THE PRINCIPLES OF

FIELD DRAINAGE
THE PRINCIPLES OF
FIELD DRAINAGE

BY
H. H. NICHOLSON, M.B.E., M.A.

Reader in Soil Science, in the
School of Agriculture, in the
University of Cambridge

CAMBRIDGE
AT THE UNIVERSITY PRESS
1953
CONTENTS

Page

Preface vii
List of Illustrations ix

Chapter I. Former neglect of drainage work. Measures of Government assistance 1

II. The history of field-draining developments in Great Britain 10

III. The moisture properties of soil. The incidence of drainage 14

IV. Percolation. Permeability. The water table. The special case of clay land 24

V. Drainage conditions in the field. (Soil and site factors. The main types of drainage circumstances) 35

VI. The use of published maps in field-drainage work 45

VII. The investigation of field-drainage problems 49

VIII. Ditches 53

IX. Tile draining. Methods and principles. Renovation of old systems. Design and materials 64

X. Mole draining. Suitable soils, details, causes of failure, machinery, procedure 86

XI. The way in which drains work. Rates of flow from outfalls 117

XII. Drainage of aerodromes, sports grounds and field fortifications 135

XIII. Field drainage, river flow and floods 140

XIV. Field drainage. Present position and progress 147

Appendix 153

Some useful Data 158

A Bibliography of Field Drainage 160

Index 161
PREFACE

Since the inception of the Government’s schemes of assistance for the various forms of field and land drainage, advertisements have frequently appeared in the daily and weekly press for persons ‘skilled, experienced, or trained in the business of the cleaning and re-grading of watercourses, farm ditches, tile and mole drainage, able to estimate costs, competent to carry out surveys and prepare schemes, including plans’, and so on. This is asking a good deal. There is certainly no harm in asking, even in a country where the opportunity to acquire these accomplishments in practice has been conspicuously lacking for over a generation. The object of this little book is to interest and perhaps assist those whose business it is to organise, devise, advise on and supervise works of field drainage. Its contents are compounded of the elements of soil science, of the results of some ten years’ study of field-drainage problems, especially those of heavy land, and of the experience gained since the beginning of the war, by close co-operation with many War Agricultural Executive officials and farmers in dealing with drainage problems in the field. It should not be necessary to apologise for adding to the published works on this subject. Reference to the Bibliography on p. 162 will show that over a period exceeding a hundred years it is not extensive. No effort has been made in this account to deal with the technicalities of surveying, engineering, or even the drainer’s art. The author’s aim has been to draw attention to the fundamentals of the subject, to portray a philosophy of draining, and to deal with the factors involved and the way in which they influence events in the soil, in the belief that the sounder and more complete the appreciation of any situation is, the more effective the measures taken to deal with it can be made.

In the preparation of this book I have been greatly indebted to my colleague, Dr E. C. Childs, who has read the script and made many helpful comments; to Mr J. Norfolk, for preparing the diagrams; and to Mr C. W. Williamson, for preparing the accompanying photographs. I owe a good deal to a number of friends among the officials of War Agricultural Executive Committees and the County Organisers in the Eastern Counties, as well as to individual farmers, for affording me opportunities to study their
viii

PREFACE

drainage problems. Frequent and lively discussions and arguments with Mr R. G. Kendall, a farmer and drainage contractor, have helped to keep me face to face with realities. In investigational work, too, I am very conscious of all the help and encouragement which I have received from Mr W. S. Mansfield, the Director of the University Farm, and from Professor F. L. Engledow, who has persistently and consistently fought for the recognition of the importance of field-drainage work.

My thanks are due also to those periodicals and journals which have so willingly allowed me to reprint contributions made to them of recent years, as specified in the text, and to the Ministry of Agriculture for permission to make use of the figures shewing the areas approved for mole draining, in Table XI.

H. H. N.

May 1942

PREFACE TO THE SECOND EDITION

This is a new edition in the sense that some alterations and additions have been made to the text. But they are few because, the occasion for reprinting having arisen, it is felt that the book, which was written originally in the context of the national war effort, should contain some reference to more recent events and circumstances. Accordingly slight additions have been made to Chapters I and II, while the Table on pp. 150 and 151, the Appendix giving particulars of Government assistance for Drainage Work, and the Bibliography on page 160 have all been brought up to date.

H. H. N.

September 1952
LIST OF ILLUSTRATIONS

PLATES

I. (a) Winter flooding facing p. 6
(b) Some of East Anglia’s derelict clay land (arable), in 1939

II. Horizontal sections of a block of clay soil from old grassland 7

III. (a) ‘Where is the bottom of this ditch?’ 60
(b) The blocked culvert

IV. (a) The neglected ditch 61
(b) Cleaning operations

V. Thorough draining with tiles 82

VI. (a) A 4 in. main in position for a mole drain system, before bushing and re-filling 83
(b) The junction of a mole channel with the tiled main

VII. A main which has been bushed prior to re-filling 98

VIII. (a) A plaster cast of a mole drain drawn in smooth clay, and another of the same channel a few yards away where the clay contained a small amount of gravel 99
(b) Two casts shewing the effect of wear of the mole plough or of faulty setting

IX. (a) Changes in mole channels with age. Casts shewing the condition of a mole channel (1) when freshly drawn, (2) after two years, and (3) after four years of life 102
(b) Cross-sections of mole channels two years old

X. (a) and (b) The steam tackle, hauled by twin steam engines and steel cable 103

XI. (a) and (b) A modern mole plough hauled direct by a heavy track-laying tractor 110

XII. (a) and (b) Combining the old with the new; a powerful and effective alliance—a Fowler Steam Mole Plough, from which the front wheels and pulley have been removed, coupled direct to a Caterpillar D 7 tractor on wide tracks (75 H.P.) 111
LIST OF ILLUSTRATIONS

TEXT-FIGURES

1. Seasonal variations in rainfall and evaporation from a free-water surface in English conditions page 15

2. Variations with depth in the physical make-up of soil in the field, as shewn by the analysis of a heavy Gault Clay soil 16

3. Moisture content of drained clay soil in its field condition in old grassland and under arable cultivation 18

3a. Moisture content of clay soil (old grassland) in its field condition in winter and during a summer drought 18

4. Successive stages in the drying-out of a heavy clay grassland soil during a summer drought, 1932 19

5. Successive stages in the re-moistening of a heavy clay grassland soil—following its drying-out during a summer drought 20

6. Cross-section of a gravel deposit on clay, with its water table and the position of its springs 27

7. Cross-section of alternating strata of permeable and impermeable deposits 28

8. Fluctuations of the water table in a gravel formation lying on clay, and the rainfalls causing them, 1939 29

9. Fluctuations of the water table at one point over a succession of years 29

10. Fluctuations of the water table at two points, 7 miles apart, together with the rainfalls causing them, 1939–40 30

11. Cross-section of a gravel area lying on clay, with the resulting water table 42

12. Diagrammatic cross-section illustrating the deep water table in the Chalk ridge of East Anglia 42

13. Diagrammatic cross-section of a hillside with a belt of wet land between certain levels 43

14. Cross-section shewing the divisions of the Chalk formation, the basal rock beds of each, and the resultant spring lines 44
LIST OF ILLUSTRATIONS

15. The ditch system of a farm (about 600 acres), shewing the main ditches (in this case maintained by a public drainage authority) and field or farmers' ditches 54

16. The relation between the drainage characteristics of site and soil and the ditching problem 56

17. A tile-drain system with a natural lay-out, i.e. occupying the valleys or 'lows' ... 66

18. (a) A 'thorough draining' lay-out with minors parallel to each other down the slope, and a main running parallel to the ditch, with a single outfall. (b) A similar field drained by two herring-bone systems with minors laid diagonally across the slope 67

19. A rough copy of the first diagram in John Johnstone's Account of the Mode of Draining Land, according to the system practised by Mr Joseph Elkington ... 68

20. 1–10, Successive positions of a rising water table in an open or free draining soil with a system of parallel tile drains 70

21. 1–3, The development of a water table in clay soils and the movement of drainage water to tile drains via the disturbed and opened earth of the drain trench 72

22. Lay-out of mole channels and tiled mains in a 17 acre field with a satisfactory fall ... 93

23. Lay-out of mole channels and tiled mains in a 55 acre field with irregular and inadequate falls 94

24. Lay-out of mole channels, moled mains and tiled leads in a 21 acre field with satisfactory falls 95

25. A sample of Bailey Denton's records of outfall performance of tile-drain systems, based on regular daily measurements 119

26. J. Bailey Denton's drainage records, Hinxworth, 1856–57 .. 119

27. Sample records of outfall performance of mole-drain systems, based on measurements at intervals of 15–30 minutes 123

28. Comparison of run-off from grass and arable land, on successive occasions ... 125

29. Records of outfall performance by Child's self-recording meter, in conjunction with a self-recording rain gauge 130