

Wireless Communication

Incorporation of wireless technologies into any communication system enhances its flexibility and mobility. A proper understanding of wireless systems requires knowledge of fundamentals including modulation, coding, spreading, diversity and resource allocation techniques along with an understanding of antennas and propagation characteristics. Thoughtfully crafted for undergraduate and graduate students of electronics and communication engineering, this text book discusses all these fundamental topics elaborately and in a student friendly manner. It also covers design requirements, spectrum allocation and processes involved in popular wireless systems like cellular mobile systems, wireless data service and satellite systems. Discussions on generations of cellular mobile including 2G, 2.5G, 3G, 3.5G, 3.6G and LTE standards are included in greater detail. Advanced topics like turbo coding, smart antenna, Multiple Input Multiple Output (MIMO) system, Software Defined Radio and Cognitive Radio are also covered to keep the reader updated.

The concepts are elaborated and supported by plenty of illustrations, solved examples, points to remember, review questions and multiple choice questions. Other useful features of this book include glossary of important definitions, open book exam questions with hints, model question papers with hints, and an additional database of multiple choice questions, with answers.

Arumita Biswas works in the Cellular Mobile Telephone Service department of Bharat Sanchar Nigam Limited, a leading telecommunication service provider in India, where she supervises and maintains the core network entities of GSM and 3G network. She has published at various conferences organized by IEEE, with one paper receiving the best research paper award. Her current area of research is linked to LTE antenna design.

Mainak Chowdhury is an Assistant Professor in the department of Electronics and Communication Engineering at Techno India College of Technology, Kolkata. He is a Redhat Linux Certified Engineer. He is interested in intelligent control, signal processing and software based approach in embedded systems.

Wireless Communication

Theory and Applications

Arumita Biswas Mainak Chowdhury

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, vic 3207, Australia 4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi - 110002, India 79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781316628362

© Cambridge University Press 2017

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2017

Printed in India

A catalogue record for this publication is available from the British Library

ISBN 978-1-316-62836-2 Paperback

Additional resources for this publication at www.cambridge.org/9781316628362

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To my parents Sh. Arup Ratan Biswas and Smt. Namita Biswas $-Arumita\ Biswas$ To all my Teachers $-Mainak\ Chowdhury$

Content

Figures	xvii
Tables	XXV
Preface	xxvii
Acknowledgments	xxxi
1 Overview of Wireless Communication Systems	1
1.1 Introduction	1
1.2 Advantages and Challenges	2
1.3 Wireless System Network Architecture	2 3
1.4 Functional Blocks	5
1.5 Spectrum Allocation Methods	7
1.6 Wireless Communication Systems	11
1.6.1 Cordless telephone system	11
1.6.2 Cellular telephone system	13
1.6.3 Paging systems	17
1.6.4 Bluetooth	19
1.6.5 Wireless data service systems	20
1.6.6 ZigBee	23
1.6.7 Ultra-Wide Band system	24
1.6.8 Satellite communication systems	25
1.6.9 Wireless Local Loop	26
Points to Remember	29
Multiple Choice Questions	30
Review Questions	33

viii Contents

PART I: FUNDAMENTALS OF WIRELESS COMMUNICATION

2	2 Modulation, Coding, Equalization, Diversity	37
	2.1 Introduction	37
	2.2 Source Coding	37
	2.3 Channel Coding	42
	2.3.1 Block code	42
	2.3.2 Convolutional code	51
	2.3.3 Concatenated code	57
	2.3.4 Turbo code	57
	2.4 Interleaving	59
	2.5 Modulation	60
	2.5.1 Analog modulation techniques	61
	2.5.1.1 Amplitude modulation	61
	2.5.1.2 Angle modulation	66
	2.5.2 Digital modulation techniques	69
	2.5.2.1 Binary Amplitude Shift Keying	69
	2.5.2.2 Binary Frequency Shift Keying	69
	2.5.2.3 Binary Phase Shift Keying	72
	2.5.2.4 Differential Phase Shift Keying	73
	2.5.2.5 M-ary Phase Shift Keying	77
	2.5.2.6 Minimum Shift Keying [MSK] and Gaussian MS	
	2.5.2.7 Quadrature Amplitude Modulation [QAM]	81
	2.6 Trellis Coded Modulation	82
	2.7 Speech Coding	85
	2.7.1 Quantization techniques	87
	2.7.2 Speech coder variants	93
	2.7.3 Waveform coders	94
	2.7.3.1 Time domain waveform coders	94
	2.7.3.2 Frequency domain waveform coders	97
	2.7.4 Vocoders	100
	2.7.4.1 Channel vocoders	100
	2.7.4.2 Formant vocoders	102
	2.7.4.3 Cepstrum vocoders	102
	2.7.4.4 Voice-excited vocoders	102
	2.7.4.5 Linear Predictive Coder	102
	2.7.5 Speech codecs in mobile communication	105
	2.8 Equalization	107
	2.8.1 Fundamentals of equalization	107
	2.8.2 Importance in communication receivers	107

		Contents ix
	2.8.3 Classification of equalizers	108
	2.8.4 Linear equalizers	110
	2.8.4.1 Zero-forcing equalizers	112
	2.8.4.2 Minimum Mean Square Error (MMSE) equalizers	113
	2.8.4.3 Symbol spaced and fractionally spaced equalizers	114
	2.8.5 Algorithms	115
	2.8.6 Non-linear equalizers	116
	2.8.6.1 Decision Feedback Equalizer	117
	2.8.6.2 Maximum Likelihood Symbol Estimation	117
	2.9 Diversity	118
	2.9.1 Frequency diversity	120
	2.9.2 Polarization diversity	120
	2.9.3 Time diversity	121
	2.9.4 Space diversity	122
	2.9.5 Diversity combining techniques	122
	2.9.5.1 Selection combining	123
	2.9.5.2 Threshold combing or scanning diversity	124
	2.9.5.3 Maximal ratio combining	124
	2.9.5.4 Equal gain combining	125
	Points to Remember	127
	Multiple Choice Questions	130
	Review Questions	133
3	Resource Allocation Techniques	136
	3.1 Introduction	136
	3.2 Multiplexing	137
	3.2.1 Frequency Division Multiplexing [FDM]	138
	3.2.2 Time Division Multiplexing [TDM]	140
	3.2.3 Wave Division Multiplexing [WDM]	141
	3.3 Duplexing: TDD and FDD	142
	3.4 Access Techniques	144
	3.4.1 Multiple access	145
	3.4.1.1 Time Division Multiple Access	145
	3.4.1.2 Frequency Division Multiple Access	147
	3.4.1.3 CDMA (orthogonal and non-orthogonal)	149
	3.4.1.4 Space Division Multiple Access	150
	3.4.1.5 Hybrid techniques	151
	3.4.2 Random access	151
	3.4.2.1 Pure ALOHA	152
	3.4.2.2 Slotted ALOHA	154

x Contents

	3.4.2.3 CSMA: Carrier Sense Multiple Access	156
	3.4.3 Reservation protocol	161
	3.4.3.1 Reservation ALOHA	161
	3.4.3.2 Packet Reservation Multiple Access (PRMA)	162
	Points to Remember	163
	Multiple Choice Questions	164
	Review Questions	166
4	Spread Spectrum Technology	167
	4.1 Introduction	167
	4.2 Criteria and Basic Principle	168
	4.3 Pseudo Noise Sequences	170
	4.4 Spreading Techniques	177
	4.4.1 Direct Sequence Spread Spectrum [DSSS]	177
	4.4.2 Frequency Hopping Spread Spectrum [FHSS]	182
	4.4.3 Time Hopping Spread Spectrum [THSS]	184
	4.4.4 Spreading using chirp signals	186
	Points to Remember	188
	Multiple Choice Questions	189
	Review Questions	190
5	Antenna Basics	192
	5.1 Introduction	192
	5.2 Principle of Antenna Radiation	193
	5.3 Modes of EM Wave Propagation	194
	5.4 Antenna Parameters	196
	5.4.1 Antenna impedance	196
	5.4.2 Antenna field regions	197
	5.4.3 Radiation pattern	198
	5.4.4 Antenna beamwidth	199
	5.4.5 Beam area and efficiency	201
	5.4.6 Directivity	202
	5.4.7 Gain and antenna efficiency	203
	5.4.8 Effective antenna aperture	203
	5.4.9 Polarization	204
	5.5 Antenna Families for Wireless Communication	205
	5.5.1 Wire antennas	206
	5.5.2 Aperture antennas	207
	552 D: (11)	200
	5.5.3 Printed planar antennas	209
	5.5.3 Printed planar antennas5.5.4 Array antennas5.6 Friis Transmission Formula	209 209 210

		Contents	xi
	5.7 Practical Design Requirements5.8 Smart Antennas		212 214
	Points to Remember Multiple Choice Questions Review Questions		216 218 220
6	Wave Propagation		221
	6.1 Introduction		221
	6.2 Propagation Mechanism		222
	6.3 Earth's Atmosphere		224
	6.3.1 Effect of atmosphere in wave propagation		226
	6.4 Propagation Modes		228
	6.4.1 Space wave and ground wave		228
	6.4.1.1 Two-ray reflection model		229
	6.4.2 Sky wave		231
	6.4.2.1 Effect of refraction		233
	6.4.2.2 Maximum Usable Frequency [MUF] and skip distant		235
	6.4.2.3 MUF and virtual height		236
	6.4.3 Tropospheric scatter		236
	6.4.4 Duct propagation		236
	6.5 Diffraction Losses		237
	6.6 Fading		238
	6.6.1 Small-scale fading by multipath time delay spread6.6.2 Doppler shift		239239
	6.7 Propagation Models		242
	1 6		242
	6.7.1 Link budget analysis6.7.2 Outdoor propagation models		242
	6.7.3 Indoor propagation models		243
	6.7.4 Ray tracing models		243
	6.7.5 Models for small-scale fading estimation		244
	Points to Remember		249
	Multiple Choice Questions		250
	Review Questions		251
	PART II: WIRELESS SYSTEMS		
7	Cellular Systems		255
	7.1 Introduction		255
	7.2 Development Trend in Cellular Systems		255

xii Contents

	7.3	Cellular System Principles	258
		7.3.1 System components	260
		7.3.2 Cell: Structure and type	263
		7.3.3 Channel assignment	265
		7.3.4 Channel reuse	268
		7.3.5 Sources of Interference	273
		7.3.6 Interference mitigation techniques	276
		7.3.7 Handoff	278
		7.3.7.1 Handoff initiation	278
		7.3.7.2 Handoff protocol	279
		7.3.7.3 Handoff prioritization	280
		7.3.7.4 Handoff classification	280
	Poi	ints to Remember	284
		ultiple Choice Questions	285
	Rev	view Questions	287
8	Glo	obal System for Mobile [GSM]	288
	8.1	Introduction	288
	8.2	GSM Architecture	288
		8.2.1 Base Station Sub-system [BSS]	289
		8.2.1.1 Base Transceiver Station [BTS]	290
		8.2.1.2 Base Station Controller [BSC]	291
		8.2.2 Network Switching Sub-system [NSS]	291
		8.2.2.1 Mobile Switching Centre (MSC)	291
		8.2.2.2 Visitor Location Register (VLR)	293
		8.2.2.3 Home Location Register (HLR)	294
		8.2.2.4 Authentication Centre (AUC)	294
		8.2.2.5 Equipment Identity Register (EIR)	294
		8.2.3 Operation Sub-System [OSS]	295
	8.3	GSM Interfaces	295
		8.3.1 Air interface (Um interface / radio interface)	296
		8.3.2 Abis interface	296
		8.3.3 A interface	297
	8.4	Signalling Protocol Architecture of GSM	297
		Spectrum Allocation	299
		Areas in GSM Network	302
	8.7	Logical Channels	304
		8.7.1 Traffic Channels	304
		8.7.2 Signalling Channels	304

> Contents xiii 8.7.2.1 Broadcast Channel 304 8.7.2.2 Common Control Channel 305 8.7.2.3 Dedicated Control Channel 305 8.7.3 Channel combinations 306 8.8 GSM Processes 306 9

0.0 GSW Trocesses	300
8.8.1 Security and data confidentiality	306
8.8.2 Location update	309
8.8.3 Call management	310
8.8.4 Handover management	310
Points to Remember	314
Multiple Choice Questions	316
Review Questions	318
GPRS and EDGE	319
PART A: General Packet Radio Service	
9.1 Introduction	319
9.1.1 GPRS services	320
9.1.2 System architecture	321
9.1.2.1 Mobile Station	323
9.1.2.2 Packet Control Unit	323
9.1.2.3 Serving GPRS Support Node	324
9.1.2.4 Gateway GPRS Support Node	324
9.1.2.5 Charging Gateway	324
9.1.2.6 Border Gateway	325
9.1.2.7 Domain Name Server	325
9.1.2.8 Firewall	325
9.1.2.9 Lawful Interception Gateway	325
9.1.2.10 Enhancement in existing GSM components	326
9.1.3 Interfaces	327
9.1.4 Transmission plane protocol architecture	328
9.1.5 GPRS channels	331
9.1.6 Security management	334
9.1.7 Mobility management	336
9.1.8 Session management	338
PART B: Enhanced Data Rates for GSM Evolution (EDGE)	
9.2 Introduction	341
9.2.1 Enhancement over GPRS	342
Points to Remember	344
Multiple Choice Questions	346
Review Questions	348

xiv Contents

10	3G, H	SDPA, HSUPA and LTE	349
	10.1 I	ntroduction	349
	10.2 V	VCDMA Based 3G Network	352
	10.3 K	Key Technologies of Third Generation Standards	354
	1	0.3.1 Power control	354
	1	0.3.2 Code allocation	357
	1	0.3.3 Handover	359
		10.3.3.1 Inter-system handover	359
		10.3.3.2 Intra-system handover	360
	1	0.3.4 Admission control	361
	1	0.3.5 Load control and cell breathing	361
	1	0.3.6 RAKE receiver	362
	1	0.3.7 Channel allocation	364
		10.3.7.1 Logical channels	366
		10.3.7.2 Transport channels	366
		10.3.7.3 Physical channels	367
	10.4 H	HSDPA	369
	1	0.4.1 Key enhancements over 3G systems	371
	10.5 H	ISUPA	375
	1	0.5.1 Key enhancements	376
	10.6 L	TE	377
	1	0.6.1 LTE system architecture	379
		0.6.2 Key technologies of LTE	380
		10.6.2.1 Multi-carrier technology	380
		10.6.2.2 MIMO technology	381
	Points	to Remember	383
		ole Choice Questions	385
	_	v Questions	386
11	Wirele	ess LAN and WiMAX	388
	11 1 I	ntroduction	388
		EEE 802.11	389
		1.2.1 Protocol stack of 802.11	389
		11.2.1.1 Physical layer	389
		11.2.1.2 Orthogonal Frequency Division Multiplexing	390
		11.2.1.3 Data link layer	393
		11.2.1.4 Frame format of IEEE 802.11	394
	1	1.2.2 Topologies of 802.11	396
		1.2.3 MAC techniques	398

	Contents	xv
11.3 Back off Algorithm		399
11.4 IEEE 802.11 Variants		400
11.5 Introduction to WiMAX		400
11.5.1 Protocol stack of IEEE 802.16	2	402
Points to Remember	4	404
Multiple Choice Questions		405
Review Questions	4	407
12 Satellite Communication	4	408
12.1 Introduction	4	408
12.2 Frequency Allocation	4	411
12.3 System Architecture	4	413
12.3.1 Satellite	4	413
12.3.2 Launch system		415
12.3.3 Earth station	4	416
12.4 Satellite Positional Parameters		417
12.5 Classification of Satellites		419
12.6 Orbit		421
12.7 Classification of Orbits		423
12.8 Laws Governing Satellite Motion		423
12.8.1 Newton's law of motion		424
12.8.2 Newton's law of gravitation		424
12.8.3 Kepler's law		426
12.9 Link Impairments		430
12.9.1 Interference		430
12.9.2 Ionospheric effects		430
12.9.3 Atmospheric loss		431
12.10 Global Positioning System	2	431
Points to Remember	4	433
Multiple Choice Questions		435
Review Questions	2	437
APPENDICES		
A Design and Simulation of Antenna for Wireless Communica	ation	441
B Software Defined Radio		446
C Cognitive Radio		449
D Sensor Network	2	452

E Trunking Theory

454

xvi Contents

Acronyms	458
Open Book Questions	464
Hints for Open Book Questions	470
Solved Examples	473
Extra Multiple Choice Question Bank	492
Solution to Extra Multiple Choice Question Bank	509
Model Question Paper 1	510
Model Question Paper 2	513
Model Question Paper 3	515
Model Question Paper 4	517
Model Question Paper 5	519
Glossary	521
References	529
Index	537

Figures

1.1	Examples of wireless infrastructure based network: (i) WLAN (ii) Cellular	
	telephone network	۷
1.2	Adhoc network	4
1.3	Block diagram of a wireless digital communication system	6
1.4	Cordless phone vs. landline telephones	11
1.5	Evolution path of mobile cellular telephone system	14
1.6	Bluetooth piconet	19
1.7	ZigBee topologies: (i) Star (ii) Mesh (iii) Cluster tree	24
1.8	Satellite system block diagram	26
1.9	Example of WLL network	27
1.10	Reference model of WLL	28
2.1	Block diagram of a linear block code encoder	42
2.2	Encoder of a convolutional code	51
2.3	Code tree for a convolutional encoder	54
2.4	State diagram of a convolutional encoder	55
2.5	Trellis diagram of a convolutional encoder	55
2.6	Serial concatenated code encoder and decoder	57
2.7	Turbo code encoder of rate 1/3	58
2.8	Turbo code decoder	59

xviii Figures

2.9	Block interleaver using 6×5 element matrix	60
2.10	Amplitude modulation process and resultant waveform	62
2.11	Spectrum of user signal and different amplitude modulation resultant signals	65
2.12	Angle modulation	66
2.13	(i) BASK generator (ii) BASK modulation example	70
2.14	BFSK modulator using two oscillators	71
2.15	BFSK modulation example	71
2.16	(i) Coherent FSK detector (ii) Non-coherent FSK detector	73
2.17	(i) BSPK modulation example (ii) BPSK constellation diagram	74
2.18	DPSK modulator at the transmitter end	75
2.19	DPSK demodulator at the receiver end	77
2.20	QPSK constellation diagram	78
2.21	QPSK modulator	79
2.22	(i) OQPSK encoder (ii) Waveform of OQPSK before being applied for modulation	80
2.23	Constellation diagram of 16 QAM	82
2.24	Transmitter for Trellis Coded Modulation	83
2.25	Continuous analog signal $S(t)$	88
2.26	Sampled version of the signal $S(t)$ with continuous range of amplitude	88
2.27	Uniform Quantization of analog signal $S(t)$	89
2.28	Comparative illustration of uniform and non-uniform quantization	91
2.29	Block diagram of feed forward adaptive quantization process	92
2.30	Feedback adaptive quantization	92
2.31	Classification of speech coders	93
2.32	Block diagram of a PCM system	95
2.33	Block diagram of an ADPCM encoder	96
2.34	Block diagram of an ADPCM decoder	97
2.35	Sub-band coder using quadrature mirror filter	98
2.36	Block diagram of an adaptive transform coder and decoder	99
2.37	Block diagram of a channel vocoder analyzer	101
2.38	Block diagram of a channel vocoder synthesizer	101
2.39	Block diagram of voice-excited vocoder	103

More Information

	Figures	xix
2.40	Speech generator model	103
2.41	LPC encoder and decoder	104
2.42	Multipulse LPC encoder and decoder	105
2.43	Block diagram of a communication system with equalizer	108
2.44	Effect of ISI at the receiving end	108
2.45	Classification of equalizers	109
2.46	Block diagram of a linear equalization system	110
2.47	Channel model with noise	110
2.48	Basic block of a transversal linear equalizer where $Y_k = \sum_{n=-N}^{N} C_n^* X_{k-n}$	112
2.49	Zero forcing linear equalizer operation	113
2.50	Basic block of an MMSE equalizer	114
2.51	MMSE Equalizer operation	114
2.52	(i) Symbol spaced equalizer block diagram (ii) Fractionally spaced equalizer block diagram	115
2.53	Block diagram of a non-linear equalizer (basic DFE)	116
2.54	Block diagram of a DFE	117
2.55	Block diagram of MLSE	118
2.56	Diversity principle in communication receiver	119
2.57	Frequency diversity	120
2.58	Polarization diversity system with dual polarized Tx and Rx antennas	121
2.59	Time diversity	121
2.60	Transmit and receive space diversity	122
2.61	Block diagram of a selection combiner using 'n' receive antenna	123
2.62	Scanning diversity	124
2.63	Block diagram of the maximum ratio combining technique	125
2.64	Block diagram of the equal gain combining technique	126
3.1	FDM with three frequencies	138
3.2	Synchronous TDM technique	140
3.3	Statistical TDM technique	140
3.4	WDM with three carrier wavelengths	142
3.5	Types of communication system	142
3.6	Access technique classification	144

xx Figures

3.7	TDMA technique	145
3.8	FDMA technique	147
3.9	CDMA technique	149
3.10	Space Division Multiple Access	150
3.11	Timing diagram of pure ALOHA	152
3.12	Random packet transmission in pure ALOHA	153
3.13	Slotted ALOHA based packet transmission scheme	154
3.14	1-persistent CSMA	156
3.15	p-persistent CSMA	157
3.16	Non-persistent CSMA	157
3.17	Users a, b, c, d in a wireless system	158
3.18	Four way handshake method	159
4.1	Narrow band transmission vs. spread spectrum transmission	169
4.2	Classification of pseudo-random sequences	171
4.3	Generalized feedback shift register	171
4.4	Gold sequence generator model	172
4.5	Variants of spreading technique	178
4.6	DSSS waveform in the transmitter end	179
4.7	DSSS (i) transmitter model (ii) receiver model	180
4.8	Comparative illustration of direct sequence de-spreading at the receiver end	181
4.9	FHSS (i) Transmitter section (ii) Receiver section	183
4.10	Example of (i) Fast frequency hopping (ii) Slow frequency hopping technique	185
4.11	Up-chirp and down-chirp signal	187
5.1	Wireless transmitter receiver block	192
5.2	Transmitter side EM wave generation	193
5.3	Ground wave propagation	194
5.4	Space wave propagation	195
5.5	Sky wave propagation	195
5.6	Antenna impedance	197
5.7	Antenna field regions	197

Figures xxi

5.8	(i) Radiation pattern of a directional antenna (ii) Radiation pattern of an omni-directional antenna (this grey scale image is a reproduction of the colour image obtained from IE3D simulation software)	199
5.9	Antenna beamwidth	200
5.10	Beam area for the power pattern of a directional antenna	201
5.11	(i) Polarization classification (ii) Linear, elliptical and circular polarization	205
5.12	Variants of wire antenna	206
5.13	Variants of horn antennas	207
5.14	Variants of reflector antenna	208
5.15	Lens antenna	209
5.16	Printed planar antennas	209
5.17	Array antennas	210
5.18	Transmitter and receiver setup for Friis transmission formula calculation	210
5.19	Switched beam pattern selection	215
5.20	Adaptive array smart antenna block representation	216
6.1	Atmospheric Layers	223
6.2	Optical line of sight vs. radio line of sight	226
6.3	Schematic of radiation from an isotropic source	227
6.4	Curvature in radio wave propagation for different values of k	228
6.5	Propagation of vertically polarized surface wave	229
6.6	Schematic of space wave propagation	229
6.7	Schematic of ionosphere propagation and skip distance	232
6.8	Separation of layers in the ionosphere	232
6.9	Effect of refraction in ray path in ionosphere	233
6.10	Virtual height and skip distance	235
6.11	Tropospheric propagation	236
6.12	Duct propagation	237
6.13	Fresnel zone geometry	238
6.14	Different types of fading	239
6.15	Illustration of doppler effect	240
6.16	Illustration of ray tracing (SBR) technique	243
6.17	Illustration of image method	244

xxii Figures

7.1	Generations of cellular telephone system	258
7.2	Cells with channel reuse	259
7.3	Components of a cellular mobile system	259
7.4	Umbrella cell shadowing microcells	264
7.5	Cell splitting for cellular system	265
7.6	Fixed channel assignment procedure	266
7.7	Procedure of FCA with borrowing	267
7.8	Dynamic channel assignment procedure	267
7.9	Hybrid channel assignment technique	268
7.10	Cell cluster with hexagonal cells	269
7.11	Cell cluster with diamond shaped cell	270
7.12	Cluster of hexagonal cell shape with $(i, j) = (2, 1)$	271
7.13	Near-end far-end interference	276
7.14	Handover initiation	279
8.1	GSM basic architecture	289
8.2	Architecture of a PLMN area	290
8.3	(i) Line topology (ii) Ring topology (iii) Star topology	292
8.4	GSM interfaces	295
8.5	Abis interface configurations	296
8.6	GSM signalling protocol stack	298
8.7	GSM frame hierarchy	302
8.8	Service area of GSM	303
8.9	Classification of logical channels	303
8.10	Authentication and ciphering key generation process	307
8.11	Authentication call flow	308
8.12	Ciphering and deciphering in GSM	308
8.13	Location update call flow diagram	309
8.14	GSM handover variants	311
8.15	Inter BTS / intra BSC handover scenario	312
8.16	Inter BSC / intra MSC handover scenario	312
8.17	Inter MSC handover scenario	313
9.1	GPRS network architecture	322

	Figure:	s xxiii
9.2	GPRS transmission plane protocol architecture	329
9.3	Packet transformation sequence	330
9.4	GPRS multi-frame	332
9.5	Logical channel variants	333
9.6	Authentication in GPRS	334
9.7	Ciphering process	335
9.8	MS state	336
9.9	GPRS mobility management call flow	337
9.10	PDP context activation call flow	339
9.11	(i) MS initiated (ii) Network initiated PDP deactivation process	340
9.12	EDGE network	342
10.1	3GPP releases	351
10.2	Entities of 3G release 99 architecture	352
10.3	Open loop power control	355
10.4	Closed loop power control	356
10.5	Frequency planning for 2G GSM system vs. 3G WCDMA based UMTS system	357
10.6	Code tree for OVSF code	358
10.7	Spreading and scrambling operation in WCDMA network	358
10.8	Soft and softer handover	360
10.9	Cell breathing under different load conditions	362
10.10	Multipath signal propagation	363
10.11	RAKE receiver	363
10.12	Channels in UTRAN	364
10.13	Mapping relationship of channels	365
10.14	Three-layer WCDMA frame structure	367
10.15	(i) Block diagram of HSDPA network (ii) Connectivity of MGW and MSC-servers	372
10.16	Call flow diagram for UE originated voice call	373
10.17	HARQ procedure	375
10.18	Architecture for LTE network	380
10.19	SISO, SIMO, MISO and MIMO configurations	382

xxiv Figures

11.1	Lower two layers of the IEEE 802.11 protocol stack	389
11.2	Transmitter design for OFDM	393
11.3	Typical MAC frame	394
11.4	Frame format for 802.11	395
11.5	Full mesh ad hoc network/IBSS	397
11.6	Example of basic service set	397
11.7	Probe request frame	397
11.8	ESS Topology	398
11.9	Typical WiMAX connectivity with various systems	402
11.10	Protocol connection stack of WiMAX base station and subscriber station	403
12.1	Satellite system configuration	410
12.2	Block diagram of transparent repeater	414
12.3	Block diagram of regenerative repeater	414
12.4	Block diagram of an earth station	416
12.5	Satellite positional parameters	417
12.6	Satellite variants on the basis of orbits	420
12.7	(i) Spin-stabilized satellite (ii) Yaw, pitch and roll axis (iii) Body-stabilized satellite	421
12.8	Satellite orbit	422
12.9	Geometry and parameter of ellipse	427
12.10	Area swept by satellite in <i>t</i> time	428
12.11	Global Positioning System	432
A.1	Rectangular microstrip patch antenna	441
A.2	Designed antenna structure	443
A.3	Simulated S-parameter curve	444
A.4	Simulated VSWR curve	444
A.5	Total field Gain vs. frequency curve	445
A.6	2D Radiation curve on elevation and azimuth plane	445
B.1	SDR transceiver functional block diagram	448
C.1	Classification of Cognitive Radio	450
D.1	Sensor network implementation	453

Tables

1.1	National regulatory authorities in different countries	C
1.2	Standards of cordless telephone system	12
1.3	First generation cellular system standards	15
1.4	Second generation standards of cellular system	16
1.5	Enhancements of 2G	17
1.6	3G standards	18
1.7	Parameters of bluetooth standard IEEE 802.15.1	19
1.8	IEEE 802.11 family	21
1.9	Wireless data service standards	22
1.10	Parameters of ZigBee IEEE 802.15.4 standard	23
1.11	Parameters of the Ultra-Wide Band IEEE 802.15.3 standard	25
2.1	Convolutional encoder output sequence	52
2.2	Combination of input, state of shift registers and output code	53
2.3	Narrowband FM vs. wideband FM	67
2.4	Comparison of analog modulation techniques	68
2.5	Comparison of the digital modulation techniques	84
2.6	Comparison between PCM and ADPCM	96
2.7	Speech coding variants and transmission bit rate	106

xxvi Tables

3.1	Frequency range of wireless standards	137
3.2	Time Division Duplexing vs. Frequency Division Duplexing	143
5.1	Switched beam smart antenna vs. adaptive array smart antenna	215
6.1	Atmospheric Layers	224
7.1	Significant innovations that lead to the development of the present cellular system	256
7.2	Data rate offered by cellular telephone standards	258
8.1	GSM variants	299
9.1	Circuit Switched Data vs. General Packet Radio Service	319
9.2	Coding schemes in GPRS system	326
9.3	Operation modes and their characteristics	328
9.4	GPRS vs. EDGE	341
9.5	GMSK vs. 8-PSK	343
9.6	Characteristics of different MCS schemes	344
10.1	IMT 2000 radio standards	350
10.2	R99 based 3G standards vs. HSDPA	369
10.3	UE category for HSDPA standard	370
10.4	UE category for HSUPA standard	376
10.5	LTE FDD frequency bands	378
10.6	LTE TDD frequency bands	379
11.1	Control frames and their corresponding sub-type bits	395
12.1	Milestones in satellite communication development	408
12.2	Electromagnetic spectrum	411
12.3	Satellite frequency band	412
A.1	Calculated rectangular microstrip patch antenna parameters	443
A.2	Simulated output for designed antenna	443
B.1	Influential projects in the field of SDR	447

Preface

Communication industry is one of the fastest growing industries all over the world. Since its introduction, the system components have evolved dramatically. Owing to this rapid change/enhancement in technologies, the study of communication principles and systems is extensive and skills in this field are in high demand. Incorporation of wireless technology in any communication system provides added advantages in terms of flexibility and mobility. Wireless voice and data services are fast replacing their wired counterparts. Several researchers have contributed in this domain and with every passing day, new information is being added to this vast pool.

Topics covered

The authors have endeavoured to include a large number of topics on wireless communication in a single book. The book has been divided into two parts. Chapter 1 to 6 explain the fundamental principles and basics used for designing any wireless system, whereas chapters 7–12 throw light on popular wireless systems. Chapter 1 provides an overview of the wireless system highlighting topics like advantages and challenges of wireless communication, functional blocks that make up the transmitter and receiver entities in the wireless system and frequency allotment techniques used to avoid inter and intra system interference. The chapter ends with a discussion on generations and standards proposed for popularly employed wireless communication systems.

In any wireless system, the transmission of user information is done through the air interface which is prone to eaves-dropping, noise and interference. Besides, the transmission bandwidth allocated to every wireless user is only a small portion of the available spectrum. In order to make the transmitted signal favourable for transmission, some processing of user generated baseband signal is essential. Chapter 2 and 4 include a

xxviii Preface

detailed discussion on the various speech coding; channel coding, equalization, diversity, modulation and spreading techniques.

Each wireless system is allocated a fixed part of the available frequency spectrum for communication purpose. The users registered to a wireless system are allocated a part of this fixed frequency on a permanent or demand basis. A proper planning of the otherwise limited spectrum is essential in order to avoid congestion and interference. Chapter 3 on resource allocation technique provides a detailed discussion on the different multiplexing, duplexing and access techniques.

Wireless communication systems use radio waves for exchanging information between two entities. Antennas are thus an integral part of any wireless system design because this entity can convert RF signals over a guided medium into radio waves. Chapter 5 focuses on the basic parameters of antenna with design requirement and consideration. Once the radio waves are transmitted from the transmit antenna, they propagate from source to destination over an air interface. Different propagation characteristics determine the flow of signal. Chapter 6 gives a detailed description of wave propagation characteristics and models.

Part two of the book comprising Chapters 7 to 12 explains the popularly used wireless system. Cellular telephone system is the most popular wireless system solution with a user base of about billions around the globe. Although initially designed for providing voice service, it has expanded to provide voice, video and data service to the registered subscribers. Due to ever increasing demands of subscribers, this system has evolved through several generations of standards. Chapters 7 to 10 explain the system architecture, function of the network element, call flow diagrams, function of radio channels and key technologies linked with cellular system standards from the second generation to LTE (Long Term Evolution). Systems for providing wireless data service are fast replacing wired counterparts. Concepts on Wireless Local Area Network [WLAN] have been covered in Chapter 11 of the book. In order to provide global coverage, satellite system is designed. Chapter 12 explains the laws and principles governing satellite system design and working of Global Positioning System.

Appendix on topics like Software Defined Radio, Cognitive Radio, trunking theory, sensor network and planar antenna design have been included to make readers aware of the latest advancements in the field.

Features

The theoretical concepts in the book are supported with over 200 illustrations. These self explanatory illustrations will help in easy understanding of the topics covered. The text has been prepared after doing extensive research in this field — at the end of the book, a list of references is included. The interested reader can go through them for a better grasp over the wireless domain. Each chapter includes solved numericals, multiple choice questions and long questions for self examination. The salient points included can be used for last minute revision of the chapters. At the end, the book includes a database of over 100 open book questions, over 100 extra MCQ with answers, model question papers with hints

Preface xxix

and a glossary of definitions, which can be useful for further testing the readers' understanding of concepts defined within.

Intended Readers

Along with the fundamental concepts of wireless communication, this book describes in detail the design of wireless system and their standards. It also covers advanced topics linked with HSUPA, HSDPA, LTE, MIMO, smart antenna, Software Defined Radio, Cognitive Radio and sensor network. Bridging the gap between fundamentals and the latest advancements, this book will serve as a complete guide in the wireless communication domain. The materials covered will not only be helpful for readers of undergraduate and postgraduate studies who wish to familiarize themselves with the concepts but also for professionals and training institutes wishing to conduct courses on wireless communication.

Acknowledgments

I take this opportunity to express my sincere gratitude to the team of Cambridge University Press including Rajesh Dey, Manish Choudhary, Rachna Sehgal and Hardip Grewal, who gave me the opportunity to work with them in this project. I extend my sincerest thanks to my co-author, Mainak Chowdhury for coordinating and striving hard to complete the project in stipulated time. I gratefully thank my parents, Shri. Arup Ratan Biswas and Smt. Namita Biswas for bearing with my odd late night writing schedules. I extend my thanks to my PHD guide Dr. Vibha Rani Gupta, HOD of ECE department at BIT Mesra for her ever extending support. I take this opportunity to thank new entrant in my life, my husband Suman Chakraborty for his motivations. I extend my thanks to all my teachers for enriching me with their knowledge at different stages. I wish to thank my colleagues, in-laws, friends and relatives for providing moral support. And above all I thank God for showering His blessings on me.

— Arumita Biswas

I gratefully thank the members of the Cambridge University Press team, Rajesh Dey, Manish Choudhary, Rachna Sehgal and Hardip Grewal, for their interest in this project. I am thankful to my co-author Arumita Biswas, who worked a lot to complete this book. I extend my thanks to Sabyasachi Tiwari for assisting me with his endless efforts. I am proud of my bright and energetic students and I bless them. I thank my family for providing support in all situations.

— Mainak Chowdhury