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INTRODUCTION

1. Historical

The function with which these tables are mainly concerned seems to have been investigated first
by Airy* (1838, 1849) and has been, in consequence, named after him. In calculating light-intensity
in the neighbourhood of a caustic, Airy met with the integral

W= f cos §7 (w? — mw) dw
0

He gave (1838, p. 390) a 5-decimal table of W form = — 4-0(0-2) + 4-0, and a table of IW2to 5 or more
decimals over the same range of 7. These tables were derived from 7-decimal calculations of W, the
values being given in full on page 402 of the same paper. Later (1849, p. 598) he gave a newly-calculated
5-decimal table of W for m = —5-6(0-2) + 56.

The 1838 table was calculated by quadratures supplemented by an expansion, asymptotic in
character, for the ‘tail’ of the integral. For the 1849 table the ascending series was used. Airy’s reasons
for his choice of methods are not uninteresting (1849, p. 595):

“The computation by quadratures was exceedingly laborious, and I did not resort to it without
trying other methods of a more refined nature. But in every attempt at expansion of the formula I was
met by the integral of a sine or cosine with infinite limits. The reasonings upon which several mathe-
maticians have attempted to establish the value of such an integral appeared to me so little conclusive,
that I preferred at once to abandon the expansions which introduced them, and to rely only on the
infallible but laborious method of quadratures.

“On my stating to Professor De Morgan, after terminating the calculations, the scruples which
had led me to reject the expansions, he expressed himself so strongly confident of the correctness of
the conclusions upon the point which I had considered doubtful, that T was induced to undertake the
numerical computation of the series given by expansion of the formula.”

That Airy’s scruples were not entirely unjustified is apparent on examination of the various attempts
to attach a meaning to sin co and cos o0, and to integrals of the type to which he refers.
Having performed the new calculations, he draws the conclusion (1849, p. 599):

“The agreement of the values of the integral, computed by methods so totally different, is not a
little remarkable. On the one hand, it may be received by some persons as a proof of the correctness
of that part of the theory of series which asserts the evanescence of the integral of a cosine when the
limits are o and 1/o0: on the other hand it may be considered to afford evidence of the great care with
which the quadrature computations had been made.”

A recalculation of Airy’s values has been made, using the present tables, and noting that
W = 2k Ai(— km)
where k = (72/12)¥3. This constant « is characteristic of relations between Airy’s form of his integral
and the definition adopted in this work; the values of x and of its reciprocal are, to ten decimals,
Kk = 093692 78888 I/k = 106731 79996

The recalculation has revealed that, in units of the seventh decimal, the greatest error in any of Airy’s
7-decimal values for — 4-0 < m < + 2:01s 52 units; the error then changes fairly steadily from — 56
units at m = 2-2 to — 272 units at m = 3-4; at m = 3-6, 3-8 and 4-o the errors are — 23, + 858 and
+ 2661 of these units. Airy’s revised table has only one error of more than 2 units of the fifth decimal;
the value for m = — 3-6 is 3 units in error, the value in the original table being, however, correct to
5 decimals.

The ascending series, although an enormous improvement compared with quadratures, is still
very laborious when m is large, and the desire to reduce this labour induced Stokes (1851, 1858, 1907)
to develop asymptotic expansions and led to his remarkable discovery of the discontinuity of the

* Dated references are given in the Bibliography.
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‘arbitrary constants’ appearing in asymptotic developments (1858). In the 1851 paper Stokes also
developed asymptotic expansions for zeros of W and of its derivative, and tabulated, to 4 decimals,
the first 50 zeros of W and the first 10 zeros of its derivative. These have been recomputed using the
present tables; they are respectively — a,/k and — a}/k, where a, and aj are the zeros of Ai(x) and
Ai'(x), see Table III, and 1/« has the value already given. With one exception (the first zero of the
derivative, which should be 1-0874 not 1-0845), all Stokes’s values are correct within a unit of the
fourth decimal.

Airy’s and Stokes’s tables have been reproduced several times (see Fletcher, Miller and Rosenhead,
Index of Mathematical Tables, Sub-section 20-2, London, Scientific Computing Service), but, except
for a small table of /m Ai(— x) in Kramers (1926, p. 840), which has an unreliable third decimal, no
new calculation seems to have been made until Jeffreys (1928, p. 107) announced that he had made a
table of Ai(x)and Ai’(x); this table is for x = — 2-05(0-05) + 2-05, with 8 working decimals, and has
been incorporated in the present tables. There are, however, tables of the closely related Bessel
functions of order +1/3 and +2/3 and of their zeros (Index, Articles 17-221-17°232, 17-752-17-7536,
18:221-18-222); the most extensive of these yet published is in Watson (1922), which gives (pp. 714-
729) Jus (%), Vs (%), | Jus (%) + 1Y y5(x) [, €°Kys(x) to 7 decimals, and tan—{Yy3(x)/] ys(x)} to 0”01,
all for x = 0-00(0-02) 16-00, and (p. 751) the first 40 zeros of Jy5(x), Yy5(x), J_y3(x) = Jys(x) to 7
decimals. Watson also notes that to compute functions of order —1/3 the phase should be increased
by 60°. A more extensive MS. table prepared by the Mathematical Tables Project of the New York
W.P.A. has been announced (see Mathematical Tables and other Aids to Computation, 1,93, 1943);
the main tables give J ,i;5(x), J1o5(%), I5(x) and I,4(x) for & = 0-00(0-01)25-00, and I_,;(x) and
I_y/5(x) for x = 0-00(0-01)13-00, all to ten decimals or figures. The connections between these func-
tions and the functions Ai(x) and Bi(x) are exhibited on pages Bg and B17. Another table of interest
is a short (but apparently unique) table for pure imaginary argument given by Rayleigh (1915).

There have been several theoretical investigations of the properties of the Airy Integral and of allied
functions; in particular those of Nicholson (190g), of Brillouin (1916) and of Kramers (1926) may be
noted. A number of their results, and others, are given in Watson (1922, pp. 188-190, 248-252, 320—
324).

Recently the demand for tables of the Airy Integral has revived; this revival is closely connected
with the simplicity of the differential equation satisfied by the function. We readily verify that

W = — LW = — k3mW

dm?® 12
Jeffreys (1928, p. 105, but with a later change in the sign of x) has introduced changes of scale in
function and argument, defining*

. I[®
Ai(x) = ;f cos (323 + «xt) dt (1)
0
so that, using accents to denote differentiation with respect to the argument, Ai(x) satisfies the
differential equation "
1 y" =y (2)

This differential equation arises naturally as an approximation to the general second order differential
equation over a limited range of the argument, for, supposing such an equation to be reduced to the
normal form (see, e.g., Ince, Ordinary Differential Equations, p. 394, 1927)
y' + 1(x).y=o0

we may in general approximate to /(x) in the neighbourhood of x = ¥, by an expression of the form

I(x) = a+ b(x — x5) = 1(%) + (x — o) I' (%)
neglecting terms involving higher powers of x — x,. A change of origin and scale for x now leads to
the equation (2). This method of approximation is especially useful near a zero of I(x), i.e. when

a = o; see Jeffreys (1942). It soon became apparent that tables of a suitable second and independent
solution of the differential equation were also needed.

o0
* Watson, in his discussions, deals with the functions f cos (2 + xt)dt = 37 B7 Ai(+ 371Bx) which
satisfy the differential equations d?y/dx? = + ixy. 0
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2. Description of the Tables

2-1. The complete integral of the differential equation (2) may be written in the form
y = A Ai(x) + B Bi(x) (3)
where A and B are constants, and Bi(x) is a suitably chosen independent solution of (2) that is defined
in §4. The tables are concerned mainly with Ai(x) and its derivative; every solution of (2) which

remains finite as x — co is a multiple of this integral, which itself tends to zero as x - co.
The complete integral of (2) can also be written in the form

y = C F(x) sin {x(x) + ¢} (4)
in which C and € are arbitrary constants. If we take
C? =A%+ B? tane = B/A (5)
where A and B are the same constants as in (3), then
Ai(x) = F(x) sin x(x) Bi(x) = F(x) cos x(x) (6)
The corresponding derivative can be similarly expressed, with the same constants C and ¢, as
¥ = C () sin i (x) + )
where Ai'(x) = G(x) sin ¥ (x) Bi' (x) = G(x) cos 9 (x) (8)

The tables aim at an 8-figure standard of accuracy throughout for Ai(x), Bi(x) and their derivatives;
this corresponds to 6 decimals of a degree in the phases x(x) and ¥ (x) in Table VII, and to 9 decimals
for + 7 = 01 Bi’(+ x) in Table IV. Reduced derivatives of higher order in Table IV are given to the
10 decimals needed for interpolation of Bi’(x) to 8 decimals.

Provision for interpolation is made everywhere (except of course in Tables III and V); the desire
to make this provision resulted in a decision to tabulate log,, Ai(x), Ai’(x)/Ai(x), log,, Bi(x) and
Bi’(x)/Bi(x)in Tables IT and VI. The details of interpolation are discussed in § 3 ; BRITISH ASSOCIATION
Auxtliary Table I is available to assist in this process.

2'2. Notation for Reduced Derivatives. 'The operator 7 is defined by

=

0

k

2 Bt ©)
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If this operator is applied to the function f(x), which is the same for all values of 4, it is readily verified
by repeated application that ™f(x) = (h*jnl) fo(x) (10)

that is, 7%f(x) is the nth reduced derivative of f(x), a term in the Taylor expansion of f(x + 4). For this
reason 7 may be called the Taylor Operator. It should also be noted that

(=7)" f( = %) = (W"/n]) f( = %) (11)

In these tables 77f(x) is denoted by 7 when dealing with a specific function such as Bi(x) or Bi( — x),
as in the headings of Table IV and in formulae (23) to (26). In order to emphasize the factor (— 1)»
in (11) and to enable the reduced derivatives to be given throughout with the correct sign (i.e. that
of the derivative) (— 7)" is given in Table IV when the argument is negative, that is, for Bi(— x)
with x >o0. Since 4 = o°1 in this table, the columns headed 7 and — 7 thus give always + o-1 Bi’'( + x).

2:3. The Phases x(x) and r(x). These angles are tabulated in degrees, to simplify determination
of their sines and cosines. Decimals of a degree are given, and multiples of 360° have been subtracted
from the angles; this multiple, although not usually needed, is also given.

The following tables give natural values of sines and cosines with argument in degrees and decimals;
all include convenient provision for interpolation.

Buckinguam, E. Manual of Gear Design. Section One, Mathematical Tables. New York, Machinery
Publishing Co., 1935. This gives 8-decimal values for arguments 0°-00(0°-01)45°%00; see Comrie,
Mathematical Tables and other Aids to Computation, 1, 88, 1943 on errors (few and small in the tables
of sines and cosines).

HerGET, P. Astron. Journal, 42, 123-125, 196, 1933. This is a one-page table of 8-decimal values for
arguments 0°(1°)45°.

PetERs, . Siebenstellige Werte der trigonometrischen Funktionen. .. Berlin-Friedenau, Optische Anstalt
C.P. Goerz, 1918. (Since 1930, Leipzig, Teubner; reprint, New York, Van Nostrand, 1942.) This
gives 7-decimal values of sin 6 for arguments 0°-000(0°001)90°000.

3. Interpolation

If full use is made of all differences, modified differences or reduced derivatives printed, the resulting
interpolated value will be correct within 1} units of the last figure tabulated. Again, if this accuracy
is desired, then, in general, all differences or modified differences that are given must be used; on
the other hand, as many reduced derivatives are tabulated as are needed to obtain interpolated values
of Bi’(x) from either end of the interval, and these will not all be needed if only the nearer tabular
point is used, or if a value of Bi(x) is sought. Details of the interpolation methods suggested are set
out below.

3'1. Interpolation by Differences. In Tables I, 1I, VI and VII second differences are given for
interpolation with Everett’s formula,

Jo =f(x + Oh) = ¢f, + 6f, + E§0§ + E3o% (12)
where 4 is the tabular interval, ¢ = 1 — 6, and terms involving fourth and higher differences are
omitted.

In some cases these omitted differences are not negligible, and the use of (12) may entail substantial
end-figure error. In such cases slight modifications of Everett’s formula are advocated, and means
for their use provided.

If §*is not greater than 1000 it may be allowed for by the “throw-back*”’, using the formula

Jo = ¢fo + Ofs + E§o5, + E105, (13)
where 6%, and 02, are the “modified second differences” of f, and f, respectively (see (16) below);
(13) should be used where these, and no other differences, are provided. The greatest possible error, ex-
cluding rounding-off errors made during the interpolation, is less than a unit of the last figure tabulated.

* Comrie, Interpolation and Allied Tables, p. 928, 1936, London, H.M. Stationery Office. An elaboration of
this idea is used below. See also BRITISH ASSOCIATION, Mathematical Tables, Vol. 1, p. xi, 1931.
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There still remain short ranges of the argument where fourth and higher differences are of such
magnitude that values given by (13) may be several units out in the end figure. The error can every-
where be reduced to less than 1} of these units by one or other of the formulae

fo= 8o + 0fy + B350 + E365, + Moyt + Mivt (14)
Jo=¢fo + 0fy + E§dno + E305: + T*(v3 + 71) (15)
where (the coeflicient 0-184 being exact)

= h%f" — 0-100607h% " + 0-010193h%f" — 0-00103A%f" /i1 + 0-00010Af* — ...
1000Y* = 0% — 0:278276% + 0:06858% — 0:016401° + 0-00481% — ...
= k4" — o-111603Af "1 + 0-01142A%f" i1 — 0-0012Af* + ...
and M* = 1000 (E* + 0-184E?) 2T = M} + M; (17)
The necessity for the use of (14) or (15) is indicated by the tabulation of y*; if |y} — ¥4 | averages
more than a unit (14) must be used, otherwise (15) may be simpler and is subject (in such cases only)
to a slightly smaller maximum error.

The coefficients E2, E%, M§, M4 and T* are given separately as BRiTISH AsSOCIATION Auxiliary
Table I, for arguments 6 = o-oo(o-o1)1-00. The following table of M*and 7" may, however, be found

02 = 0% — 0-1840* + 0:0380828% — 0:008300% + 0:001901° — 00004012 + ... \l
j (16)

helpful.

7 M} M3 T 7 M} M4 T*

[e}¢) — 0000 +0-000 —0'000 0°5 +o0-219 +o0-219 +o0-219
o1 — 0698 +0°256 —0221 06 +0°448 —o0-128 +o-160
o2 —0+768 +0°448 —o'160 o7 +0°'523 —o0°506 + 0009
o3 —0°'506 +0°'523 + 0009 o8 +0°448 — 0768 —o°160
o4 —o0'128 +0°448 +o0°160 09 +0°256 —0°698 —o022I
o5 +o0219 +o0-219 +o0-219 10 + 0000 — 0000 — 0000

3-2. Interpolation by Reduced Derivatives. In terms of the operator 7, defined in (9), Taylor’s
expansion for f(x + 6k) may be written

f(x + 6h) = (1 + 01 + 622 + ...+ O + ) f(%) (18)

It is of interest to note, since

hof (x + Oh)]ox = of (x + Oh)/0 (19)
that O1f(x + Oh) = f(x + Oh) — f(x)
whence (1 —01) f(x + Oh) = f(x) (20)

in formal agreement with the expansion (18).
Differentiation and integration of (18) with respect to 6, with use of (19), give Taylor expansions
for the derivative and integral of f(x) at an arbitrary point:

hf'(x 4+ Oh) = (1 + 2072 + 30273 + ... + nO 17 + ...) f(x) (21)
z+6h
f f@)dt=h6 + 30°1 + }Pr2 + ... + %0"7"‘1 +...) f(x) (22)

The formulae (18) and (21) are to be used for interpolation in Table IV. Expressed in terms of the
shortened notation mentioned in §2-2 these become

f(x + 6h) = f(x) + 01 + 6212 + ... + O"1" + ... (23)
hf'(x + Oh) = T + 2072 + 36713 + ... + nO" 1" + ... (24)
Similarly (cf. (11))
A= (@x+0h)}=f(—x)+0r+ 6224 ... + 6 4 ... (25)
—hf'{— (x + Oh)} =7 + 2072 + 30213 + ... + nOr1gn 4 .. (26)

where f'(— x) = {df (t)/dt},__, = — df(— x)/dx. Again it must be noted that in Table IV the reduced
derivatives are given with the true sign of the derivative, so that, when the argument — « is negative,
the quantity (— 7)* = (A*/n!) {Bi™(#)},__, is tabulated.
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In using, for example (24), proceed thus: Multiply 878 by 6 and add 777; multiply by 6 and add 678;
continue in this way until 7 has been added. The required derivative is then obtained by multiplication
by 1/ This is the process indicated when (24) is written in the form

hf' (% + Oh) = T + 0{a1% + 0{37% + O{47* + ...}}}
3°3. Numerical Examples. To find

Ai'(1:97) + 43 Bi'(1:97) = 2G(1°97) sin {/ (1°97) + 60°} and Bi'(- 2:57)
Ai'(1-97) = — 005521 805 is taken directly from Table I. Bi’(1-97) is obtained from Table IV,
using (i) ¥ = 20, 0 = — o0-3 and (ii) ¥ = 19, € = 0-7 in (24). Individual terms are set out below, and
a third column (iit) shows the application of (26); the comma indicates an extra decimal retained to
minimize accumulation of error.
(i) Bi'(1'97)

(ii) Bi'(1-97) (i) Bi'(—257)

x=20,0=—073 x=19,0=+07 x=245,0= 407
T 4041006 8205 +0°'34951 6586 (-7 —0°'02204 2015

2012 — 1978 8570,0 + 3882 5052,3 — 2072 - 756 7393,3
30°t° + 51 7475,7 +  2342198,0 30%(=7) + 2 9063,8
401t — 9627,2 + 10 0205,0 — 40874 + 17970,2
504"+ 144,4 + 3481,8 s00(=7%) + 294,7
66518 — 1,8 + 100,2 — 605718 - 11,7
~6877 + 2,6 708(—17) — 4
80718 + 1
Sum 039078 7626,1 039078 7626,0 Sum —0°02956 2091,7
Thus Bi'(1-97) = 3:90787 626 Bi’(— 2'57) = —0°29562 092

It follows that
Ai'(1:97) + 4/3 Bi' (1-97) = — 0-05521 805 + 6-76864 023 = + 671342 218
the eighth decimal being unreliable to the extent of 1 or 2 units.
G(1-97) and ¥ (1-97) are obtained from Table VII, using (14) and (15) respectively, with x = 1-9
and 0= o7. G(x97) ¥ (197)

0:3G(1°9) +1:04870 64,9 o3¢ (1-9) —0%29718 9,9
07G(20) +2-87071 79,9 07y (20) =0 '51922 5,7
E3é5, - 433772 E3 05, + 33975
E o, — 68200, Ei o, + 348 6,5
M;vs + 18,3 T (Y5 +71) + 0,0
f')’;} - 21’8
G(r97) = 3'90826 63,2 ¥ (1°97) = —0%80953 1,6
2G = 781653 26,4 Y+ 60° = 59°19046 8,4
Thus sin(yr + 60°) = 0-85887 470,7 and 2G sin (¥ + 60°) = 671342 22

4. Definitions and Properties of the Functions

4'1. Definitions of Ai(x) and Bi(x). The most convenient starting point appears to be the solution
of (2) by means of a Laplace contour integral, with complex

variable, using the method described by Ince in his Ordinary —
Differential Equations, p. 187, 1927. This gives %
v =f exp (43 — at) dt (27) é/

. J / ///
where C is an open contour such that the integrand vanishes at
both ends. These ends must clearly be where £ has infinitely Z/Z Real Azis
negative real part, i.e. with phase between limits (47 + 1) 77/6 and %
(4n + 3) m/6 for any integer n. Each end of C must thus lie at /
infinity in one of the sectors of the t-plane that are shaded in Fig. 1. —
A contour C beginning in the sector numbered 7 and ending in %3 =
that numbered s may be denoted by L,,. By Cauchy’s theorem all //
contours L, for given 7 and s are equivalent, since the integrand =
of (27) has no singularity in the finite part of the plane. Fig. 1.
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Two combinations which give real values of y may be taken as independent solutions of (2); these are

I

Ai(x) = —. 13 — xt) dt

i(x) me exp (} xt) (28)

. I
Bi(x) = - { f exp (463 — xt) dt + f exp (33 — xt) dt (29)

27 \J Ly Lss
To obtain from these the real integrals given on page B 17, take
Ly;: t=c+t, —o <u<oo, ureal,
Ly, Los: —w<t<e treal; t=c+iu, o<u<oo, ureal

In these ¢ is a real positive constant, which we ultimately make tend to zero.
Certain useful relations may be derived from (28) and (29) by means of the substitutions ¢ = wu
and ¢ = w%, where w = €23, a cube root of unity. Thus, for example,

Ai(x) + wAi(wx) + w?*Ai(wx) =0
Bi(x) + wBi(wx) + »?Bi(wi) = o} (30)
Bi(x) = i{w?Ai(w?x) — wAi(wx)} (31)

It follows that Ai(wx) = — Jw?{Ai(x) — /Bi(x)}
and Ai(w%) = — Jo{Ai(x) + iBi(x)} } (32)

may be obtained from the tables.

4-2. The solution in series of ascending powers of x by usual methods gives the general solution

of (2) in the form y = ay, + by, (33)
where v, and y, are the series given on page B 17. Also, straight line contours bisecting the shaded
sectors (Fig. 1) give Ai(0) = 37¥2Bi(0) = 372%/(— })! = 0-35502 80538 87817}

—~ Ai'(0) = 372Bi’(0) = 37%3/(— £)! = 0:25881 94037 92807 (34)

4°3. By comparison of expansions in ascending powers of x the representations of Ai(x) and Bi(x)
and of their derivatives in terms of Bessel functions of order + 1/3 and + 2/3 are readily derived.
'They are given on page B 17. Since Jeffreys (1942) remarks that ““ Bessel functions of order 1/3 seem
to have no application except to provide an inconvenient way of expressing this function”, i.e. the
function Ai(x), inverted relations are given below, with x = (3£)23.

Jus(€) = 3 2{3Ai(~ x) — {3 Bi(~ x)} Iy5(8) = 30712{J3 Bi(x) — 3Ai(x)}
J-s(§) = 3 2{3A1(— &) + |3 Bi(— %)} I_y5(8) = 3a7"2{J3 Bi(x) + 3Ai(x)}
Jos(8) = 37 H{{3 Bi'(— %) + 3Ai'(— %)} Ly3(8) = 371 {J3 Bi' (%) + 3A1 (%)} 1 (35)
J2a(6) = a7 H{3 B’ (— ) — 3Ai"(— %)} I_y5(8) = 307 {{3 Bi'(x) — 3Ai" (x)}
Ky5(8) = J3ma2 Ai(x) Ky (8)= — J3mx 1Al (x)

4-4. The asymptotic expansions have been derived by the method of steepest descents. The con-
tours L,, in (28) and (29) are chosen to pass through the saddle points of the integrand, in such direc-
tions that the modulus may fall away as rapidlyas possible from its maximum values. The saddle points
are given by ¢ = + ,/x and the directions of steepest descent to and from these points are illustrated
in Figs. 2 and 3 for the two cases x > o and x < o.

K

Fig. 3. x<o.
BAMT b

A

AN

>

Fig. 2. x>o.
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Lack of space forbids the discussion of any but the simplest case, that of Ai(x) with x > o. For
this take
La: t= +yx+iu, wureal, —o0<u<o0. (36)
Equation (28) now gives

[ee]

0
7 exp (3x32) Ai(x) = fo eV cos luddu = %x—l/“f e~ cos (0°x—%%) do

— ©

o [P 28 P12
= lao— —v _ —
i f_we (1 2T + 1135 ) dv

~ 3.5 5.7.9.11
1712 1/4(1 T 1aga + Tt ) (37)

14

The other asymptotic expansions given on page B 17 may be derived similarly, although there are
some troublesome variations which demand care. The asymptotic expansions for Ai(— x) and
Bi(— «) were used to suggest a suitable ratio for the constants in the definitions (28) and (29).

4'5. The Auxiliary Functions F(x), x(x), G (x) and r (x). Combination of (2) and (4) gives
(F" — Fx'? — xF) sin (x+¢€) + (2F'Y' + Fx") cos (x + €) =0 (38)
where, for brevity, the argument (x) has been dropped. This must be satisfied for all ¢ so that the
coefficients of sin (y + €) and cos (x + €) must vanish separately. The vanishing of the latter coeffi-
cient leads to

F2x" = const. = — 1/7 (39)
where the value of the constant is determined by (6), which gives
z = {F(x)}* = Ai%(x) + Bi?(x) tan y(x) = Ai(x)/Bi(x) (40)
Eliminating ', (38) and (39) now give
F" — 1/m?F3 = xF (41)
or, in terms of 2, after a further differentiation,
" —4x3' — 23 =0 (42)
which is a linear equation. It may be verified that the complete solution of this last equation is
z = aAi*(x) + bAi(x) Bi(x) + ¢Bi%*(x) (43)

From (42) the asymptotic expansion for {F(x)}*> on page B 48 may be derived. Some rather heavy
algebra and use of (39) then leads to the expansion given for y(x).

4'6. The expansions for {G(x)}? and y/(x) may be derived similarly from the equation

X" =1+ x% (44)

satisfied by 7=y =AAi'(x) + BBi'(x) (45)
or, more easily, by differentiating the relations (6). Thus

G¥)’ = x/m (46)

and G?2=F"?+ F?{'* = F'? + 1/m*F? (47)

Also, since Ai”(x) = xAi(x), etc.,
x2F? = G + G¥'? = G + «2|m*G? (48)
and, again, GG’ = x{Ai(x) Ai'(x) + Bi(x) Bi'(x)} = «FF’ (49)

This enables the asymptotic expansion for {G (x)}* to be derived readily from that for {F(x)}2 and leads
somewhat laboriously to that for yr(x).

47. Formulae for Zeros and Turning-Values. The relations (4) and (7) provide a good approach to
the determination of zeros and turning-values of the general solution of (2) and of its derivative.
Zeros ¢, ¢/, of y and y’ respectively, satisfy equations

x()=sm—¢ Y()y=sm—¢€ (50)
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Reversion of the series obtained by substituting for y(c) and ¥ (¢’) their asymptotic expansions leads
to the expressions (see also page B 48)

c~—/\2/3(1+‘%%2—35—6%+...) A=3m(4s — 1) — 3¢
(51)

Cf~_u2/31_li+ﬁi_ v =3m(45s + 1) — 3¢

i 48/,(,2 288,&4 # 87{4 2

where s is an integer, usually positive, but which may be zero for ¢’ if € (assumed positive) is between
o and 7/6.
Again, since by (4) and (7)

y'|C =G sin (Y +€)=F' sin(x + €) + Fx' cos (x + ¢€)

xy|C = xF sin (x + €) = G’ sin (i + €) + Gy’ cos (f + ¢)] (52)

it follows that
y'(c)= + CFx = F C/nF(c) } 53
y(c) = + CGY'[x = + ClnG(c) 53

giving the turning-values of ¥’ and y.

4'8. Asymptotic expansions, such as (51), are satisfactory only when the zero is large, but an
alternative possibility, that of inverse interpolation into Table VII, is available in many cases.

Values of y and y’ (e.g., obtained from (3) or (45)) may also be used as a basis for interpolation,
inverse or direct, to give zeros and turning-values. The inverse interpolation may be troublesome, but
can be avoided as follows:

Suppose that x = k is an approximation to a zero ¢ of a solution y of (2). Write

c=k+h (54)
Now it is known that an approximation to the value of 4 is — y(k)/y’(k); write, therefore,
u(k) =y (R)[y' (k) (55)

and develop % as a power series in # and k. Then starting with any suitable value of % the corresponding
value of u is readily obtained and the value of ¢ may be calculated; it is important that the unknown
constant ¢ should not occur explicitly in the expansion for 4.

Total differentiation of (54) with respect to k, remembering that £ is an explicit function of k&
and u, while u is itself a function of &, gives

ch  oh du
O=I+5Zt+%.gk (56)
But from (55), using (2),
duldk = 1 — ku? (57)
oh oh
whence I+t (1 — ku?) = (58)
Substituting h=—u+au®+au®+ ... +a,u"+...
where a,, may be a function of &, in (58) then leads (see page B 48) to
c=k—u—2kid[3!] + 20t/4! — 24k%5[5! + ... (59)
In a similar fashion, writing
Y@y k)=1+A (60)
leads to the equation
22\ oA
s — k) 4
(r+4) ku+6k + (1 ku)’o\u o (61)
whence Y (c)=y"(k) (1 — ku?/2) + ud[3! — 3RPut/4! + 14kud[5! — ...) (62)

Series for ¢’ and y(c’)/y (k') have been derived similarly, and are given on page B 48.
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4'9. Numerical Application of (59) and (62). To find the zero of y = Ai(x) — Bi(x)nearx = k = —o0-4.
c ¥ (/v (k)
y(—0°4)= +0'02420 467 — 0740000 000 + 100000 000
y'(—o04)= —o071276 627 + -03395 877,6 + 0°00023 064,0
u(—04)= —003395 877,6 - 522,1 - 652,7
+ 11,1 - 2,7
+ I + 2
Sum —o0-36604 633,3 + 100022 408,8
Thus c= — 036604 633(3) and y'(c) = — 071292 599(2)

From k= — 03 ¢ = — 036604 632(1) and 3'(c) = — 071292 600(2)

5. Preparation of the Tables

5-1. Computation of Pivotal Values. Basic or pivotal values of all functions were first calculated to
at least three more decimals than are given in the final tables. The interval between successive argu-
ments was chosen so that intermediate values could be found to the same accuracy, using not more
than 8 or 10 terms of an appropriate interpolation formula. The required intermediate values for the
functions Ai(x) and Ai’(x) were then derived to 10 decimals by subtabulation, using the Association’s
National machine, and the values in Table I were obtained. Apart from Ai’(x)/Ai(x) with 20 < x < 25
and the auxiliary functions F, x, G and ¢ with — 30 < & < — 10, for which subtabulation from unit
interval was found to be practicable, other functions were obtained directly without subtabulation.

The calculation of the pivotal values of the various functions led the writer to make various in-
vestigations of method; it seems desirable to indicate here only those which have been found most
effective. The main method used for obtaining these pivotal values was step-by-step application of
the Taylor expansions (23) and (24) with 0 = + 1, the appropriate differential equation being used to
give 7" from f(x) and f’(x). As a rule / was taken as o-1, although % = o005 was found to be desirable
for large values of — x.

For Ai(x) and Bi(x) repeated differentiation of (2) gives

(n + 1) (n + 2) T2 = B2(x1™ + hT"1) n>o
272 = h2xy
These were found to give a most effective and rapid method of calculation. Further, the method is

self-checking. Each step gives f(x + £) and f'(x + k), one of each pair of values is new, the other a
check reproduction of a previous value. The effect of accumulation of error is discussed in §5-2; it

was found to be negligible.
The series for Ai(x) and Bi(x) in ascending powers of x and the asymptotic expansions (see page
B 17) were used to give additional check values as follows:

Ai(x), for + x=o01(0'1)1, 2,5, 10, 20; Bi(x), for x=1,2,35, 10. (63)
For Ai’ (x)/Ai(x) in Table IT and for Bi’ (x)/Bi(x) in Table VI the appropriate differential equation is
¥ =x—22 (64)

where 2 = y'[y, y being a solution of (2). This equation was used for x < 20. The values of log,, Ai(x)
and of log;, Bi(x) were then obtained by numerical integration of 2, partly by use of the Taylor
expansion (22) with 6 = 1, and partly by use of the formula

1
hfof(x + Oh) dO = 3h{(fo + f1) — 72(% + 01) + #55(80 + 61) — w5dae (S + 0D + ...} (65)
which was applied, with 2 = o1, in the form

A logyy Ai(x) = Z, + Z, Z,

= 14400 (720 — 600% + 110% — 2-270% + ...) 2,  (66)

where M = log;ye. For x > 20, asymptotic expansions for Ai’(x)/Ai(x) and log,, Ai(x) were used
at unit interval in x. These expansions were derived from that for Ai(x), (page B 17).
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