv	eted joints	
14.1	Introduction	391
14.2	Rivets	391
14.3	Making a Riveted Joint	392
	Rivet Materials	393
14.5	Rivet Heads	393
14.6	Classification of Riveted Joints	394
	14.6.1 According to arrangement of plates	394
	14.6.2 According to number of rows of rivets (Single / Double / Triple)	395
	14.6.3 According to number of cover plates (Single / Double-Equal / Unequal)	396
	14.6.4 According to arrangement of rivets (Chain / Zigzag)	396
14.7	Failures of a Riveted Joint and Strength	397
	14.7.1 Failure of rivets	397
	14.7.2 Failure of plates	398
14.8	Joint Efficiency	400
14.9	Design of Riveted Joints	401
	14.9.1 Selection of rivet size	401
	14.9.2 Rivet hole size	401
	14.9.3 Rivet length	402
	14.9.4 Joint proportions	402
	14.9.5 Thickness of cover plates	402
	14.9.6 Width of cover plates	403
	14.9.7 Calculate strength in different modes of failure	403
	14.9.8 Calculate joint efficiency	404
14.1	0 Diamond Riveting	409
	14.10.1 Design procedure for diamond riveted joint	410

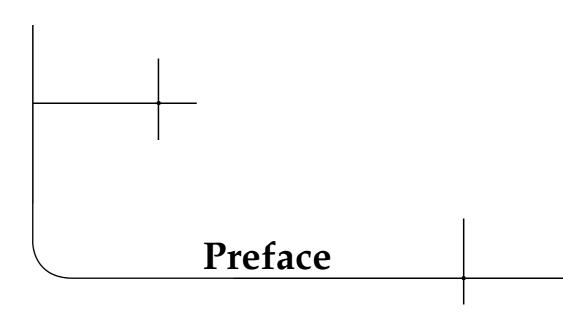
	Contents xv
14.11 Boiler Joints	417
14.11.1 Longitudinal boiler joints	41:
14.11.2 Circumferential boiler joints	41'
Welded joints	
15.1 Introduction	43.
15.2 Welded versus Riveted Joint	43.
15.3 Welded Joints versus Castings	43
15.4 Types of Welding Processes	43
15.4.1 Arc welding	43
15.4.2 Gas welding	43'
15.4.3 Thermit welding	43
15.4.4 Pressure welding	43'
15.5 Types of Welded Joints	43
15.6 Edge Preparation	43
15.7 Weld Symbols	43
15.7.1 Groove symbols	43
15.7.2 Contour symbols	44
15.7.3 Surface finish symbols	44
15.7.4 Additional welding symbols	44
15.8 Specifying a Welded Joint	44
15.8.1 Arrow line	44
15.8.2 Reference line	44
15.8.3 Weld size (a)	44.
15.8.4 Welding symbol	44.
15.8.5 Length of weld	44.
15.8.6 Blank length	44.
15.9 Spot Welds	44
15.10 Seam Welds	44
15.11 Plug Welds	44
15.12 Strength of a Butt Weld	44.
15.13 Fillet Welds	44
15.14 Throat Size	44
15.15 Transverse Fillet Weld	450
15.16 Maximum Shear Stresses in Transverse Fillet V	Velds 45
15.17 Von-Mises Stresses in Transverse Fillet Welds	45.
15.18 Parallel Fillet Weld (Axial Loading)	45
15.19 Maximum Shear Stresses in Parallel Fillet Weld	ds 455

xvi	Contents	
	15.20 Combination of Transverse and Parallel Fillet Weld	457
	15.21 Stress Concentration in Welds	458
	15.22 Asymmetrical Parallel Welds	459
	15.23 Welds in Bending	461
	15.24 Welds in Torsion	461
	15.24.1 Torsion of circular fillet	461
16.	Bolted joints	
	16.1 Introduction	472
	16.2 Advantages / Disadvantages of Threaded Joints	472
	16.3 Terminology	473
	16.4 Classification of Threads	474
	16.5 Thread Profile	475
	16.5.1 Metric threads	475
	16.5.2 British standard Whitworth threads	475
	16.5.3 Square threads	475
	16.5.4 Acme threads	476
	16.5.5 Buttress threads	476
	16.5.6 Knuckle threads	476
	16.6 Pitch of Threads	476
	16.7 Thread Designation	477
	16.8 Specifications of Threads	478
	16.9 Bolts and Nuts	479
	16.10 Bolt Materials	480
	16.11 Bolt Manufacturing	481
	16.12 Locking Devices	481
	16.12.1 Lock nut	482
	16.12.2 Locking with pin	482
	16.12.3 Slotted nut	483
	16.12.4 Castle nut	483
	16.12.5 Sawn nut	483
	16.12.6 Ring and groove nut	484
	16.12.7 External locking devices	484
	16.13 Screws	485
	16.13.1 Bolt versus screws	485
	16.13.2 Types of screws	485
	16.14 Types of Threaded Joints	488
	16.15 Stresses in Threaded Joints	489
	16.15.1 Initial stresses	489
	16.15.2 Stresses due to external forces	492

			Contents	xvii
	16.16	6 Design of Nut		494
	16.17	7 Design of Turnbuckle		495
		16.17.1 Design procedure for turnbuckle		497
	16.18	B Bolts of Uniform Strength		500
	16.19		501	
	16.20 Stiffness of Threaded Joints			505
		16.20.1 Stiffness of bolt		506
		16.20.2 Stiffness of components		508
	16.21	1 Load Sharing by bolt and Components		510
	16.22	2 Loads while Tightening Nut		512
	16.23	3 Maximum Load on a Bolt		512
	16.24	4 Gaskets in Threaded Joint		514
		16.24.1 Soft gasket		515
		16.24.2 Hard gasket		515
	16.25	5 Variable Loading		518
	16.26	6 Design Procedure for Variable Loading		521
17	Ecc	entric Loading of Joints		
	17.1	Eccentric Loading		540
		Eccentrically Loaded Riveted Joints		541
		17.2.1 Eccentricity in plane of rivets		541
	17.3	Inclined Load		552
	17.4	Load Parallel and Offset to Plane of Fasteners		555
	17.5	Eccentrically Loaded Bolted Joints		555
		17.5.1 Eccentric load in plane of bolts		555
		17.5.2 Eccentric load parallel to plane of bolts		557
		17.5.3 Eccentric load with rectangular base		557
		17.5.4 Eccentric load parallel to circular base		561
	17.6	Eccentrically Loaded Welds		570
		17.6.1 Eccentric load in plane of welds		570
		17.6.2 Eccentric load parallel and offset to plane of welds		576
		17.6.3 Welding all around		581
		Unit 4 – Design of Machine Elements		
		Offic 4 - Design of Machine Elements		
18	Pow	ver screws		
	18.1	Introduction		591
	18.2	Types of Power Screws		592

xviii	Co	ntents			
	18.3	Torque f	for Raising Load	593	
	18.4	_	for Lowering Load	595	
	18.5	Efficienc	cy of Square Threads	595	
	18.6		m Efficiency of Square Threads	597	
	18.7		for Raising Load using Acme Threads	597	
	18.8	_	king Screws	598	
	18.9	Screw an	nd Nut Materials	599	
	18.10	Coefficie	ent of Friction	600	
	18.11	Stresses i	in Power Screws	600	
		18.11.1	Direct axial compressive stress	600	
		18.11.2	Shear stress at the root of the threads	601	
		18.11.3	Torsional shear due to friction	601	
		18.11.4	Bearing pressures	602	
	18.12	Design o	of Thrust Collar	602	
	18.13	Lead Scr	rew	605	
	18.14	606			
		18.14.1	Construction and working of screw jack	606	
		18.14.2	Stresses in screw	607	
	18.15	Design o	of Screw Jack	608	
		18.15.1	Design of screw	608	
		18.15.2	Design of nut	611	
		18.15.3	Design of cup	611	
		18.15.4	Design of body	612	
	18.16	Hand Pr	ress	617	
	18.17	Screw of	a Vice	621	
	18.18	Screw of	Pipe Vice	623	
	18.19	Screw of	a Broaching Machine	625	
	18.20	Different	tial Screw	628	
	18.21	Compou	and Screw	629	
	18.22	Design o	of Toggle Jack	630	
19.	Shaf	ts and K	Leys		
	19.1	Introduc	ction	644	
	19.2	Types of		645	
	19.3		nnufacturing	645	
	19.4	Shaft Ma		645	
	19.5		l Rod / Shaft Sizes	646	
	19.6		esign on Strength Basis	646 647	
	19.7 Shaft Design for Torsion only				

			Contents _	xix
				ı
	19.8	Shaft Design for Bending		649
		Shaft Design for Combined Torsion and Bending		650
	19.10	Power Transmission using Pulley and Belt		654
	19.11	Power Transmission through Gears		657
	19.12	Long Shafts		664
	19.13	Axial Load Combined with Torsion and Bending		665
	19.14	Shaft Design with Varying Loads		673
	19.15	Shaft Design for Rigidity		677
		19.15.1 Torsional rigidity		677
		19.15.2 Lateral rigidity		678
	19.16	Stepped Shafts		679
		19.16.1 Shafts in series		679
		19.16.2 Shafts in parallel		680
	19.17	Critical Speeds for Shafts		682
	19.18	Keys		684
		19.18.1 Key materials and allowable stresses		685
	19.19	Keyways		686
	19.20	Types of Keys		686
	19.21	Saddle Keys		686
	19.22	Taper Sunk Keys (IS 2048 - 1983)		687
	19.23	Parallel Sunk Keys (IS 2048 - 1975)		688
	19.24	Design of Sunk Keys		689
	19.25	Round Keys		694
	19.26	Tangent Keys (IS 2291)		696
	19.27	Woodruff Key (IS 2294)		698
	19.28	Set Screws		701
	19.29	Splines		701
20.	Cou	plings		
		Couplings		720
		Types of Couplings		721
		Rigid Flange Couplings		721
	20.0	20.3.1 Marine coupling		721
		20.3.2 Muff coupling		724
		20.3.3 Split muff coupling		727
		20.3.4 Half lap muff coupling		730
		20.3.5 Rigid flange coupling		730
		20.3.6 Protected flange coupling		736
	20.4	Flexible Couplings		739
				, 0)



XX	Contents				
	20.5	Oldham Coupling	746		
		20.5.1 Design of Oldham coupling	747		
	20.6	Universal Coupling	750		
		20.6.1 Construction of universal coupling	751		
		20.6.2 Joint proportions	752		
		20.6.3 Designing for strength	753		
21.	Lev	ers			
	21.1	Introduction	763		
	21.2	Uses of Levers	763		
	21.3	Types of Levers	764		
	21.4	Design of a Lever	765		
	21.5	Design of a Hand Lever	766		
	21.6	Foot Lever	768		
	21.7	Cranking Lever	771		
	21.8	Safety Valve Lever	775		
	21.9	Bell Crank Lever	778		
	21.10	Cross Lever	782		
	21.11	Rocker Arm	783		
	21.12	2 Compound Lever	785		
22.	Hel	ical Springs			
	22.1	Introduction	797		
	22.2	Classification of Springs	798		
	22.3	Helical Spring Terminology	799		
	22.4	Materials	800		
	22.5	Helical Springs	803		
		22.5.1 Compression spring	803		
		22.5.2 Tension spring	804		
		22.5.3 Torsion spring	805		
		22.5.4 Spiral spring	805		
	22.6	Conventional and Symbolic Representation of Springs	805		
	22.7	Stresses in Springs	805		
	22.8	Deflection and Number of Turns	808		
	22.9	Buckling of Spring	809		
	22.10	Design Force and Operating Force	810		
		Selection of Spring Index	810		
	22.12	2 Design Procedure for Helical Spring	810		
	22.13	Spring of a Safety Valve	814		

	Contents	xxi
22.14 Spring of an Internal Combustion Engine		815
22.15 Springs of Non-Circular Cross-Section		816
22.16 Spring of a Spring Balance		819
22.17 Spring Design for Impact Load		820
22.18 Spring for a Clutch		821
22.19 Natural Frequency of Helical Springs		822
22.20 Surge in Springs		824
22.21 Multiple Springs		824
22.22 Concentric or Composite Springs		827
22.23 Design of Spring with Varying Loads		832
22.24 Design of Helical Extension Springs		838
22.25 Helical Torsion Springs		841
22.26 Spiral Spring		844
22.27 Belleville Spring		846
23. Leaf Springs		
23.1 Introduction		862
23.2 Spring Materials		863
23.3 Sizes of Spring Components		864
23.4 Shapes of Leaf Springs		864
23.5 Analysis of Leaf Spring		865
23.6 Graduated Leaves		866
23.7 Nipping		869
23.8 Length of Leaves		870
23.9 Energy Stored in a Spring		871
23.10 Design Procedure		871
Appendix 1		889
Appendix 2		890
Appendix 3		893
References		897
Index		899

Subject of *Machine Design* is a combination of engineering and art. The engineering part is important for the functional working of a machine, so that all the *machine elements* when assembled as a machine, work properly e.g. as an automobile, sewing machine, a lathe etc. The engineering may also include ergonomics, to cause minimum fatigue, if the machine has to be handled by human beings for a long time. The art part is adding aesthetic for appealing shapes, selecting suitable colors etc. which attract the customers.

Fundamentals of machine design considers the concepts of design for each element separately like for a shaft, bearing, pulley etc. Loads on a part/component are assessed, checked for the stresses, whether it is within the safe strength of the selected material. Deflection also should not be beyond a certain limit. The subject should not be confused with strength of materials as the designer has to selecting a suitable material and consider the production aspects also.

Course content is limited to topics, included in the syllabi of the universities and colleges. The subject is so wide that it is covered in two semesters, for mechanical engineering students in most of the universities. Hence the book is also divided in *two volumes*.

English language used in this book is direct and simple, so that an average student can understand easily. The sequence of the chapters is arranged in such a way that the concepts described in earlier chapters become useful for subsequent chapters.

Symbols used for mathematical derivations have been so assigned, that they are easy to remember. There is no list of symbols in the beginning of the book, they are defined wherever they have been used in the text.

Volume - I is for the first course on *Machine Design*, covering first semester topics offered by most colleges. The main objective of this volume is to provide rules for the design of general-purpose machine elements. This volume has four units.

Unit 1 of the book is on *fundamentals* and has four chapters. The first chapter introduces *basic fundamentals* and types of machine design. Chapter 2 is on the selection of engineering *materials*, which will be useful for every part to be designed. Although manufacturing a part

is the job of a production engineer, however a designer should know the advantages and disadvantages of the different manufacturing processes. Hence a brief summary of various manufacturing processes, limits and tolerances, and surface finish are described in chapters 3 and 4. The tolerances and other production need to be specified on the working drawings, to be sent to shop floor.

Unit 2 is on design for strength and has seven chapters. This unit is the backbone of the concepts of the subject, as the theory described here is applicable to the design of any machine member. Different types of stresses, like direct, bending, torsion are described in chapters 5, 6 and 7. Chapters 8 to 11 describe principal stresses, stress concentration, fatigue failure and endurance strength for fluctuating loads.

Unit 3 is on design of *joints*, which is covered in six chapters. Chapter 12 is on *cotter* joints chapter 13 on *pin* joints, chapter 14 on *riveted* joints, chapter 15 on *welded* joints, chapter 16 on *bolted* joints and lastly chapter 17 on *eccentric loading*, which happens to any joint like rivet, weld or bolted.

Unit 4 describes design of simple machine elements in six chapters. Chapter 18 is on power screws, chapter 19 on shafts and keys, chapter 20 on couplings, chapter 21 on levers, chapter 22 on helical springs and the last chapter 20 on leaf springs.

Pedagogy features of the book are excellent. Before starting a chapter, an outcome given in the beginning, gives an idea as to what a student is going to learn in that chapter. Each chapter is followed by theory questions, multiple choice questions, design problems. An effort has been made to explain theory with 490 figures. To make the book further illustrative, license free 68 pictures are pasted from the Internet and referenced in the text, wherever necessary. Students face a lot of difficulty in solving design problems, hence 238 solved examples and 226 unsolved design problem are given. Solution to the unsolved examples will be put in solution manual on the internet in due course of time. To practice for small quiz type questions, 270 multiple choice questions have been given.

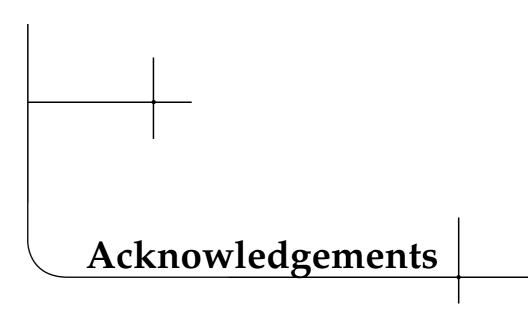
Summary is given at the end of each chapter for quick revision of the course and formulas at the time of examination.

Competition examinations questions of past 3-4 years from Engineering services examinations and *GATE* examinations are given at the end of chapter, to help students preparing for such examinations.

S.I. units have been used for mathematical calculations and design problems. Indian Standards and other standards have also been mentioned, wherever necessary.

Volume - 2 is for the second course of the same subject. This volume has twenty chapters in four units. *Unit 1* covers mainly design of *drives* like belt, rope, chain and gears of various types, *Unit 2* is on sleeve and rolling bearings. *Unit 3* is on the deign of I.C. engine parts and *unit 4* covers miscellaneous parts like levers, clutches, brakes and pressure vessels.

After successful completion of the course, the student will be able to understand various aspects of the machine design process, and will be encouraged to seek opportunities for its satisfactory working. The mastering of the course is a pre-condition to a successful design.



Preface xxv

Audience – This book can be easily recommended as a text book of the subject for undergraduate students. The book can also be used by practicing engineers, students appearing for competition examinations and for graduate admission tests.

Although every effort is made to minimize the errors, but a human being is likely to commit mistakes. Also, there is always a possibility of improving the book. Any errors, omissions or suggestions for the improvement of the book may please be written to the publisher or emailed to the author at ajeet41@yahoo.com.

Many books on the subject of machine design have been consulted and the author feels the need to thank the publishers and authors of these books. The author thanks Gauravjeet Singh Reen, commissioning editor at Cambridge University Press, who has been very helpful and prompt in interaction for any of my queries or doubts. I am thankful to the *reviewers* for giving encouraging remarks in their reviews and appreciating my effort in preparing the book. Thanks are due to the editorial and production staff of M/S Cambridge University Press, for their cooperation and help in the publication of the book. I wish to acknowledge my gratitude to Indian Standards Institution, for the extracts of some of standards used in this book. Lastly, I thank all my family members for their moral support in the preparation of the book.