Prokaryotic Metabolism and Physiology

Determination of the genome sequences for a wide range of bacteria and archaea has made an in-depth knowledge of prokaryotic metabolic function even more essential in order to give biochemical, physiological and ecological meaning to the genomic information. Clearly describing the important metabolic processes that occur under different conditions and in different environments, this advanced text provides an overview of the key cellular processes that determine prokarvotic roles in the environment, biotechnology and human health. Structure and composition are described as well as the means by which nutrients are transported into cells across membranes. Discussion of biosynthesis and growth is followed by detailed accounts of glucose metabolism through glycolysis, the TCA cycle, electron transport and oxidative phosphorylation, as well as other trophic variations found in prokaryotes including the use of organic compounds other than glucose, anaerobic fermentation, anaerobic respiration, chemolithotrophy and photosynthesis. The regulation of metabolism through control of gene expression and enzyme activity is also covered, as well as the survival mechanisms used under starvation conditions.

Professor Byung Hong Kim is an expert on anaerobic metabolism, organic degradation and bioelectrochemistry. He graduated from Kyungpook National University, Korea and obtained a PhD from University College Cardiff. He has carried out research at several universities around the world, with an established career in the Korea Institute of Science and Technology. Currently he is teaching at the National University of Malaysia. He has been honoured by the Korean Government, which designated his research group a National Research Laboratory, the Bioelectricity Laboratory, and has served as President of the Korean Society for Microbiology and Biotechnology. Professor Kim wrote the classic Korean microbiology text on *Microbial Physiology* and has published over 200 refereed papers and reviews, and holds over 20 patents relating to applications of his research in environmental and microbial biotechnology.

Professor Geoffrey Michael Gadd is an authority on microbial interactions with metals and minerals, their geomicrobial significance and applications in environmental biotechnology. He holds the Boyd Baxter Chair of Biology and leads the Geomicrobiology Group at the University of Dundee and was founding Head of the Division of Molecular Microbiology in the School of Life Sciences. He has published over 300 refereed scientific papers, books, chapters and reviews and has received invitations to speak at international conferences in over 30 countries. Professor Gadd has served as President of the British Mycological Society and is an elected Fellow of the Royal Society of Biology, the American Academy of Microbiology, the Linnean Society, the Learned Society of Wales, the Royal Society of Edinburgh and elected Member of the European Academy of Microbiology. He has received the Berkeley Prize and President's Award from the British Mycological Society, the Charles Thom Award from the Society for Industrial Microbiology and the Colworth Prize from the Microbiology Society for his research contributions to the microbiological sciences.

Prokaryotic Metabolism and Physiology

SECOND EDITION

Byung Hong Kim Korea Institute of Science and Technology National University of Malaysia

Geoffrey Michael Gadd University of Dundee

CAMBRIDGE

Cambridge University Press & Assessment 978-1-316-62291-9 — Prokaryotic Metabolism and Physiology Byung Hong Kim , Geoffrey Michael Gadd Frontmatter More Information

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781316622919

DOI: 10.1017/9781316761625

© Byung Hong Kim and Geoffrey Michael Gadd 2008, 2019

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2008 3rd printing 2013 Second edition 2019

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-17173-2 Hardback ISBN 978-1-316-62291-9 Paperback

Additional resources for this publication are at www.cambridge.org/ProkaryoticMetabolism.

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> To our families Hyungock Hong, Kyoungha Kim and Youngha Kim and Julia, Katie and Richard Gadd

Contents in brief

I	Introduction to prokaryotic metabolism and physiology	page I
2	Composition and structure of prokaryotic cells	5
3	Membrane transport – nutrient uptake and protein excretion	31
4	Glycolysis	58
5	Tricarboxylic acid (TCA) cycle, electron transport and oxidative phosphorylation	80
6	Biosynthesis and growth	115
7	Heterotrophic metabolism on substrates other than glucose	185
8	Anaerobic fermentation	230
9	Anaerobic respiration	268
10	Chemolithotrophy	321
11	Photosynthesis	351
12	Metabolic regulation	372
13	Energy, environment and microbial survival	446

Contents

•	ce pag	e xxiii
Cha	pter I Introduction to prokaryotic metabolism and physiology	1
Furt	her reading	3
Cha	pter 2 Composition and structure of prokaryotic cells	5
2.1	Elemental composition	5
2.2	Importance of chemical form	6
	2.2.1 Five major elements	6
	2.2.2 Oxygen	7
	2.2.3 Growth factors	8
2.3	Structure of microbial cells	8
	2.3.1 Flagella and pili	8
	2.3.2 Capsules and slime layers	10
	2.3.3 S-layer, outer membrane and cell wall	11
	2.3.3.1 S-layer	11
	2.3.3.2 Outer membrane	11
	2.3.3.3 Cell wall and periplasm	15
	2.3.4 Cytoplasmic membrane	19
	2.3.4.1 Properties and functions	19
	2.3.4.2 Membrane structure	20
	2.3.4.3 Phospholipids	20
	2.3.4.4 Proteins	24
	2.3.5 Cytoplasm	24
	2.3.6 Resting cells	27
Furtl	ner reading	27
Cha	pter 3 Membrane transport – nutrient uptake and	
	protein excretion	31
3.1	Ionophores: models of carrier proteins	31
3.2	Diffusion	31
3.3	Active transport and role of electrochemical gradients	32
3.4	ATP-dependent transport: the ATP-binding cassette (ABC)	
	pathway	34
3.5	Group translocation	35
3.6	Precursor/product antiport	36
3.7	Ferric ion (Fe(III)) uptake	37
3.8	TonB-dependent active transport across the outer	
	membrane in Gram-negative bacteria	37

x | CONTENTS

3.10 Expo	t of cell	surface structural components	39
3.10.1	Protein t	ransport	40
	3.10.1.1	General secretory pathway (GSP)	40
	3.10.1.2	Twin-arginine translocation (TAT) pathway	40
	3.10.1.3	ATP-binding cassette (ABC) pathway	42
	3.10.1.4	Protein translocation through the cell wall in	
		Gram-positive bacteria	43
3.10.2	Protein t	ranslocation across the outer membrane in	
	Gram-ne	gative bacteria	43
	3.10.2.1	Chaperone/usher system	44
	3.10.2.2	Type I secretion system (T1SS): ATP-binding cassette	
		(ABC) pathway	45
	3.10.2.3	Type II secretion system (T2SS)	45
	3.10.2.4	Type III secretion system (T3SS)	46
	3.10.2.5	Type IV secretion system (T4SS)	47
	3.10.2.6	Type V secretion system (T5SS): autotransporter	
		and proteins requiring single accessory factors	48
	3.10.2.7	Type VI secretion system (T6SS)	49
	3.10.2.8	Type VII secretion system (T7SS)	50
	3.10.2.9	Type VIII secretion (curli biogenesis) system (T8SS)	51
3.10.3	Export of	f polysaccharides	51
		ecretion in archaea	53
3.11 Metal	-	rones	53
Further rea	ding		54

Chapter 4 Glycolysis

•		
EMP path	way	59
4.1.1 Phos	phofructokinase (PFK): key enzyme of the EMP pathway	61
4.1.2 ATP	synthesis and production of pyruvate	61
4.1.3 Modi	fied EMP pathways in bacteria	61
4.1.3	3.1 Use of atypical cofactors	61
4.1.3	3.2 Methylglyoxal bypass	62
4.1.4 Modi	fied EMP pathways in archaea	63
4.1.5 Regu	lation of the EMP pathway	64
4.1.5	i.1 Regulation of phosphofructokinase	64
4.1.5	i.2 Regulation of pyruvate kinase	65
4.1.5	i.3 Regulation of modified EMP pathways in archaea	65
4.1.5	.4 Global regulation	65
Glucose-6	-phosphate synthesis: gluconeogenesis	65
4.2.1 PEP s	ynthesis	65
4.2.2 Fruct	tose diphosphatase	66
4.2.3 Gluc	oneogenesis in archaea	66
4.2.4 Regu	lation of gluconeogenesis	67
Hexose m	onophosphate (HMP) pathway	67
4.3.1 HMP	pathway in three steps	67
4.3.2 Addi	tional functions of the HMP pathway	68
4.3.2	2.1 Utilization of pentoses	69
4.3.2	2.2 Oxidative HMP cycle	69
	4.1.1 Phos 4.1.2 ATP 4 4.1.3 Modi 4.1.3 Modi 4.1.3 4.1.4 Modi 4.1.5 Regu 4.1.5 4.1.5 4.1.5 Glucose-6 4.2.1 PEP 5 4.2.2 Fruct 4.2.3 Gluc 4.2.4 Regu Hexose m 4.3.1 HMP 4.3.2 Addin 4.3.2	 EMP pathway 4.1.1 Phosphofructokinase (PFK): key enzyme of the EMP pathway 4.1.2 ATP synthesis and production of pyruvate 4.1.3 Modified EMP pathways in bacteria 4.1.3.1 Use of atypical cofactors 4.1.3.2 Methylglyoxal bypass 4.1.4 Modified EMP pathways in archaea 4.1.5 Regulation of the EMP pathway 4.1.5.1 Regulation of phosphofructokinase 4.1.5.2 Regulation of pyruvate kinase 4.1.5.3 Regulation of modified EMP pathways in archaea 4.1.5.4 Global regulation Glucose-6-phosphate synthesis: gluconeogenesis 4.2.2 Fructose diphosphatase 4.2.3 Gluconeogenesis in archaea 4.2.4 Regulation of gluconeogenesis Hexose monophosphate (HMP) pathway 4.3.1 HMP pathway in three steps 4.3.2.1 Utilization of pentoses 4.3.2.2 Oxidative HMP cycle

58

CONTENTS | xi

	4.3.3 Regulation of the HMP pathway	69
	4.3.4 F ₄₂₀ -dependent glucose-6-phosphate dehydrogenase	69
	4.3.5 HMP pathway and archaea	70
4. 4	Entner–Doudoroff (ED) pathway	70
	4.4.1 Glycolytic pathway in some Gram-negative bacteria	70
	4.4.2 Key enzymes of the ED pathway	71
	4.4.3 Modified ED pathways	72
	4.4.3.1 Extracellular oxidation of glucose by Gram-negative	
	bacteria	72
	4.4.3.2 Modified ED pathways in archaea	73
4.5	Phosphoketolase pathways	73
	4.5.1 Glucose fermentation by <i>Leuconostoc mesenteroides</i>	73
	4.5.2 Bifidum pathway	75
4.6	Glycolysis in archaea	75
4.7	⁷ Use of radiorespirometry to determine glycolytic pathways	76
Fu	ther reading	77

Cha	pter 5 Tricarboxylic acid (TCA) cycle, electron transport	t
	and oxidative phosphorylation	80
5.1	Oxidative decarboxylation of pyruvate	80
5.2	Tricarboxylic acid (TCA) cycle	81
	5.2.1 Citrate synthesis and the TCA cycle	81
	5.2.2 Modified TCA cycle	82
	5.2.3 Regulation of the TCA cycle	83
5.3	Replenishment of TCA cycle intermediates	83
	5.3.1 Anaplerotic sequence	84
	5.3.2 Glyoxylate cycle	84
	5.3.2.1 Regulation of the glyoxylate cycle	85
	5.3.3 Ethylmalonyl-CoA pathway	85
	5.3.4 Methylaspartate cycle	86
5.4	Incomplete TCA fork and reductive TCA cycle	86
	5.4.1 Incomplete TCA fork	87
	5.4.2 Reductive TCA cycle	87
5.5	Energy transduction in prokaryotes	88
	5.5.1 Free energy	89
	5.5.1.1 $\Delta G^{0'}$ from the free energy of formation	89
	5.5.1.2 $\Delta G^{0'}$ from the equilibrium constant	90
	5.5.1.3 ΔG from $\Delta G^{0'}$	90
	5.5.1.4 $\Delta G^{0'}$ from ΔG^0	90
	5.5.2 Free energy of an oxidation/reduction reaction	91
	5.5.2.1 Oxidation/reduction potential	91
	5.5.2.2 Free energy from $\Delta E^{0'}$	91
	5.5.3 Free energy of osmotic pressure	92
	5.5.4 Sum of free energy change in a series of reactions	93
5.6	Role of ATP in the biological energy transduction process	93
	5.6.1 High energy phosphate bonds	94
	5.6.2 Adenylate energy charge	94
	5.6.3 Phosphorylation potential (ΔGp)	95

xii | CONTENTS

	5.6.4 Interconversion of ATP and the proton motive force (Δp)	96
	5.6.5 Substrate-level phosphorylation (SLP)	96
5.7	Proton motive force (Δp)	96
	5.7.1 Proton gradient and membrane potential	96
	5.7.2 Acidophiles and alkaliphiles	96
	5.7.3 Proton motive force in acidophiles	97
	5.7.4 Proton motive force and sodium motive force in alkaliphiles	98
5.8	Electron transport (oxidative) phosphorylation	98
	5.8.1 Chemiosmotic theory	98
	5.8.2 Electron carriers and the electron transport chain	99
	5.8.2.1 Mitochondrial electron transport chain	99
	5.8.2.2 Electron carriers	100
	5.8.2.3 Diversity of electron transport chains in prokaryotes	101
	5.8.2.4 Inhibitors of electron transport phosphorylation (ETP)	
	5.8.2.5 Transhydrogenase	104
	5.8.3 Arrangement of electron carriers in the H ⁺ -translocating membrane	104
	5.8.3.1 Q-cycle and Q-loop	104
	5.8.3.2 Proton pump	105
	5.8.3.3 Sodium pump	105
	5.8.4 ATP synthesis	107
	5.8.4.1 ATP synthase	107
	5.8.4.2 H ⁺ /O ratio	107
	5.8.4.3 H^+ /ATP stoichiometry	108
	5.8.5 Uncouplers	108
	5.8.6 Primary H ⁺ (Na ⁺) pumps in fermentative metabolism	109
	5.8.6.1 Fumarate reductase	109
	5.8.6.2 Na ⁺ -dependent decarboxylase	109
	5.8.6.3 Δp formation through fermentation product/H ⁺	
	symport	110
	5.8.6.4 Energy conservation through electron bifurcation	110
	5.8.6.5 Energy-converting hydrogenase	110
	5.8.6.6 H ⁺ (Na ⁺)-translocating ferredoxin: NAD ⁺	
	oxidoreductase	110
5.9	Other biological energy transduction processes	111
	5.9.1 Bacterial bioluminescence	111
[t]	5.9.2 Electricity as an energy source	111
Furti	ner reading	112
Cha	pter 6 Biosynthesis and growth	115
6.1	Molecular composition of bacterial cells	115
6.2	Assimilation of inorganic nitrogen	115
	6.2.1 Nitrogen fixation	116
	6.2.1.1 N ₂ -fixing organisms	116
	6.2.1.2 Biochemistry of N_2 fixation	117
	6.2.1.3 Bioenergetics of N ₂ fixation	120
	6.2.1.4 Molecular oxygen and N_2 fixation	120
	6.2.1.5 Regulation of N_2 fixation	122

CONTENTS | xiii

	6.2.2 Nitrate reduction	123
	6.2.3 Ammonia assimilation	124
6.3	Sulfate assimilation	126
6.4	Amino acid biosynthesis	128
	6.4.1 The pyruvate and oxaloacetate families	128
	6.4.2 The phosphoglycerate family	131
	6.4.3 The 2-ketoglutarate family	133
	6.4.4 Aromatic amino acids	133
	6.4.5 Histidine biosynthesis	137
	6.4.6 Regulation of amino acid biosynthesis	137
6.5	Nucleotide biosynthesis	138
	6.5.1 Salvage pathway	138
	6.5.2 Pyrimidine nucleotide biosynthesis through a <i>de novo</i> pathway	138
	6.5.3 <i>De novo</i> synthesis of purine nucleotides	138
	6.5.4 Synthesis of deoxynucleotides	138
6.6	Lipid biosynthesis	141
	6.6.1 Fatty acid biosynthesis	141
	6.6.1.1 Saturated acyl-ACP	142
	6.6.1.2 Branched acyl-ACP	142
	6.6.1.3 Unsaturated acyl-ACP	143
	6.6.1.4 Cyclopropane fatty acids	144
	6.6.1.5 Regulation of fatty acid biosynthesis	144 144
	6.6.2 Phospholipid biosynthesis6.6.3 Isoprenoid biosynthesis	144
67	Haem biosynthesis	147
6.8	Synthesis of saccharides and their derivatives	150
0.0	6.8.1 Hexose phosphate and UDP-sugar	150
	6.8.2 Monomers of peptidoglycan	151
	6.8.3 Monomers of teichoic acid	152
	6.8.4 Precursor of lipopolysaccharide, O-antigen	153
6.9	Polysaccharide biosynthesis and the assembly of cell	
	surface structures	153
	6.9.1 Glycogen synthesis	153
	6.9.2 Peptidoglycan synthesis and cell wall assembly	154
	6.9.2.1 Transport of cell wall precursor components through	
	the membrane	154
	6.9.2.2 Peptidoglycan synthesis	154
	6.9.2.3 Teichoic acid synthesis	156
	6.9.2.4 Cell wall proteins in Gram-positive bacteria	156
	6.9.2.5 Cell wall assembly	156
	6.9.3 S-layer	157
	6.9.4 Outer membrane assembly	158
	6.9.4.1 Protein translocation	158
	6.9.4.2 Lipopolysaccharide (LPS) translocation	158
	6.9.4.3 Phospholipid translocation	158
E 10	6.9.5 Cytoplasmic membrane (CM) assembly Deoxyribonucleic acid (DNA) replication	158
0.10	6.10.1 DNA replication	160 160
	6.10.1 DNA replication 6.10.1.1 RNA primer	160
	6.10.1.2 Okazaki fragment	161
	0.10.1.2 Okazaki itagincin	101

xiv | CONTENTS

6.10.1.3 DNA polymerase	161
6.10.1.4 Replication-transcription conflicts	161
6.10.2 Spontaneous mutation	162
6.10.3 Post-replicational modification	162
6.10.4 Chromosome segregation	162
6.11 Transcription	162
6.11.1 RNA synthesis	162
6.11.2 Post-transcriptional processing	163
6.12 Translation	163
6.12.1 Amino acid activation	164
6.12.2 Synthesis of peptide: initiation, elongation and termina	tion 165
6.12.2.1 Ribosomes	165
6.12.2.2 Initiation and elongation	165
6.12.2.3 Termination	166
6.12.2.4 Ribosome rescue by transfer-messenger RNA	
(tmRNA)	167
6.12.3 Post-translational modification and protein folding	168
6.13 Assembly of cellular structures	168
6.13.1 Flagella	168
6.13.2 Capsules and slime	170
6.13.3 Nucleoid assembly	170
6.13.4 Ribosome assembly	170
6.14 Growth	171
6.14.1 Cell division	171
6.14.1.1 Binary fission	171
6.14.1.2 Multiple intracellular offspring	172
6.14.1.3 Multiple offspring by multiple fission	173
6.14.1.4 Budding	174
6.14.2 Growth yield	174
6.14.3 Theoretical maximum Y _{ATP}	176
6.14.4 Growth yield using different electron acceptors and	
maintenance energy	178
6.14.5 Maintenance energy	180
Further reading	180

Cha	pter 7 Heterotrophic metabolism on substrates other	
	than glucose	185
7.1	Hydrolysis of polymers	185
	7.1.1 Starch hydrolysis	185
	7.1.2 Cellulose hydrolysis	186
	7.1.3 Other polysaccharide hydrolases	187
	7.1.4 Disaccharide phosphorylases	188
	7.1.5 Hydrolysis of proteins, nucleic acids and lipids	188
7.2	Utilization of sugars	189
	7.2.1 Hexose utilization	189
	7.2.2 Pentose utilization	192
	7.2.3 Pentose utilization in archaea	192

CONTENTS | xv

7.3	Organic acid utilization	194
	7.3.1 Fatty acid utilization	194
	7.3.2 Organic acids more oxidized than acetate	196
7.4	Utilization of alcohols and ketones	197
7.5	Amino acid utilization	199
	7.5.1 Oxidative deamination	199
	7.5.2 Transamination	200
	7.5.3 Amino acid dehydratase	200
	7.5.4 Deamination of cysteine and methionine	201
	7.5.5 Deamination products of amino acids	201
	7.5.6 Other amino acids	202
7.6	Degradation of nucleic acid bases	205
7.7	Oxidation of aliphatic hydrocarbons	205
7.8	Oxidation of aromatic compounds	208
	7.8.1 Oxidation of aromatic amino acids	209
	7.8.2 Benzene ring cleavage	209
	7.8.3 Oxygenase and aromatic compound oxidation	211
7.9	Utilization of natural and anthropogenic xenobiotics	214
7.10	Utilization of methane and methanol	215
	7.10.1 Methanotrophy and methylotrophy	215
	7.10.2 Methanotrophy	217
	7.10.2.1 Characteristics of methanotrophs	217
	7.10.2.2 Dissimilation of methane by methanotrophs	217
	7.10.3 Carbon assimilation by methylotrophs	219
	7.10.3.1 Ribulose monophosphate (RMP) pathway	219
	7.10.3.2 Serine-isocitrate lyase (SIL) pathway	220
	7.10.3.3 Xylulose monophosphate (XMP) pathway	221
	7.10.4 Energy efficiency in C1 metabolism	222
7.11	Incomplete oxidation	223
	7.11.1 Acetic acid bacteria	223
	7.11.2 Acetoin and butanediol	224
	7.11.3 Other products of aerobic metabolism	225
Furt	her reading	225
Cha	pter 8 Anaerobic fermentation	230
8.1	Electron acceptors used in anaerobic metabolism	230
	8.1.1 Fermentation and anaerobic respiration	230
	8.1.2 Hydrogen in fermentation	230
8.2	Molecular oxygen and anaerobes	231
8.3	Ethanol fermentation	233
8.4	Lactate fermentation	234
	8.4.1 Homolactate fermentation	234
	8.4.2 Heterolactate fermentation	235
	8.4.3 Biosynthesis in lactic acid bacteria (LAB)	236
	8.4.4 Oxygen metabolism in LAB	237
	8.4.5 Lactate/H ⁺ symport	237
	8.4.6 LAB in fermented food	237
	8.4.7 Lactic acid bacteria as a probiotic	239

xvi | CONTENTS

8.5	Butyrate and acetone-butanol-ethanol fermentations	239
	8.5.1 Butyrate fermentation	239
	8.5.1.1 Phosphoroclastic reaction	240
	8.5.1.2 Butyrate formation	240
	8.5.1.3 Lactate fermentation by Clostridium butyricum	241
	8.5.1.4 Glycerol fermentation by Clostridium butyricum	243
	8.5.1.5 Clostridium butyricum as a probiotic	243
	8.5.1.6 Non-butyrate clostridial fermentation	244
	8.5.2 Acetone-butanol-ethanol fermentation	244
	8.5.3 Fermentation balance	247
8.6	Mixed acid and butanediol fermentation	249
	8.6.1 Mixed acid fermentation	249
	8.6.2 Butanediol fermentation	249
	8.6.3 Citrate fermentation by facultative anaerobes	250
	8.6.4 Anaerobic enzymes	251
8.7	Propionate fermentation	253
	8.7.1 Succinate-propionate pathway	253
	8.7.2 Acrylate pathway	255
	8.7.3 Propanediol pathway	255
8.8	Fermentation of amino acids and nucleic acid bases	255
	8.8.1 Fermentation of individual amino acids	256
	8.8.2 Stickland reaction	259
	8.8.3 Fermentation of purine and pyrimidine bases	261
8.9	Fermentation of dicarboxylic acids	261
	Hyperthermophilic archaeal fermentation	262
	Degradation of xenobiotics under fermentative conditions	263
Furth	er reading	264
Cha	pter 9 Anaerobic respiration	268
C ha 9.1	pter 9 Anaerobic respiration	268 268
	Denitrification	268
	Denitrification 9.1.1 Biochemistry of denitrification	268 269
	Denitrification 9.1.1 Biochemistry of denitrification 9.1.1.1 Nitrate reductase	268 269 270
	Denitrification 9.1.1 Biochemistry of denitrification 9.1.1.1 Nitrate reductase 9.1.1.2 Nitrite reductase 9.1.1.3 Nitric oxide reductase and nitrous oxide reductase	268 269 270 271
	 Denitrification 9.1.1 Biochemistry of denitrification 9.1.1.1 Nitrate reductase 9.1.1.2 Nitrite reductase 9.1.1.3 Nitric oxide reductase and nitrous oxide reductase 9.1.2 ATP synthesis in denitrification 	268 269 270 271 271
	 Denitrification 9.1.1 Biochemistry of denitrification 9.1.1 Nitrate reductase 9.1.1.2 Nitrite reductase 9.1.1.3 Nitric oxide reductase and nitrous oxide reductase 9.1.2 ATP synthesis in denitrification 9.1.3 Regulation of denitrification 	268 269 270 271 271 271
	 Denitrification 9.1.1 Biochemistry of denitrification 9.1.1 Nitrate reductase 9.1.1.2 Nitrite reductase 9.1.1.3 Nitric oxide reductase and nitrous oxide reductase 9.1.2 ATP synthesis in denitrification 9.1.3 Regulation of denitrification 9.1.4 Denitrifiers other than facultatively anaerobic 	268 269 270 271 271 271
	 Denitrification 9.1.1 Biochemistry of denitrification 9.1.1.1 Nitrate reductase 9.1.1.2 Nitrite reductase 9.1.1.3 Nitric oxide reductase and nitrous oxide reductase 9.1.2 ATP synthesis in denitrification 9.1.3 Regulation of denitrification 9.1.4 Denitrifiers other than facultatively anaerobic chemoorganotrophs 	268 269 270 271 271 271 272
	 Denitrification 9.1.1 Biochemistry of denitrification 9.1.1 Nitrate reductase 9.1.1.2 Nitrite reductase 9.1.1.3 Nitric oxide reductase and nitrous oxide reductase 9.1.2 ATP synthesis in denitrification 9.1.3 Regulation of denitrification 9.1.4 Denitrifiers other than facultatively anaerobic 	268 269 270 271 271 271 272 272
9.1	 Denitrification 9.1.1 Biochemistry of denitrification 9.1.1 Nitrate reductase 9.1.1.2 Nitrite reductase 9.1.1.3 Nitric oxide reductase and nitrous oxide reductase 9.1.4 ATP synthesis in denitrification 9.1.3 Regulation of denitrification 9.1.4 Denitrifiers other than facultatively anaerobic chemoorganotrophs 9.1.5 Oxidation of xenobiotics under denitrifying conditions 	268 269 270 271 271 271 272 272 272
9.1	 Denitrification 9.1.1 Biochemistry of denitrification 9.1.1 Nitrate reductase 9.1.1.2 Nitrite reductase 9.1.1.3 Nitric oxide reductase and nitrous oxide reductase 9.1.2 ATP synthesis in denitrification 9.1.3 Regulation of denitrification 9.1.4 Denitrifiers other than facultatively anaerobic chemoorganotrophs 9.1.5 Oxidation of xenobiotics under denitrifying conditions Metal reduction 	268 269 270 271 271 271 272 272 274 274
9.1	 Denitrification 9.1.1 Biochemistry of denitrification 9.1.1 Nitrate reductase 9.1.1.2 Nitrite reductase 9.1.1.3 Nitric oxide reductase and nitrous oxide reductase 9.1.2 ATP synthesis in denitrification 9.1.3 Regulation of denitrification 9.1.4 Denitrifiers other than facultatively anaerobic chemoorganotrophs 9.1.5 Oxidation of xenobiotics under denitrifying conditions Metal reduction 9.2.1 Fe(III) and Mn(IV) reduction 	268 269 270 271 271 271 272 272 274 274 274
9.1	 Denitrification 9.1.1 Biochemistry of denitrification 9.1.1 Nitrate reductase 9.1.1.2 Nitrite reductase 9.1.1.3 Nitric oxide reductase and nitrous oxide reductase 9.1.2 ATP synthesis in denitrification 9.1.3 Regulation of denitrification 9.1.4 Denitrifiers other than facultatively anaerobic chemoorganotrophs 9.1.5 Oxidation of xenobiotics under denitrifying conditions Metal reduction 9.2.1 Fe(III) and Mn(IV) reduction 9.2.2 Microbial reduction of other metal ions 	268 269 270 271 271 271 272 272 272 274 274 274 274 277
9.1 9.2	 Denitrification 9.1.1 Biochemistry of denitrification 9.1.1 Nitrate reductase 9.1.1.2 Nitrite reductase 9.1.1.3 Nitric oxide reductase and nitrous oxide reductase 9.1.2 ATP synthesis in denitrification 9.1.3 Regulation of denitrification 9.1.4 Denitrifiers other than facultatively anaerobic chemoorganotrophs 9.1.5 Oxidation of xenobiotics under denitrifying conditions Metal reduction 9.2.1 Fe(III) and Mn(IV) reduction 9.2.2 Microbial reduction of other metal ions 9.2.3 Metal reduction and the environment 	268 269 270 271 271 272 272 272 274 274 274 274 277 278
9.1 9.2	 Denitrification 9.1.1 Biochemistry of denitrification 9.1.1 Biochemistry of denitrification 9.1.1.1 Nitrate reductase 9.1.1.2 Nitrite reductase 9.1.1.3 Nitric oxide reductase and nitrous oxide reductase 9.1.4 ATP synthesis in denitrification 9.1.4 Denitrifiers other than facultatively anaerobic chemoorganotrophs 9.1.5 Oxidation of xenobiotics under denitrifying conditions Metal reduction 9.2.1 Fe(III) and Mn(IV) reduction 9.2.2 Microbial reduction of other metal ions 9.2.3 Metal reduction and the environment Sulfidogenesis 	268 269 270 271 271 272 272 274 274 274 274 277 278 278

CONTENTS | xvii

	10.2.3 Anaerobic nitrification	325
	10.2.2 Nitrite oxidation	324
	10.2.1 Ammonia oxidation	323
10.2	Nitrification	321
	Reverse electron transport	321
	pter 10 Chemolithotrophy	321
<u></u>		
Furth	er reading	315
	9.9.3 Transformation of xenobiotics under anaerobic conditions	314
	9.9.2 Methane oxidation under anaerobic conditions	313
	9.9.1 Oxidation of hydrocarbons under anaerobic conditions	311
9.9	Element cycling under anaerobic conditions	310
	9.8.4 Facultative syntrophic associations	310
	9.8.3 Interspecies electron transfer	309
	9.8.2 Carbon metabolism in syntrophic bacteria	308
	9.8.1 Syntrophic bacteria	307
9.8	Syntrophic associations	306
9.7	Miscellaneous electron acceptors	305
	9.6.2 Energy conservation in organohalide respiration	303
9.0	9.6.1 Organohalide respiratory organisms	303 303
9.6	9.5.3 Energy conservation in homoacetogens Organohalide respiration	302 303
	homoacetogens	302
	9.5.2.3 Synthesis of carbon skeletons for biosynthesis in	202
	9.5.2.2 Other electron donors	302
	9.5.2.1 Sugar metabolism	299
	9.5.2 Carbon metabolism in homoacetogens	299
	9.5.1 Homoacetogens	298
9.5	Homoacetogenesis	298
	9.4.5 Biosynthesis in methanogens	297
	9.4.4 Energy conservation in methanogenesis	296
	9.4.3.3 Aceticlastic methanogenesis	295
	9.4.3.2 Methylotrophic methanogenesis	294
	9.4.3.1 Hydrogenotrophic methanogenesis	293
	9.4.3 Methanogenic pathways	293
	9.4.2 Coenzymes in methanogens	291
	9.4.1.3 Aceticlastic methanogens	291
	9.4.1.1 Hydrogenotrophic methanogens9.4.1.2 Methylotrophic methanogens	290 291
	9.4.1 Methanogens	289 290
9.4	Methanogenesis	289
0.4	9.3.4 Oxidation of xenobiotics under sulfidogenic conditions	289
	9.3.3 Carbon skeleton supply in sulfidogens	288
	9.3.2.2 Complete oxidizers	287
		200
	9.3.2.1 Incomplete oxidizers	283

10.2.3 Anaerobic nitrification32510.3 Sulfur bacteria and the oxidation of sulfur compounds32510.3.1 Sulfur bacteria325

xviii | CONTENTS

	10.3.2 Biochemistry of sulfur compound oxidation	327
	10.3.3 Carbon metabolism in colourless sulfur bacteria	329
10.4	Iron bacteria: ferrous iron oxidation	329
10.5	Hydrogen oxidation	331
	10.5.1 Hydrogen-oxidizing bacteria	331
	10.5.2 Hydrogenase	332
	10.5.3 CO ₂ fixation in H ₂ -oxidizers	333
	10.5.4 Anaerobic H ₂ -oxidizers	334
	Carbon monoxide oxidation: carboxydobacteria	334
	Chemolithotrophs using other electron donors	335
10.8	CO ₂ fixation pathways in chemolithotrophs	335
	10.8.1 Calvin cycle	336
	10.8.1.1 Key enzymes of the Calvin cycle	337
	10.8.1.2 Photorespiration	339
	10.8.2 Reductive TCA cycle	339
	10.8.3 Anaerobic CO ₂ fixation through the acetyl-CoA pathway	340
	10.8.4 CO_2 fixation through the 3-hydroxypropionate cycle	341
	10.8.5 CO ₂ fixation through the 4-hydroxybutyrate cycles	343
	10.8.5.1 Dicarboxylate/4-hydroxybutyrate (DC/HB) cycle	343
	10.8.5.2 3-hydroxypropionate/4-hydroxybutyrate (HP/HB)	
	cycle	343
40.0	10.8.6 Energy expenditure in CO_2 fixation	343
10.9	Chemolithotrophs: what makes them unable to use	2.16
Frontl	organics? her reading	346
ruiu	ici icadilig	347
Cha	pter II Photosynthesis	347
Cha	pter II Photosynthesis Photosynthetic microorganisms	
Cha	pter II Photosynthesis Photosynthetic microorganisms 11.1.1 Cyanobacteria	351
Cha	pter II Photosynthesis Photosynthetic microorganisms 11.1.1 Cyanobacteria 11.1.2 Anaerobic photosynthetic bacteria	351 351
Cha 11.1	pter IIPhotosynthesisPhotosynthetic microorganisms11.1.1Cyanobacteria11.1.2Anaerobic photosynthetic bacteria11.1.3Aerobic anoxygenic phototrophic bacteria	351 351 351 352 353
Cha 11.1	pter IIPhotosynthesisPhotosynthetic microorganisms11.1.1Cyanobacteria11.1.2Anaerobic photosynthetic bacteria11.1.3Aerobic anoxygenic phototrophic bacteriaPhotosynthetic pigments	35 1 351 351 352 353 354
Cha 11.1	pter IIPhotosynthesisPhotosynthetic microorganisms11.1.1Cyanobacteria11.1.2Anaerobic photosynthetic bacteria11.1.3Aerobic anoxygenic phototrophic bacteriaPhotosynthetic pigments11.2.1Chlorophylls	351 351 352 353 354 354
Cha 11.1	pter IIPhotosynthesisPhotosynthetic microorganisms11.1.1Cyanobacteria11.1.2Anaerobic photosynthetic bacteria11.1.3Aerobic anoxygenic phototrophic bacteriaPhotosynthetic pigments11.2.1Chlorophylls11.2.2Carotenoids	351 351 352 353 354 354 355
Cha 11.1	pter IIPhotosynthesisPhotosynthetic microorganisms11.1.1Cyanobacteria11.1.2Anaerobic photosynthetic bacteria11.1.3Aerobic anoxygenic phototrophic bacteriaPhotosynthetic pigments11.2.1Chlorophylls11.2.2Carotenoids11.2.3Phycobiliproteins	351 351 352 353 354 354 355 357
Cha 11.1	pter IIPhotosynthesisPhotosynthetic microorganisms11.1.1Cyanobacteria11.1.2Anaerobic photosynthetic bacteria11.1.3Aerobic anoxygenic phototrophic bacteriaPhotosynthetic pigments11.2.1Chlorophylls11.2.2Carotenoids11.2.3Phycobiliproteins11.2.4Phaeophytin	351 351 352 353 354 354 355 357 357
Cha 11.1 11.2	pter IIPhotosynthesisPhotosynthetic microorganisms11.1.1Cyanobacteria11.1.2Anaerobic photosynthetic bacteria11.1.3Aerobic anoxygenic phototrophic bacteriaPhotosynthetic pigments11.2.1Chlorophylls11.2.2Carotenoids11.2.3Phycobiliproteins11.2.4Phaeophytin11.2.5Absorption spectra of photosynthetic cells	351 351 352 353 354 354 355 357 357 357
Cha 11.1 11.2	pter IIPhotosynthesisPhotosynthetic microorganisms11.1.1Cyanobacteria11.1.2Anaerobic photosynthetic bacteria11.1.3Aerobic anoxygenic phototrophic bacteriaPhotosynthetic pigments11.2.1Chlorophylls11.2.2Carotenoids11.2.3Phycobiliproteins11.2.4Phaeophytin11.2.5Absorption spectra of photosynthetic cellsPhotosynthetic apparatus	351 351 352 353 354 354 355 357 357 357 357
Cha 11.1 11.2	pter IIPhotosynthesisPhotosynthetic microorganisms11.1.1Cyanobacteria11.1.2Anaerobic photosynthetic bacteria11.1.3Aerobic anoxygenic phototrophic bacteriaPhotosynthetic pigments11.2.1Chlorophylls11.2.2Carotenoids11.2.3Phycobiliproteins11.2.4Phaeophytin11.2.5Absorption spectra of photosynthetic cellsPhotosynthetic apparatus11.3.1Thylakoids of cyanobacteria	351 351 352 353 354 354 355 357 357 357 357 357 359
Cha 11.1 11.2	pter IIPhotosynthesisPhotosynthetic microorganisms11.1.1Cyanobacteria11.1.2Anaerobic photosynthetic bacteria11.1.3Aerobic anoxygenic phototrophic bacteriaPhotosynthetic pigments11.2.1Chlorophylls11.2.2Carotenoids11.2.3Phycobiliproteins11.2.4Phaeophytin11.2.5Absorption spectra of photosynthetic cellsPhotosynthetic apparatus11.3.1Thylakoids of cyanobacteria11.3.2Green bacteria	351 351 352 353 354 354 355 357 357 357 357 359 359
Cha 11.1 11.2	pter IIPhotosynthesisPhotosynthetic microorganisms11.1.1Cyanobacteria11.1.2Anaerobic photosynthetic bacteria11.1.3Aerobic anoxygenic phototrophic bacteriaPhotosynthetic pigments11.2.1Chlorophylls11.2.2Carotenoids11.2.3Phycobiliproteins11.2.4Phaeophytin11.2.5Absorption spectra of photosynthetic cellsPhotosynthetic apparatus11.3.1Thylakoids of cyanobacteria11.3.2Green bacteria11.3.3Purple bacteria	351 351 352 353 354 354 355 357 357 357 357 359 359 359 359
Cha 11.1 11.2 11.3	pter IIPhotosynthesisPhotosynthetic microorganisms11.1.1Cyanobacteria11.1.2Anaerobic photosynthetic bacteria11.1.3Aerobic anoxygenic phototrophic bacteriaPhotosynthetic pigments11.2.1Chlorophylls11.2.2Carotenoids11.2.3Phycobiliproteins11.2.4Phaeophytin11.2.5Absorption spectra of photosynthetic cellsPhotosynthetic apparatus11.3.1Thylakoids of cyanobacteria11.3.2Green bacteria11.3.3Purple bacteria11.3.4Heliobacteria and aerobic anoxygenic phototrophic bacteria	351 351 352 353 354 354 355 357 357 357 357 359 359 359 359 359
Cha 11.1 11.2 11.3	pter IIPhotosynthesisPhotosynthetic microorganisms11.1.1Cyanobacteria11.1.2Anaerobic photosynthetic bacteria11.1.3Aerobic anoxygenic phototrophic bacteriaPhotosynthetic pigments11.2.1Chlorophylls11.2.2Carotenoids11.2.3Phycobiliproteins11.2.4Phaeophytin11.2.5Absorption spectra of photosynthetic cellsPhotosynthetic apparatus11.3.1Thylakoids of cyanobacteria11.3.2Green bacteria11.3.3Purple bacteria11.3.4Heliobacteria and aerobic anoxygenic phototrophic bacteriaLight reactions	351 351 352 353 354 354 355 357 357 357 357 357 359 359 359 359 359 360 360
Cha 11.1 11.2 11.3	pter IIPhotosynthesisPhotosynthetic microorganisms11.1.1Cyanobacteria11.1.2Anaerobic photosynthetic bacteria11.1.3Aerobic anoxygenic phototrophic bacteriaPhotosynthetic pigments11.2.1Chlorophylls11.2.2Carotenoids11.2.3Phycobiliproteins11.2.4Phaeophytin11.2.5Absorption spectra of photosynthetic cellsPhotosynthetic apparatus11.3.1Thylakoids of cyanobacteria11.3.2Green bacteria11.3.3Purple bacteria11.3.4Heliobacteria and aerobic anoxygenic phototrophic bacteriaLight reactions11.4.1Properties of light	351 351 352 353 354 354 355 357 357 357 357 357 359 359 359 359 360 360 361
Cha 11.1 11.2 11.3	pter IIPhotosynthesisPhotosynthetic microorganisms11.1.1Cyanobacteria11.1.2Anaerobic photosynthetic bacteria11.1.3Aerobic anoxygenic phototrophic bacteriaPhotosynthetic pigments11.2.1Chlorophylls11.2.2Carotenoids11.2.3Phycobiliproteins11.2.4Phaeophytin11.2.5Absorption spectra of photosynthetic cellsPhotosynthetic apparatus11.3.1Thylakoids of cyanobacteria11.3.2Green bacteria11.3.3Purple bacteria11.3.4Heliobacteria and aerobic anoxygenic phototrophic bacteriaLight reactions11.4.1Properties of light11.4.2Excitation of antenna molecules and resonance transfer	351 351 352 353 354 354 355 357 357 357 357 359 359 359 359 359 360 360 361 361
Cha 11.1 11.2 11.3	pter IIPhotosynthesisPhotosynthetic microorganisms11.1.1Cyanobacteria11.1.2Anaerobic photosynthetic bacteria11.1.3Aerobic anoxygenic phototrophic bacteriaPhotosynthetic pigments11.2.1Chlorophylls11.2.2Carotenoids11.2.3Phycobiliproteins11.2.4Phaeophytin11.2.5Absorption spectra of photosynthetic cellsPhotosynthetic apparatus11.3.1Thylakoids of cyanobacteria11.3.2Green bacteria11.3.3Purple bacteria11.3.4Heliobacteria and aerobic anoxygenic phototrophic bacteriaLight reactions11.4.1Properties of light11.4.2Excitation of antenna molecules and resonance transfer11.4.3Electron transport	351 351 352 353 354 354 355 357 357 357 357 357 359 359 359 359 360 360 360 361 361 361
Cha 11.1 11.2 11.3	pter IIPhotosynthesisPhotosynthetic microorganisms11.1.1Cyanobacteria11.1.2Anaerobic photosynthetic bacteria11.1.3Aerobic anoxygenic phototrophic bacteriaPhotosynthetic pigments11.2.1Chlorophylls11.2.2Carotenoids11.2.3Phycobiliproteins11.2.4Phaeophytin11.2.5Absorption spectra of photosynthetic cellsPhotosynthetic apparatus11.3.1Thylakoids of cyanobacteria11.3.2Green bacteria11.3.3Purple bacteria11.3.4Heliobacteria and aerobic anoxygenic phototrophic bacteriaLight reactions11.4.1Properties of light11.4.2Excitation of antenna molecules and resonance transfer	351 351 352 353 354 354 355 357 357 357 357 359 359 359 359 359 360 360 361 361

CONTENTS | xix

	11.4.3.3	Purple bacteria	365
	11.4.3.4	Aerobic anoxygenic photosynthetic bacteria (AAPB)	365
11.5 Carbo		polism in phototrophs	365
	CO ₂ fixat		366
11.5.2	Carbon r	netabolism in photoorganotrophs	366
	11.5.2.1	Purple bacteria, heliobacteria and aerobic	
		anoxygenic photosynthetic bacteria	366
	11.5.2.2	Green sulfur bacteria	367
	11.5.2.3	Cyanobacteria	367
11.6 Photo	phospho	orylation in prokaryotes	368
Further rea	ding		370
Chapter I	2 Meta	bolic regulation	372
12.1 Mecha	anisms r	egulating enzyme synthesis	372
		on of transcription by promoter structure and	
		factor activity	372
12.1.2		n of enzymes	376
		Inducible and constitutive enzymes	376
		Enzyme induction	376
		Positive and negative control	377
12.1.3		te repression	377
	12.1.3.1	Carbon catabolite repression by the cAMP–CRP	
		complex	378
	12.1.3.2	Catabolite repressor/activator	380
		Carbon catabolite repression in Gram-positive	
		bacteria with a low G + C content	381
12.1.4	Repressio	on and attenuation by final metabolic products	383
		Repression	384
		Attenuation	384
12.1.5	Regulatio	on of gene expression by multiple end products	387
		tion and antitermination	387
	12.1.6.1	Termination and antitermination aided by protein	389
		Termination and antitermination aided by tRNA	390
	12.1.6.3	Termination and antitermination aided by	
		metabolites	392
12.1.7	Two-com	ponent systems with sensor-regulator proteins	392
		ous regulation	393
	-	scriptional regulation of gene expression	394
		RNA stability	394
		mRNA structure and translational efficiency	395
		Modulation of translation and stability of mRNA by	
		proteins	396
	12.1.9.4	Modulation of translation and stability of mRNA	
		by small RNA and small RNA-protein complexes:	
		riboregulation	397
	12.1.9.5	Cyclic dimeric (c-di-GMP) riboswitch	400
12.1.10		c regulation in Archaea	402

XX | CONTENTS

12.2 Global regulation: responses to environmental stress	402
12.2.1 Stringent response	403
12.2.2 Response to ammonia limitation	405
12.2.3 Response to phosphate limitation: the <i>pho</i> system	407
12.2.4 Regulation by molecular oxygen in facultative anaerobes	409
12.2.4.1 ArcB/ArcA and PrrB/PrrA systems	409
12.2.4.2 fnr system	410
12.2.5 Oxidative and nitrosative stress responses	412
12.2.5.1 Oxidative stress responses	412
12.2.5.2 Nitrosative stress responses	415
12.2.6 Heat shock response	415
12.2.7 Cold shock response	417
12.2.8 Quorum sensing	420
12.2.9 Response to changes in osmotic pressure	422
12.2.10 Two-component systems and cross-regulation	423
12.2.11 Chemotaxis	425
12.2.12 Adaptive mutation	428
12.3 Regulation through modulation of enzyme activity: fine	
regulation	428
12.3.1 Feedback inhibition and feedforward activation	428
12.3.2 Enzyme activity modulation through post-translational	
modification	429
12.3.2.1 Phosphorylation	430
12.3.2.2 Acetylation	430
12.3.2.3 Adenylylation	431
12.3.2.4 Other chemical modifications	432
12.3.2.5 Regulation through physical modification and	
dissociation/association	433
12.4 Metabolic regulation and growth	433
12.4.1 Regulation in central metabolism	433
12.4.2 Regulatory networks	435
12.4.3 Growth rate and regulation	435
12.5 Secondary metabolites	436
12.6 Metabolic regulation and the fermentation industry	436
12.6.1 Fermentative production of antibiotics	436
12.6.2 Fermentative amino acid production	436
Further reading	437
Chapter 13 Energy, environment and microbial survival	446
13.1 Survival and energy	446
13.2 Reserve materials in bacteria	447
13.2.1 Carbohydrate reserve materials: glycogen	447
13.2.2 Lipid reserve materials	448
13.2.2.1 Poly- <i>β</i> -hydroxyalkanoate (PHA)	448
13.2.2.2 Triacylglyceride (TAG)	451
13.2.2.3 Wax esters and hydrocarbons	451
13.2.3 Polypeptides as reserve materials	452
13.2.4 Polyphosphate	453

CONTENTS | xxi

13.3 Resting cells	454
13.3.1 Sporulation in Bacillus subtilis	454
13.3.2 Cysts	456
13.3.3 Viable but non-culturable (VBNC) cells	456
13.3.4 Persister cells	457
13.3.5 Nanobacteria	457
13.4 Population survival	457
13.4.1 Programmed cell death (PCD) in bacteria	457
13.4.2 Toxin-antitoxin systems	458
13.5 Bacterial immune systems	460
13.6 Competence	462
Further reading	462
Index	467

Preface for the second edition

Since the first edition of Bacterial Physiology and Metabolism was published in 2008, significant progress in many areas has been made, requiring extensive revision of the first edition. Furthermore, some important topics were not adequately covered in the first edition. These include the modified TCA cycles in cyanobacteria and obligately fermentative bacteria (Section 5.2.2), novel TCA cycle intermediate replenishment mechanisms (ethylmalonyl-CoA pathway, Section 5.3.3 and methylaspartate cycle, Section 5.3.4), archaeal pentose metabolism (Section 7.2.3), methane oxidation in anaerobic environments (Section 9.9.2), elucidation of novel CO₂ fixation cycles (the 4-hydroxybutyrate cycles, Section 10.8.5), bacterial immune systems (Section 13.5), toxin/antitoxin systems (Section 13.4.2) and competence (Section 13.6). Also included in this edition are accounts of the synthesis of the non-canonical amino acids, pyrrolysine and selenocysteine, and their codon usage. Analysis of bacterial genomes has led to the identification of many novel mechanisms of metabolic regulation, including two-component systems and small non-coding RNAs (discussed in Chapter 12). Another intriguing discovery is the use of certain rare earth elements by methylotrophs (Section 2.1). The book title has also been amended to *Prokaryotic Metabolism and Physiology* to reflect the increasing content of archaeal processes. We hope this second edition is received as well as the first edition.

The authors would like to express their appreciation to Professors K. S. Kim, S. H. Bang, J. H. Shun, J. K. Lee and I. S. Chang for reading parts of the manuscript, Ms. Y. J. Kim for preparing the figures and the staff of Cambridge University Press involved in various stages of the publication process, including Katrina Halliday, Jenny van der Meijden and Lindsey Tate.

> Byung Hong Kim Geoffrey Michael Gadd

Preface for the first edition

Knowledge of the physiology and metabolism of prokaryotes underpins our understanding of the roles and activities of these organisms in the environment, including pathogenic and symbiotic relationships, as well as their exploitation in biotechnology. Prokaryotic organisms include bacteria and archaea and, although remaining relatively small and simple in structure throughout their evolutionary history, exhibit incredible diversity regarding their metabolism and physiology. Such metabolic diversity is reflective of the wide range of habitats where prokaryotes can thrive and in many cases dominate the biota, and is a distinguishing contrast with eukaryotes that exhibit a more restricted metabolic versatility. Thus, prokaryotes can be found almost everywhere under a wide range of physical and chemical conditions, including aerobic to anaerobic, light and dark, low to high pressure, low to high salt concentrations, extremes of acidity and alkalinity, and extremes of nutrient availability. Some physiologies, e.g. chemolithotrophy and nitrogen fixation, are only found in certain groups of prokaryotes, while the use of inorganic compounds, such as nitrate and sulfate, as electron acceptors in respiration is another prokaryotic ability. The explosion of knowledge resulting from the development and application of molecular biology to microbial systems has perhaps led to a reduced emphasis on their physiology and biochemistry, yet paradoxically has enabled further detailed analysis and understanding of metabolic processes. Almost in a reflection of the bacterial growth pattern, the number of scientific papers has grown at an exponential rate, while the number of prokaryotic genome sequences determined is also increasing rapidly. This production of genome sequences for a wide range of organisms has made an in-depth knowledge of prokaryotic metabolic function even more essential in order to give biochemical, physiological and ecological meaning to the genomic information. Our objective in writing this new textbook was to provide a thorough survey of the prokaryotic metabolic diversity that occurs under different conditions and in different environments, emphasizing the key biochemical mechanisms involved. We believe that this approach provides a useful overview of the key cellular processes that determine bacterial and archaeal roles in the environment, biotechnology and human health. We concentrate on bacteria and archaea but, where appropriate, also provide comparisons with eukaryotic organisms. It should be noted that many important metabolic pathways found in prokaryotes also occur in eukaryotes further emphasizing prokaryotic importance as research models in providing knowledge of relevance to eukaryotic processes.

This book can be considered in three main parts. In the first part, prokaryotic structure and composition is described as well as the means by which nutrients are transported into cells across membranes. Discussion of biosynthesis and growth is followed by detailed accounts of glucose metabolism through glycolysis, the TCA cycle, electron transport and oxidative phosphorylation, largely based on the model bacterium Escherichia coli. In the second part, the trophic variations found in prokaryotes are described, including the use of organic compounds other than glucose, anaerobic fermentation, anaerobic respiration, chemolithotrophy and photosynthesis. In the third part, the regulation of metabolism through control of gene expression and enzyme activity is covered, as well as the survival mechanisms used by prokaryotes under starvation conditions. This text is relevant to advanced undergraduate and postgraduate courses, as well as being of use to teachers and researchers in microbiology, molecular biology, biotechnology, biochemistry and related disciplines.

We would like to express our thanks to all those who helped and made this book possible. We appreciate the staff of Academy Publisher (Seoul, Korea) who redrew the figures for the book, and those at Cambridge University Press involved at various stages of the publication process, including Katrina Halliday, Clare

xxvi PREFACE

Georgy, Dawn Preston, Alison Evans and Janice Robertson. Special thanks also go to Diane Purves in Dundee, who greatly assisted correction, collation, editing and formatting of chapters, and production of the index, and Dr Nicola Stanley-Wall, also in Dundee, for the cover illustration images. Thanks also to all those teachers and researchers in microbiology around the world who have helped and stimulated us throughout our careers. Our families deserve special thanks for their support and patience.

> Byung Hong Kim Geoffrey Michael Gadd