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Preface

The aim of the authors is to lay down the foundations of the projective

systems of various geometrical structures modelled on Banach spaces,

eventually leading to homologous structures in the framework of Fréchet

differential geometry, by overcoming some of the inherent deficiencies of

Fréchet spaces. We elaborate this brief description in the sequel.

Banach spaces, combining a metric topology (subordinate to a norm),

and a linear space structure (for representing derivatives as linear ap-

proximations to functions in order to do calculus), provide a very conve-

nient setting for many problems in functional analysis, which we need for

handling calculus on function spaces, usually infinite dimensional. They

are a relatively gentle extension from experience on finite dimensional

spaces, since many topological properties of spaces and groups of lin-

ear maps, as well as many of the existence and uniqueness theorems for

solutions of differential equations carry over to the infinite dimensional

case.

Manifolds and fibre bundles modelled on Banach spaces arise from the

synthesis of differential geometry and functional analysis, thus leading

to important examples of global analysis. Indeed, many spaces of (dif-

ferentiable) maps between appropriate manifolds admit the structure of

Banach manifolds (see, for instance, J. Eells [Eel66, § 6]).

On the other hand, as mentioned also in [Eel66], Riemannian mani-

folds, represented as rigid maps on infinite dimensional function spaces,

arise as configuration spaces of dynamical systems, with metrics inter-

preted as kinetic energy. Much of the calculus of variations and Morse

theory is concerned with a function space in differential geometry—

the Euler-Lagrange operator of a variational problem is interpreted as

a gradient vector field, with integral curves the paths of steepest as-

cent. Some eigenvalue problems in integral and differential equations are

vii
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viii Preface

interpretable via Lagrangian multipliers, involving infinite dimensional

function spaces from differential geometry—such as focal point theory

and geometric consequences of the inverse function theorem in infinite

dimensions.

However, in a number of situations that have significance in global

analysis and physics, for example, physical field theory, Banach space

representations break down. A first step forward is achieved by weaken-

ing the topological requirements: Instead of a norm, a family of semi-

norms is considered. This leads to Fréchet spaces, which do have a linear

structure and their topology is defined through a sequence of seminorms.

Although Fréchet spaces seem to be very close to Banach spaces, a

number of critical deficiencies emerge in their framework. For instance,

despite the progress in particular cases, they lack a general solvability

theory of differential equations, even the linear ones; also, the space of

continuous linear morphisms between Fréchet spaces does not remain

in the category, and the space of linear isomorphisms does not admit a

reasonable Lie group structure.

The situation becomes much more complicated when we consider man-

ifolds modelled on Fréchet spaces. Fundamental tools such as the expo-

nential map of a Fréchet-Lie group may not exist. Additional compli-

cations become particularly noticeable when we try to collect Fréchet

spaces together to form bundles (over manifolds modelled on atlases of

Fréchet spaces), in order to develop geometrical operators like covariant

derivatives and curvature to act on sections of bundles. The structure

group of such bundles, being the general linear group of a Fréchet space,

is not a Lie group—even worse, it does not have a natural topological

structure. Parallel translations do not necessarily exist because of the in-

herent difficulties in solving differential equations within this framework,

and so on.

This has relevance to real problems. The space of smooth functions

C∞(I,R), where I is a compact interval of R, is a Fréchet space. The

space C∞(M,V ), of smooth sections of a vector bundle V over a com-

pact smooth Riemannian manifold M with covariant derivative ', is a

Fréchet space. The C∞ Riemannian metrics on a fixed closed finite-

dimensional orientable manifold has a Fréchet model space. Fréchet

spaces of sections arise naturally as configurations of a physical field.

Then the moduli space, consisting of inequivalent configurations of the

physical field, is the quotient of the infinite-dimensional configuration

space X by the appropriate symmetry gauge group. Typically, X is
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Preface ix

modelled on a Fréchet space of smooth sections of a vector bundle over

a closed manifold.

Despite their apparent differences, the categories of Banach and Fré-

chet spaces are connected through projective limits. Indeed, the limiting

real product space R∞ = limn→∞ R
n is the simplest example of this sit-

uation. Taking notice of how R
∞ arises from R

n, this approach extends

to arbitrary Fréchet spaces, since always they can be represented by a

countable sequence of Banach spaces in a somewhat similar manner. Al-

though careful concentration to the above example is salutary, (bringing

to mind the story of the mathematician drafted to work on a strate-

gic radar project some 70 years ago, who when told of the context said

“but I only know Ohms Law!” and the response came, “you only need

to know Ohms Law, but you must know it very, very well”), it should

be emphasized that the mere properties of R∞ do not answer all the

questions and problems referring to the more complicated geometrical

structures mentioned above.

The approach adopted is designed to investigate, in a systematic way,

the extent to which the shortcomings of the Fréchet context can be

worked round by viewing, under sufficient conditions, geometrical ob-

jects and properties in this context as limits of sequences of their Ba-

nach counterparts, thus exploiting the well developed geometrical tools

of the latter. In this respect, we propose, among other generalizations,

the replacement of certain pathological structures and spaces such as

the structural group of a Fréchet bundle, various spaces of linear maps,

frame bundles, connections on principal and vector bundles etc., by ap-

propriate entities, susceptible to the limit process. This extends many

classical results to our framework and, to a certain degree, bypasses its

drawbacks.

Apart from the problem of solving differential equations, much of our

work is motivated also by the need to endow infinite-dimensional Lie

groups with an exponential map [a fact characterizing–axiomatically–

the category of (infinite-dimensional) regular Lie groups]; the differential

and vector bundle structure of the set of infinite jets of sections of a Ba-

nach vector bundle (compare with the differential structure described in

[Tak79]); the need to put in a wider perspective particular cases of pro-

jective limits of manifolds and Lie groups appearing in physics (see e.g.

[AM99], [AI92], [AL94], [Bae93]) or in various groups of diffeomorphisms

(e.g. [Les67], [Omo70]).

For the convenience of the reader, we give an outline of the presen-
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x Preface

tation, referring for more details to the table of contents and the intro-

duction to each chapter.

Chapter 1 introduces the basic notions and results on Banach manifolds

and bundles, with special emphasis on their geometry. Since there is not

a systematic treatment of the general theory of connections on Banach

principal and vector bundles (apart from numerous papers, with some

very fundamental ones among them), occasionally we include extra de-

tails on specific topics, according to the needs of subsequent chapters.

With a few exceptions, there are not proofs in this chapter and the

reader is guided to the literature for details. This is to keep the notes

within a reasonable size; however, the subsequent chapters are essentially

self-contained.

Chapter 2 contains a brief account of the structure of Fréchet spaces and

the differentiability method applied therein. From various possible differ-

entiability methods we have chosen to apply that of J.A. Leslie [Les67],

[Les68], a particular case of Gâteaux differentiation which fits well to the

structure of locally convex spaces, without recourse to other topologies.

Among the main features of this chapter we mention the representation

of a Fréchet space by a projective limit of Banach spaces, and that of

some particular spaces of continuous linear maps by projective limits of

Banach functional spaces, a fact not true for arbitrary spaces of linear

maps. An application of the same representation is proposed for study-

ing differential equations in Fréchet spaces, including also comments on

other approaches to the same subject. Projective limit representations

of various geometrical structures constitute one of the main tools of our

approach.

Chapter 3 is dealing with the smooth structure, under appropriate con-

ditions, of Fréchet manifolds arising as projective limits of Banach man-

ifolds, as well as with topics related to their tangent bundles. The case of

Fréchet-Lie groups represented by projective limits of Banach-Lie groups

is also studied in detail, because of their fundamental role in the struc-

ture of Fréchet principal bundles. Such groups admit an exponential

map, an important property not yet established for arbitrary Fréchet-

Lie groups.

Chapter 4 is devoted to the study of projective systems of Banach prin-

cipal bundles and their connections. The latter are handled by their

connection forms, global and local ones. It is worthy of note that any

Fréchet principal bundle, with structure group one of those alluded to

in Chapter 3, is always representable as a projective limit of Banach
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principal bundles, while any connection on the former bundle is an ap-

propriate projective limit of connections in the factor bundles of the

limit. Here, related (or conjugate) connections, already treated in Chap-

ter 1, provide an indispensable tool in the approach to connections in

the Fréchet framework. We further note that the holonomy groups of

the limit bundle do not necessarily coincide with the projective limits

of the holonomy groups of the factor bundles. This is supported by an

example after the study of flat bundles.

Chapter 5 is concerned with projective limits of Banach vector bundles.

If the fibre type of a limit bundle is the Fréchet space F, the structure of

the vector bundle is fully determined by a particular group (denoted by

H0(F) and described in § 5.1), which replaces the pathological general

linear group GL(F) of F, thus providing the limit with the structure of

a Fréchet vector bundle. The study of connections on vector bundles of

the present type is deferred until Chapter 7.

Chapter 6 contains a collection of examples of Fréchet bundles realized

as projective limits of Banach ones. Among them, we cite in particular

the bundle J∞(E) of infinite jets of sections of a Banach vector bundle

E. This is a non trivial example of a Fréchet vector bundle, essentially

motivating the conditions required to define the structure of an arbi-

trary vector bundle in the setting of Chapter 5. On the other hand, the

generalized bundle of frames of a Fréchet vector bundle is an important

example of a principal bundle with structure group the aforementioned

group H0(F).

Chapter 7 aims at the study of connections on Fréchet vector bundles the

latter being in the sense of Chapter 5. The relevant notions of parallel

displacement along a curve and the holonomy group are also examined.

Both can be defined, despite the inherent difficulties of solving equations

in Fréchet spaces, by reducing the equations involved to their counter-

parts in the factor Banach bundles.

Chapter 8 is mainly focused on the vector bundle structure of the second

order tangent bundle of a Banach manifold. Such a structure is always

defined once we choose a linear connection on the base manifold, thus

a natural question is to investigate the dependence of the vector bun-

dle structure on the choice of the connection. The answer relies on the

possibility to characterize the second order differentials as vector bundle

morphisms, which is affirmative if the connections involved are properly

related (conjugate). The remaining part of the chapter is essentially an
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application of our methods to the second order Fréchet tangent bundle

and the corresponding (generalized) frame bundle.

We conclude with a series of open problems or suggestions for further

applications, within the general framework of our approach to Fréchet

geometry, eventually leading to certain topics not covered here.

These notes are addressed to researchers and graduate students of math-

ematics and physics with an interest in infinite-dimensional geometry,

especially that of Banach and Fréchet manifolds and bundles. Since we

have in mind a wide audience, with possibly different backgrounds and

interests, we have paid particular attention to the details of the exposi-

tion so that it is as far as possible self-contained. However, a familiarity

with the rudiments of the geometry of manifolds and bundles (at least

of finite dimensions) is desirable if not necessary.

It is a pleasure to acknowledge our happy collaboration, started over

ten years ago by discussing some questions of common research interest

and resulting in a number of joint papers. The writing of these notes is

the outcome of this enjoyable activity. Finally, we are very grateful to

an extremely diligent reviewer who provided many valuable comments

and suggestions on an earlier draft, we have benefited much from this in

the final form of the monograph.

Manchester – Piraeus – Athens,

February 2015
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