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Preface

This book is intended for beginning graduate students in mathematics with

some background in real and complex analysis who are interested in pursuing

research in nonlinear dispersive partial differential equations (PDEs). This area

has become exceedingly technical branching out into many different directions

in recent decades. With this book, our aim is to provide a gentle introduction to

the basic methods employed in this area in a self contained manner and in the

setting of a few model equations. However, we should note that these methods

are more generally applicable, and play a central role in modern research in

nonlinear dispersive PDEs.

We designed this book having in mind a semester-long course in this area for

advanced undergraduate and beginning graduate students. For that reason, we

restricted the discussion to a few basic equations while providing complete

details for each topic covered. We have also included many exercises that

supplement and clarify the material that is discussed in the main text. After

reading our book, a student should be able to read recent research papers in

nonlinear dispersive PDEs and start making contributions.

There are several books, including Cazenave [28, 29, 30], Bourgain [20],

Sulem–Sulem [138], Tao [143], and Linares–Ponce [105], which cover a

large proportion of this area. In comparison, our book concentrates more

on problems with periodic boundary conditions and aims to introduce the

wellposedness techniques of model equations, such as the Korteweg de-Vries

(KdV) and nonlinear Schrödinger (NLS) equations. The methods we describe

also apply to various dispersive models and systems of dispersive equations,

such as the fractional Schrödinger equation and the Zakharov system. In

cases where the model equations are integrable, such as the periodic KdV

and cubic NLS equations, alternative methods based on the symmetries and

the structure of the equations have been developed. We refer the interested

reader to Pöschel–Trubowitz [123], Kuksin [99], and Kappeler–Topalov [81]

ix
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x Preface

for complete integrability and inverse scattering techniques that extend some

of the analytical results presented here. However, we should mention that we

will not make use of any complete integrability methods in this book.

The KdV and NLS equations are the simplest models, combining the effects

of dispersion and nonlinear interactions. The KdV equation describes very

diverse physical phenomena, such as surface water waves in shallow water,

propagation of ion-acoustic waves in cold plasma, and pressure waves in

liquid-gas bubble mixture. In the case of shallow water, one normally does

not work with the full water wave equation but uses approximate models to

study the evolution. In particular, the KdV equation describes unidirectional

small amplitude long waves on a fluid surface.

The NLS equation arises in a number of physical models in the theory

of nonlinear optics. For example, it frequently appears as the leading

approximation of the envelope dynamics of a quasi-monochromatic plane

wave propagating in a weakly nonlinear dispersive medium. It also arises in

the description of Bose–Einstein condensation. Another equation we consider

in this book is the fractional NLS equation, which is a basic model in the theory

of fractional quantum mechanics. It is also used as a model describing charge

transport in bio polymers like DNA.

The NLS equation, having a power nonlinearity, is easier to deal with

in high regularity spaces by Sobolev embedding techniques. For lower

regularity solutions on Rn, Strichartz estimates are the main tools to establish

wellposedness. On the other hand, in the case of the KdV equation, the

derivative nonlinearity makes the problem more complicated. In fact, even

the existence of smooth solutions requires more elaborate techniques. The

situation is even more complicated for initial value problems on bounded

domains, where the dispersion is weaker, and the wellposedness is harder to

establish, especially in low regularity spaces.

In recent decades, a variety of techniques utilizing harmonic analysis

methods were applied in conjunction with classical PDE tools to address these

difficulties. Most of these techniques rely on time averaging via space-time

norm estimates. Along these lines, we discuss Strichartz estimates, which is

a very efficient method of establishing the wellposedness of dispersive PDEs

with power type nonlinearities. We also discuss oscillatory integral techniques,

which is based on the representation of the solution using the Fourier transform

in the space variable. This technique is very efficient when dealing with

equations with derivative nonlinearities. In addition, we present the restricted

norm method using an anisotropic space-time Sobolev norm which takes into

account the distance between the space-time Fourier supports of the linear and

nonlinear solutions.
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Preface xi

We now give a short summary of the contents of the book, which is divided

into five chapters. In the first chapter, we recall without proof basic results from

analysis that will be used throughout the text. Although we expect the reader

to be familiar with basic harmonic analysis techniques, all the results we need

in this book are outlined in this chapter.

In the second chapter, we concentrate on linear dispersive equations on the

real line and on the torus. The methods are perturbative around the linear

solution and the mapping properties of the linear propagator are extremely

important in studying nonlinear counterparts. In particular, to find out which

space is suitable in order to analyze the nonlinear solution, one needs to

understand the decay and smoothing properties of the linear solution. We

thus establish Strichartz estimates, Kato smoothing, and maximal function

estimates for equations on the real line, and Strichartz estimates for equations

on the torus. In this book, we make an effort to present various applications

of the methods we discuss which are not found in other books in the area.

One such application is the so-called Talbot effect for nonlinear dispersive

PDEs on the torus. We finish Chapter 2 with a discussion of the Talbot

effect for linear equations. This discussion is also useful for understanding

the differences between the dynamics of dispersive PDEs on bounded and

unbounded domains.

In the third chapter, we study basic wellposedness methods for the KdV

equation on the torus and the real line, and the NLS equation on the torus.

We start with the energy method based on parabolic regularization and the

conservations laws of the equation. This method applies equally well to

dispersive and nondispersive evolution equations, and it is a useful tool for

studying smooth solutions. Then we discuss the oscillatory integral method of

Kenig–Ponce–Vega, which uses the dispersive estimates established in Chapter

2. This method is useful mainly for the equations on Rn. We continue with the

restricted norm method of Bourgain. We then proceed to establish a version

of the normal form transform, which we use to establish nonlinear smoothing

and unconditional wellposedness results. We close this chapter with a thorough

discussion of illposedness results.

In the fourth chapter, we study rough data global wellposedness and

nonlinear smoothing of model dispersive equations. In particular, we present

Bourgain’s high–low decomposition method to establish global solutions when

no a priori bounds are available. We also discuss the method of almost

conserved quantities of Colliander–Keel–Staffilani–Takaoka–Tao, which can

be considered as a refinement of the high–low decomposition method.

Finally, in the fifth chapter we present some applications of the techniques

we developed in the previous chapters. More precisely, we study the growth
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xii Preface

bounds for higher order Sobolev norms, almost everywhere convergence to

initial data for rough nonlinear solutions, the Talbot effect for nonlinear

equations, and the existence and regularity of global attractors for dissipative

and dispersive equations.

During the writing of this book the first author was partially supported

by NSF grants DMS-1201872 and DMS-1501041. The second author was

partially supported by the NSF grant DMS-0901222, the Simons Foundation

grant #355523, and the University of Illinois Research Board grant RB-14054.

M. Burak Erdoğan

Nikolaos Tzirakis

Urbana, Illinois

December 2015
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xiv Notation

Notation

�x� =

�
1 + |x|2, x * Rn.

B(x, r) The ball centered at x with radius r.

A � B A f CB, where C > 0 is an absolute constant.

A j B A � B and B � A.

A � Bs± A � Bs±� for any � > 0.

A � B A f 1
C

B, where C is a sufficiently large constant.

A = O(B) A � B.

A = o(B) lim A
B
= 0.

R The field of real numbers.

T The torus R/2ÃZ.

C The field of complex numbers.

Lp(K) The Lebesgue spaces of measurable functions (for K = T or R):�
f : K ³ C : ! f !p

Lp :=
!

K
| f |p < >

"
, p * [1,>), with the usual

modification when p = >.

"p
=

�
a : Z³ C : !a!p

"p =
"

k*Z |ak |p < >
"
, p * [1,>).

� f , g�L2(K) =

!
K

f (x)g(x)dx, K = R or T.

F Fourier transform on R: F f (¿) = �f (¿) = 1:
2Ã

!
R

f (x)e2i¿xdx, ¿ * R, or

Fourier series on T: F f (k) = �f (k) = 1
2Ã

! 2Ã

0
f (x)e2ikxdx, k * Z.

F 21 Inverse Fourier transform on R: F 21�f (x) = 1:
2Ã

!
R

�f (¿)ei¿xdx, x * R,
or on the torus: F 21�f (x) =

"
k*Z �f (k)eikx.
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Notation xv

f 7 g The convolution of f and g.

Ds The multiplier operator with the multiplier |¿|s, s * C.

J s The multiplier operator with the multiplier �¿�s, s * C.

! f !Hs = !J s f !L2 , s * R.

! f !Ḣs = !Ds f !L2 , s g 0.

C0
t Hs

x The Banach space of Hs valued continuous functions with the norm

supt !u(t, ·)!Hs

!T!X³Y The operator norm of a bounded linear operator T : X ³ Y between

Banach spaces X and Y .

X� The dual of a topological vector space X.

T 7 The adjoint of an operator T .

C>(K) =
�
f : K ³ C : f is infinitely differentiable

�
, K = R or T.

C>
0

(R) =
�
f * C>(R) : f is compactly supported

�
.

Pm,n( f ) =

����x�m f (n)(x)
���

L>
.

S(R) Schwartz space:
�
f * C>(R) : Pm,n( f ) < >,m, n g 0

�
.

D(R) =
�
C>

0
(R)
��

, the space of distributions.

D(T) =
�
C>(T)

��
, the space of periodic distributions.

S�(R) The space of tempered distributions.

u(Ç) The action of the distribution u on the test function Ç.

H The Hilbert transform: H f (x) = F 21
�
isign(·)�f (·)

�
(x).

Pk f The Littlewood–Paley projection on to the frequencies j 2k.

We define Pfk, Pgk similarly.
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xvi Notation

PN f The Littlewood–Paley projection on to the frequencies j N.

Bs
p,> The Besov space defined by the norm:

! f !Bs
p,> := sup jg0 2s j!P j f !Lp .

M Hardy–Littlewood maximal function:

M f (x) = supr>0
1

|B(x,r)|
!

B(x,r)
| f (y)| dy.

Wt The propagator of the Airy equation, Wtg = e2t"xxx g.

W
³
t The propagator of the weakly damped Airy equation:

W
³
t g = e2t"xxx2t³g.

Xs,b The restricted norm space. In the case of the KdV equation, it is

defined by the norm: !u!Xs,b =

����u(Ç, ¿)�Ç 2 ¿3�b�¿�s
���

L2
Ç,¿

.

www.cambridge.org/9781316602935
www.cambridge.org

