Contents

Preface
page xiii

Part I. General Theory

1 Linearization of the Equations of Motion

1.1 Introduction
1.2 Equations of motion for an inviscid non-conducting fluid
1.3 Homentropic flows; Kelvin’s circulation theorem
1.4 Irrotational homentropic flows
1.5 Steady flows; Bernoulli’s equation
1.6 Characteristic surfaces in steady irrotational flows
1.7 Surfaces of discontinuity in steady flows
1.8 The genesis of linearized theory
1.9 Linearization of the boundary condition at a solid surface, and classification of bodies and edges
1.10 Linearization, and the equivalence of acoustical theory and linearized theory
1.11 Linearization for steady irrotational flows
1.12 Linearization for rotational flows

2 The General Solutions of the Linearized Equations for Subsonic Flow

2.1 Reduction to Laplace’s equation for irrotational flow
2.2 The relation between subsonic compressible flows and incompressible flows
2.3 The distortion of the streamlines
2.4 Boundary data: uniqueness
2.5 Sources and sinks
2.6 The general solution of the potential equation
2.7 The general solution of the vector equations
2.8 Surface and line distributions of vorticity
2.9 Horseshoe vortices
2.10 Surface distributions of sources
CONTENTS

3 The General Solutions of the Linearized Equations for Supersonic Flow

3.1 The characteristics of the potential equation .. page 45
3.2 The initial value problem: uniqueness ... 46
3.3 Dependence and influence domains ... 49
3.4 The ‘finite part’ of a divergent integral ... 50
3.5 Supersonic sources and sinks ... 53
3.6 The general solution of the potential equation 55
3.7 The general solution of the vector equations ... 60
3.8 Surface and line distributions of vorticity ... 61
3.9 Horseshoe vortices .. 62
3.10 Surface distributions of sources ... 63

4 Boundary Conditions, Aerodynamic Forces, Uniqueness and Flow-reversal Theorems

4.1 Boundary conditions at solid and free surfaces 65
4.2 Vortex wakes and the Kutta-Joukowski condition 67
4.3 Shocks and expansion waves ... 70
4.4 Conditions at great distances from bodies ... 73
4.5 Summary of the boundary conditions .. 74
4.6 Aerodynamic forces .. 75
4.7 Edge forces ... 80
4.8 Aerodynamic moments ... 82
4.9 Uniqueness .. 83
4.10 A general flow-reversal theorem ... 86
4.11 Some special cases of the general flow-reversal theorem 88
4.12 A special flow-reversal theorem ... 91
4.13 Alternative general solutions for the potential 92
4.14 A variational principle for lifting surfaces ... 96
CONTENTS

PART II. SPECIAL METHODS

5 Subsonic Flow past Thin Bodies

5.1 Introduction page 98
5.2 Vortex wakes and drag 98
5.3 Two-dimensional flows, Glauert-Prandtl rule 101
5.4 Two-dimensional swept wings 104
5.5 The lifting-line theory for wings of finite span 106
5.6 Nearly plane wings 107
5.7 Quasi-steady flows; transformation of stability derivatives 109

6 Supersonic Flow past Nearly Plane Wings

6.1 Two-dimensional flows 112
6.2 Two-dimensional swept wings 115
6.3 Nearly plane wings of finite span: the solutions for the potential 116
6.4 The symmetrical problem 118
6.5 The anti-symmetrical problem: characteristic co-ordinates 119
6.6 The solution for a wing tip 122
6.7 Independent subsonic edges 126
6.8 Lifting planes 128
6.9 The general anti-symmetrical problem; velocity at points not on the wing 130
6.10 Aerodynamic forces 132
6.11 The lift force on a wing with a straight supersonic trailing edge and no subsonic edges 133

7 Conical Fields in Supersonic Flow

7.1 The general solution for the velocity components 135
7.2 Flow outside the Mach cone of the vertex 139
7.3 Flow inside the Mach cone of the vertex 147
CONTENTS

7.4 Flow inside the Mach cone of the vertex: the symmetrical problem for nearly plane wings page 151
7.5 Flow inside the Mach cone of the vertex: the anti-symmetrical problem for plane wings 152
7.6 Superposition of conical fields 161

8 Application of Operational Methods to Supersonic Flow
8.1 Heaviside transforms 165
8.2 Flow past quasi-cylindrical ducts 167
8.3 External flow at zero incidence 168
8.4 External flow at incidence 170
8.5 The functions $W(x)$, $V_n(x)$ and $M(x)$ 172
8.6 Internal flow at zero incidence 176
8.7 The singularities and discontinuities in $T(x)$ 178
8.8 The singularities in the internal flow at zero incidence 179
8.9 Internal flow at incidence 182
8.10 Axially symmetrical supersonic free jets 182
8.11 Plane wings 184

PART III. SLENDER-BODY THEORY

9 Flow at and near the Surfaces of Slender Bodies
9.1 The linearized potential for axially symmetrical subsonic flow past a body of revolution 187
9.2 The linearized potential for axially symmetrical supersonic flow past a body of revolution 190
9.3 The linearized potentials for flows past more general bodies 192
9.4 The accuracy of the slender-body approximation 196
9.5 The boundary condition on the body 198
9.6 The coefficients a_0 and b_0 199
9.7 Lateral forces and moments 200
9.8 The drag force 202
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9</td>
<td>Application to bodies of revolution</td>
<td>206</td>
</tr>
<tr>
<td>9.10</td>
<td>Plane wings of small aspect-ratio</td>
<td>208</td>
</tr>
<tr>
<td>9.11</td>
<td>Winged bodies of revolution</td>
<td>210</td>
</tr>
<tr>
<td>9.12</td>
<td>Supersonic flow past bodies of revolution when $S'(z)$ is discontinuous</td>
<td>214</td>
</tr>
<tr>
<td>9.13</td>
<td>Ducted bodies of revolution with annular intakes</td>
<td>219</td>
</tr>
</tbody>
</table>

APPENDIX 1. Integral Identities

- Page 222

APPENDIX 2. The Linearized Equations for Nearly Parallel Steady Flows

- Page 224

BIBLIOGRAPHY

- Page 229

INDEX

- Page 241