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PREFACE

Until recent years there has been a tendency, in England at
least, to regard Geometry as if it were a mine which had been
worked out and exhausted. Mathematical interest was largely
transferred to analysis. The great stimulus given by Cayley,
Salmon and Clifford in the ’sixties and ’seventies of last century
had dissipated, and no great successor to these pioneers had
appeared. But if their influence in Britain had become weakened,
it grew upon the Continent, especially in Italy, and it is from
Italy, largely through the medium of Professor H. F. Baker, that
once more a renewed interest in geometry has arisen and is
flourishing in England.

It is seventy-one years since Salmon’s Treatise on the Analytic
Geometry of Three Dimensions was first published. It has been
translated into German, French and Italian, and has been
expanded into two volumes in later English editions.* In its
first form it embodied the results of many very recent researches,
and, brought up to date and including several new topics, it is
still recognised as the standard work in the English language.
There seems, however, to be room for a text-book written more
in accordance with the tendencies of the present *‘ cosmic epoch ”,
to apply a suggestive term of Whitehead’s. Fashions in mathe-
matics, as in other things, alter. The facts remain but their values
change. Rather, perhaps, new principles, wider and more
unifying, are discovered, leading to different treatment and a
different emphasis being put on the various developments.

In some ways the present text-book should be regarded as an
introduction to Professor Baker’s inspiring volumes on the
Principles of Geometry. This work, especially in the two recent
volumes, shows strongly the Italian influence, and the same must
be acknowledged in the case of the present text-book. It is
natural that the Italian school, which has been responsible for
a great part of modern geometrical research, should have pro-
duced also some of the finest text-books, such as Bianchi’s
Lezioni di geometria analitica (Pisa, 1920), Castelnuovo’s book
with the same title (6th ed. Milan, 1924), Berzolari’s two Hoepli
manuals entitled Geometria analitica (Milan: 1, 3rd ed.1925;
11, 2nd ed. 1922), and Comessati’s Lezioni di geometria analitica e
proiettiva (Milan, 1930). To these, as well as to Salmon, Baker,
the Collected Mathematical Papers of Cayley and of Klein,

® Vol. 1, 7th ed. revised by R. A. P. Rogers and edited by C. H. Rowe,
1928 Vol. 2, sth ed. revised by Rogers, 1915,
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xvi PREFACE

Hudson’s classic on Kummer’s Quartic Surface, Pascal’s Reper-
torium, the Enzyklopddie der mathematischen Wissenschaften, and
other sources difficult to particularise, I have to express my
indebtedness.

Being an elementary text-book it may be used by beginners.
For such it may be useful to indicate a first course of reading:
Chap. 1 (omitting 1-8*), Chap. 11 (omitting 2-34, 2°35, 2°36, 241,
2+5, 2731, 2'8, 2:91), Chap. 1v (omitting 4'2, 4:31, 451, 4-81),
Chap. v (omitting 5-122, 5-123, 523, 5°6), Chap. vi, Chap. viI
(omutting 7-38, 7-73), Chap. vir (omitting 8-11-8-13, 8-24,
8-41-8-432, 8-53-8-54, 8-64, 8-72, 874, 8-9), Chap. 1X (omitting
9'3, 94, 96, 9-7), Chap. X (omitting 10-71).

Except for a few insignificant references the subject-matter
of differential geometry has been excluded from this book. On
the other hand free use has been made of homogeneous co-
ordinates, tangential coordinates and line-coordinates. In the
case of metrical geometry the circle at infinity is used wherever
it is applicable; this is especially the case in the treatment of
foci, which follows somewhat closely on the lines of Berzolari.
There are several illustrative references to Non-Euclidean
Geometry, and much use has been made, as in Baker’s volumes,
of geometry of higher dimensions, especially in the exposition of
line-geometry. In the enumeration of types of linear systems of
quadrics opportunity has been taken to explain the notation of
invariant-factors. No exhaustive treatment of the theory of
algebraic curves and surfaces has been attempted; the two
chapters which have been devoted to these are intended rather
to be suggestive, and are confined practically to curves of the
third and fourth orders, and to ruled and rational cubic and
quartic surfaces.

I have to express my grateful thanks to Mr F. P. White for
much encouragement in the preparation of the book ; to Professor
W. Saddler, D.Sc., Christchurch, who read the entire manu-
script, for many helpful and valuable suggestions; and to Mr F. F.
Miles, ML.A., Lecturer in Mathematics at Victoria University
College, for great assistance in reading the proof-sheets and in
checking the examples.

I have also to acknowledge with thanks the courtesy and close
attention of the Staff of the Cambridge University Press.

® This is to be understood as including all further subdivisions, as 1-81,
1-82, etc.

D. M. Y. SOMMERVILLE
VICTORIA UNIV. COLL.
WELLINGTON, N.Z.

October 1933
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