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Preliminaries and tools

The material we present in this book relies heavily on basic harmonic analysis

tools on the real line R and on the torus T = R/2ÃZ. There are many excellent

textbooks on the subject, e.g. Katznelson [84], Stein–Weiss [135], Stein [133],

Folland [61], Wolff [154], and Muscalu–Schlag [116]. In this preliminary

chapter, we state without proof the results we need in order to develop the

wellposedness theory of dispersive partial differential equations (PDEs).

We first recall the Lebesgue spaces of measurable functions (for K = T or

R):

Lp(K) =

�
f : K ³ C : � f �p

Lp :=

�

K

| f |p < >
"
, p * [1,>),

L>(K) =
"
f : K ³ C : � f �L> := esssup| f | < >"

,

and Hölder’s inequality

     
�

K

f g

     f � f �Lp(K)�g�Lq(K), 1 f p, q f >, 1

p
+

1

q
= 1.

Also recall

�p
=

§«««««¬a : Z³ C : �a�p
�p =

�

k*Z
|ak |p < >

«««¬««­ , p * [1,>), and

�> =

�
a : Z³ C : �a��> = sup

k*Z
|ak | < >

"
.

For linear operators between Lp spaces, we have the Riesz–Thorin

interpolation theorem, see Folland [61]:

Theorem 1.1 Let T be a linear operator mapping Lp0 + Lp1 to Lq0 + Lq1 . Fix

1
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2 Preliminaries and tools

» * (0, 1) and define

1

p»
=

1 2 »
p0

+
»

p1

,
1

q»
=

1 2 »
q0

+
»

q1

.

Then T maps Lp» to Lq» , and

�T�Lp»³Lq» f �T�12»Lp0³Lq0 �T�»Lp1³Lq1 .

An easy consequence of the above theorem is Young’s inequality for the

convolution of two functions (see Exercise 1.1)

� f 7 g�Lr f � f �Lp�g�Lq , 1 +
1

r
=

1

p
+

1

q
, 1 f p, q, r f >. (1.1)

The corresponding statement holds also for the �p spaces.

Another useful convolution inequality is the Hardy–Littlewood–Sobolev

theorem; see Stein [133]:

Theorem 1.2 For any 1 < p < r < >
���| · |2³ 7 f

���
Lr(R)
� � f �Lp(R), ³ = 1 +

1

r
2 1

p
.

A useful extension of Riesz–Thorin theorem is the complex interpolation

theorem of Stein [132]:

Theorem 1.3 Let {Tz} be a family of linear operators analytic in the strip

{z * C : 0 < Re(z) < 1} and continuous on the closure. Namely, for any test

functions f , g, the inner product � f ,Tzg� is analytic on the strip and continuous

on the closure. Assume that there exists b < Ã so that for any simple functions

f , g, and for any z in the strip

|� f ,Tzg�| f C f ,geb|�(z)|.

Also assume that

�T0+iy�Lp0³Lq0 f M0(y), �T1+iy�Lp1³Lq1 f M1(y)

and that M j, j = 1, 2, grow at most exponentially as y ³ ±>. Then for all

0 f » f 1

�T»�Lp»³Lq» f C,

where C depends on M j and ».

For a Banach space X, the dual space X� is the space of all bounded linear

maps from X to C. From now on, we will use p� for the dual exponent
p

p21
of

p, and similarly for q� and r�. Recall that the dual space of Lp(K) is Lp�(K) for

1 f p < >. Also recall that the adjoint T 7 : Y � ³ X� of a bounded linear
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Preliminaries and tools 3

map T between two Banach spaces X and Y is defined by (see Folland [61] for

more details)

[T 7�](x) = �(T (x)), � * Y �, x * X.

The next lemma provides a standard method to establish the boundedness of

linear operators between Lp spaces; see Stein [133, p:280]

Lemma 1.4 (TT 7 method) Let T be a linear operator defined on a dense

subset of L2, and with a formal adjoint T 7. Then the following are equivalent:

(i) �T�L2³Lp f A,

(ii) �T 7�Lp�³L2 f A,

(iii) �TT 7�Lp�³Lp f A2.

To study low regularity solutions of PDEs, we need to define the solution in

a distributional sense. We introduce the following test function spaces

C>(K) =
"
f : K ³ C : f is infinitely differentiable

"
, K = R or T,

C>0 (R) =
"
f * C>(R) : f is compactly supported

"
,

S(R) =
�
f * C>(R) : Pm,n( f ) :=

����x�m f (n)(x)
���

L>
< >,m, n g 0

"
.

Recall that these spaces are locally convex topological vector spaces. The

topology on C> is given by uniform convergence of each derivative on compact

sets. Similarly, we say f j converges to f in C>
0

if there is a compact set F

containing the support of each f j and f , and that f j and all of its derivatives

converges to f and its derivatives uniformly on F. We say f j converges to f in

S(R) if Pm,n( f 2 f j) converges to 0 for each m, n g 0.

Note that the dual space S � of a topological vector space S is defined

analogously as the space of linear continuous maps from S to C. We define

the space of distributions on R, D(R), as the dual of C>
0

(R), and the space of

periodic distributions, D(T), as the dual of C>(T). We also define the space

of tempered distributions, S�(R), as the dual of S(R). We refer the reader to

Folland [61] for the basic properties of distributions. We denote the action of a

distribution u on a test function Ç by u(Ç). If u is an Lp function, then we have

(see Exercise 1.2)

u(Ç) =

�

R

u(x)Ç(x) dx.

We define the Fourier transform for functions in L1(R) as

F f (¿) = �f (¿) =
1:
2Ã

�

R

f (x)e2i¿xdx, ¿ * R.
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4 Preliminaries and tools

Recall that �f is a continuous bounded function on R that decays to zero at

infinity. In the case when �f * L1(R), one has the inversion formula

f (x) = F 21 �f (x) =
1:
2Ã

�

R

eix¿�f (¿)d¿, x * R.

Similarly, for f * L1(T), we define the Fourier series as

F f (k) = �f (k) =
1

2Ã

� 2Ã

0

f (x)e2ikxdx, k * Z.

In the case �f * �1, we have

f (x) = F 21 �f (x) =
�

k*Z
eikx �f (k).

We have the Poisson summation formula ; see e.g. Folland [61]

>�

k=2>
f (x + 2Ãk) =

1:
2Ã

>�

k=2>

�f (k)eixk, f * S(R). (1.2)

For f , g * L1(R), we have the Fourier multiplication formula
�

R

f (x)�g(x) dx =

�

R

�f (x)g(x) dx. (1.3)

This leads to Parseval’s identity

� f , g� =
�

R

f (x)g(x) dx =

�

R

�f (¿)�g(¿) d¿ =
� �f ,�g

�
, f , g * L2(R),

and, in particular, we have Plancherel’s theorem

� f �L2(R) =

��� �f
���

L2(R)
.

Similar formulas hold in the case of Fourier series. Interpolating Plancherel’s

theorem with the inequality

��� �f
���

L>
f � f �L1

yields the Hausdorff–Young theorem

��� �f
���

Lp� f � f �Lp , 1 f p f 2,
1

p
+

1

p�
= 1.

By noting that F is a continuous bijection from S(R) to S(R), one can

extend the definition of the Fourier transform to the space S�(R) by the formula

F u(Ç) := u(F Ç).
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Preliminaries and tools 5

Similarly, one can define the Fourier series of periodic distributions as

F u(k) =
1

2Ã
u(e2ik·).

Most of the basic properties of F can be extended to the distributional

definitions, see [61]. In particular, both distributional definitions agree with

the usual definition for u * L1(K).

For s > 0, we often use the operators Ds
= (2∆)

s
2 given on the Fourier side

as

�Ds f (¿) = |¿|s �f (¿).

Similarly, we have the operators J s given on the Fourier side as

�J s f (¿) = �¿�s �f (¿).

We define the L2 based Sobolev spaces, for s * R

Hs(R) =
"
f * S�(R) : � f �Hs(R) := �J s f �L2 < >"

,

where �¿� :=
�

1 + |¿|2. Similarly, for s * R, we have

Hs(T) =
"
f * D(T) : � f �Hs(T) := �J s f �L2 < >"

.

The homogenous Sobolev spaces Ḣs are defined analogously with Ds instead

of J s.

Recall that C>
0

functions are dense in Hs(K) for any s and in Lp(K) for 1 f
p < >. Note that for ³ > 0, D³ : Hs ³ Hs2³, and for any ³, J³ : Hs ³ Hs2³.

Also note that

"x f = HD f = DH f ,

where H is the Hilbert transform

"H f (¿) = isign(¿) �f (¿),

which is bounded in Hs(R) for any s, and in Lp for 1 < p < >.

We collect some basic properties of Sobolev spaces in the following lemmas

(see Exercises 1.3 and 1.4):

Lemma 1.5 (Sobolev embedding) For K = R or T, we have

� f �Lp(K) � � f �Ḣs(K), s =
1

2
2 1

p
, 2 < p < >,

� f �L>(K) � � f �Hs(K), s >
1

2
.
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6 Preliminaries and tools

Lemma 1.6 (Algebra property) For K = R or T, and s > 1
2
, we have

� f g�Hs(K) � � f �Hs(K)�g�Hs(K).

We also need basic definitions and theorems from the Littlewood–Paley

theory. We start with Littlewood–Paley projections

�Pk f (¿) = ×(22k¿) �f (¿),

where × is a smooth cut-off function supported in {¿ : 1
2
f |¿| f 2} with the

property �

k

×(22k¿) = 1, for each ¿ � 0.

We use the same definition for functions on the torus. Similarly, Pgk is given

as

�Pgk f (¿) = �f (¿)

>�

j=k

×(22 j¿),

and P<k = Id 2 Pgk. It is important to note the uniform bounds

|Pk f (x)|, |P<k f (x)| f C M f (x). (1.4)

Here M is the Hardy–Littlewood maximal function

M f (x) = sup
r>0

1

|B(x, r)|

�

B(x,r)

| f (y)| dy,

where B(x, r) is the ball of radius r centered at x, and |B(x, r)| is the volume of

B(x, r). Both inequalities follow by majorizing the inverse Fourier transform

of the cutoff function by a sum of characteristic functions of balls. The Hardy–

Littlewood theorem states that for any 1 < p f >

�M f �Lp f Cp� f �Lp ,

both on R and T. This implies uniform Lp boundedness of the Littlewood–

Paley projections via (1.4).

We also have the following characterization of the Sobolev spaces in terms

of Littlewood–Paley projections (see Exercise 1.5)

� f �2Hs j �P<1 f �2
L2 +

>�

k=1

22ks�Pk f �2
L2 . (1.5)

Also recall that for f * S(R), we have

P<1 f +

n�

k=1

Pk f ³ f in S(R), (1.6)
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Preliminaries and tools 7

as n³ >.

We finish this section by stating some additional results on Sobolev spaces.

The proofs of these results are more involved, and Taylor [146] is a good

reference for these and related inequalities.

We first state the Gagliardo–Nirenberg inequality [117]:

Theorem 1.7 Let f : R ³ C. Fix 1 f p, q, r f > and a natural number m.

Suppose also that a real number ³ and a natural number j are such that

1

p
= j +

�
1

r
2 m

�
³ +

1 2 ³
q

and
j

m
f ³ f 1.

Then

�D j f �Lp � �Dm f �³Lr� f �12³Lq .

We will mainly use the following corollary:

Corollary 1.8 For any j, k * N, we have
����" j

x f "k
x f

����
L2
� � f �Hk+ j� f �L> .

Proof We can assume that j, k g 1. Let m = j + k. Let

p1 =
2m

j
, p2 =

2m

k
, ³1 =

j

m
, ³2 =

k

m
.

Note that in this case 1
p1
+

1
p2
=

1
2

and ³1+³2 = 1. By Hölder’s and Gagliardo–

Nirenberg’s inequalities, and the Lp boundedness of the Hilbert transform, we

have

����" j
x f "k

x f
����

L2
f

����" j
x f

����
Lp1

���"k
x f

���
Lp2

�

���D j f
���

Lp1

���Dk f
���

Lp2
� �Dm f �³1+³2

L2 � f �22(³1+³2)

L>

f � f �Hm� f �L> .

�

The following is a standard commutator estimate that we use in Chapter 3

to establish the wellposedness theory for some dispersive PDEs. For the proof,

see Kato–Ponce [83], Kenig–Ponce–Vega [88], and Taylor [146, page 106].

Lemma 1.9 For s * (0, 1), we have

�J s( f g) 2 f J sg�L2 � � f �Hs�g�L> .
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8 Preliminaries and tools

For s > 1, we have
���J s( f g) 2 f J sg

���
L2 � � f �Hs�g�L> + � fx�L>�g�Hs21 .

We state the following version of fractional Leibniz rule; see Taylor [146].

Lemma 1.10 For s g 0

1

2
=

1

p1

+
1

q1

=
1

p2

+
1

q2

, 2 < p1, q2 f >,

we have

� f g�Hs � � f �Lp1 �J sg�Lq1 + �J s f �Lp2 �g�Lq2 .

Finally, we have the following Lr version of this lemma; see Taylor [146].

Lemma 1.11 For s g 0, 1 < r < >, we have

�J s( f g)�Lr � � f �Lp1 �J sg�Lq1 + �J s f �Lp2 �g�Lq2 ,

where p j, q j * (1,>), and

1

r
=

1

p1

+
1

q1

=
1

p2

+
1

q2

.

Exercises

1.1 Prove that

� f 7 g�Lp f � f �Lp�g�L1 , and

� f 7 g�L> f � f �Lp�g�Lp� .

Derive Young’s inequality (1.1) using these bounds and Theorem 1.1.

1.2 Fix p * [1,>]. Prove that any f * Lp(R) is a tempered distribution with

the action given by

f (Ç) =

�

R

f (x)Ç(x) dx, Ç * S(R).

1.3 (a) Consider the tempered distribution |x|2³, 0 < ³ < 1 on R. Prove that

F �| · |2³�
(¿) = c³|¿|³21,

where c³ is a constant depending only on ³.

(b) Use the Hardy–Littlewood–Sobolev theorem, part (a), and duality to

prove the Sobolev embedding theorem on R

� f �Lp(R) f C�Ds f �L2(R)
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Exercises 9

with 1
2
=

1
p
+ s and 2 < p < >.

(c) Use part (b) to prove the following version of the Gagliardo–

Nirenberg inequality on R, for p * [2,>] and » = 1
2
2 1

p

� f �Lp f C� fx�»L2� f �12»L2 . (1.7)

(d) Give an alternative proof of (1.7) by interpolating the bounds for

p = 2 and p = >. For the latter bound, express f 2 using the fundamental

theorem of calculus.

1.4 Prove the algebra of Sobolev spaces stated in Lemma 1.6.

1.5 Prove (1.5) using Plancherel’s theorem.

1.6 (Gronwall’s inequality) Assume that for a.e. t * [0,T ], we have

f (t) f A +

� t

0

g(Ç) f (Ç)dÇ

for some A g 0 and some nonnegative functions f and g such that f g *
L1([0,T ]). Prove that

f (t) f A exp

�� t

0

g(Ç)dÇ

�
, t * [0,T ].

1.7 Consider the linear Schrödinger equation on R

�
iut + uxx = 0, x * R, t * R,
u(0, ·) = g(·) * Hs(R).

(1.8)

(a) For each t * R, define u(t, ·) as a tempered distribution by the formula

u(t, ·) = F 21
�
e2it¿2F g(¿)

�
(·).

Prove that u * C0
t Hs

x(R × R) and that �u(t, ·)�Hs(R) is constant.

(b) Prove that if gn converges to g in Hs, then, for each t, un(t, ·) converges

to u(t, ·) in Hs.

(c) Prove that u solves (1.8) in the sense of distributions, i.e.

u
� 2 iÇt + Çxx

�
= 0,

for all Ç * S(R2).

(d) Prove that if v * C0
t Hs

x(R × R), v(0, x) = g(x), and v solves (1.8) in

the sense of distributions, then v = u.

1.8 (a) Let Ç * S(R) and z * C\{0} with a nonnegative real part. Then
�

R

e2z|x|2�Ç(x)dx =
1:
2z

�

R

e2
|x|2
4z Ç(x)dx.
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(b) Assuming that g * S(R), express the solution of (1.8) as a convo-

lution of the tempered distribution 1:
4Ãit

ei
|x|2
4t with g.

(c) Similarly, prove that the solution of the linear Schrödinger equation

on Rn

�
iut + ∆u = 0, x * Rn, t * R,
u(0, ·) = g(·) * S(Rn)

(1.9)

is given by

eit∆g =
1

(4Ãit)
n
2

�

Rn

ei
|x2y|2

4t g(y) dy.

(d) Conclude that the following dispersive estimate holds

���eit∆g
���

L>x (Rn)
f 1

(4Ã|t|) n
2

�g�L1(Rn).

1.9 Let f * C>
0

(R), Ç * C>, and Ç�(x) � 0 for any x in the support of f .

Then

I(») =

�

R

ei»Ç(x) f (x)dx = O(»2k), as »³ >

for any k * Z+.

1.10 (Van der Corput lemma) Let Ç : R³ R be C>.

(a) Assume that for some k * Z+, we have |Ç(k)(x)| g 1 for any x * [a, b],

with Ç�(x) monotonic when k = 1. Then
      

� b

a

ei»Ç(x)dx

      f ck»
2 1

k ,

where the constant ck is independent of a and b.

Hint: The case k = 1 follows from an integration by parts noting that

Ç�� does not change sign. For the general case, use induction, noting that

Ç(k21) can vanish at most at a single point, and decompose [a, b] into two

disjoint sets appropriately.

(b) Under the hypothesis of part (a), prove that
      

� b

a

ei»Ç(x) f (x)dx

      f ck»
2 1

k
�� f �L> + � f ��L1

�
.

1.11 (Bernstein’s inequality) Prove that if P is a trigonometric polynomial of

degree N, then
���P�

���
Lp � N�P�Lp , 1 f p f >.

Hint: Express P� as

P� = P 7 KN ,
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Exercises 11

where KN is a suitable convolution kernel with the property �KN�L1 � N,

see Katznelson [84].

1.12 Using the Poisson summation formula, (1.2) prove that the convolution

kernel ×k of Pk on the torus satisfies the bound

|×k(x)| f C
2k

(1 + 2k |x|)2
, k * N, |x| f 1

2
.
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