LINEARIZED THEORY OF
STEADY HIGH-SPEED FLOW
LINEARIZED THEORY OF STEADY HIGH-SPEED FLOW

BY

G. N. WARD, M.A.
Professor of Mathematics, The College of Aeronautics, Cranfield
Formerly of the Mathematics Department, University of Manchester

CAMBRIDGE
AT THE UNIVERSITY PRESS
1955
TO MY FRIENDS
CONTENTS

PREFACE page xiii

PART I. GENERAL THEORY

1 Linearization of the Equations of Motion
1.1 Introduction 1
1.2 Equations of motion for an inviscid non-conducting fluid 3
1.3 Homentropic flows; Kelvin's circulation theorem 7
1.4 Irrotational homentropic flows 8
1.5 Steady flows; Bernoulli's equation 10
1.6 Characteristic surfaces in steady irrotational flows 11
1.7 Surfaces of discontinuity in steady flows 12
1.8 The genesis of linearized theory 14
1.9 Linearization of the boundary condition at a solid surface, and classification of bodies and edges 18
1.10 Linearization, and the equivalence of acoustical theory and linearized theory 21
1.11 Linearization for steady irrotational flows 24
1.12 Linearization for rotational flows 27

2 The General Solutions of the Linearized Equations for Subsonic Flow
2.1 Reduction to Laplace's equation for irrotational flow 32
2.2 The relation between subsonic compressible flows and incompressible flows 33
2.3 The distortion of the streamlines 34
2.4 Boundary data: uniqueness 37
2.5 Sources and sinks 38
2.6 The general solution of the potential equation 39
2.7 The general solution of the vector equations 40
2.8 Surface and line distributions of vorticity 42
2.9 Horseshoe vortices 43
2.10 Surface distributions of sources 44
CONTENTS

3 The General Solutions of the Linearized Equations for Supersonic Flow

3.1 The characteristics of the potential equation page 45
3.2 The initial value problem: uniqueness 46
3.3 Dependence and influence domains 49
3.4 The ‘finite part’ of a divergent integral 50
3.5 Supersonic sources and sinks 53
3.6 The general solution of the potential equation 55
3.7 The general solution of the vector equations 60
3.8 Surface and line distributions of vorticity 61
3.9 Horseshoe vortices 62
3.10 Surface distributions of sources 63

4 Boundary Conditions, Aerodynamic Forces, Uniqueness and Flow-reversal Theorems

4.1 Boundary conditions at solid and free surfaces 65
4.2 Vortex wakes and the Kutta-Joukowski condition 67
4.3 Shocks and expansion waves 70
4.4 Conditions at great distances from bodies 73
4.5 Summary of the boundary conditions 74
4.6 Aerodynamic forces 75
4.7 Edge forces 80
4.8 Aerodynamic moments 82
4.9 Uniqueness 83
4.10 A general flow-reversal theorem 86
4.11 Some special cases of the general flow-reversal theorem 88
4.12 A special flow-reversal theorem 91
4.13 Alternative general solutions for the potential 92
4.14 A variational principle for lifting surfaces 96
CONTENTS

PART II. SPECIAL METHODS

5 Subsonic Flow past Thin Bodies

5.1 Introduction .. page 98
5.2 Vortex wakes and drag 98
5.3 Two-dimensional flows, Glauert-Prandtl rule 101
5.4 Two-dimensional swept wings 104
5.5 The lifting-line theory for wings of finite span 106
5.6 Nearly plane wings 107
5.7 Quasi-steady flows; transformation of stability derivatives 109

6 Supersonic Flow past Nearly Plane Wings

6.1 Two-dimensional flows 112
6.2 Two-dimensional swept wings 115
6.3 Nearly plane wings of finite span: the solutions for the potential 116
6.4 The symmetrical problem 118
6.5 The anti-symmetrical problem: characteristic co-ordinates 119
6.6 The solution for a wing tip 122
6.7 Independent subsonic edges 126
6.8 Lifting planes 128
6.9 The general anti-symmetrical problem; velocity at points not on the wing 130
6.10 Aerodynamic forces 132
6.11 The lift force on a wing with a straight supersonic trailing edge and no subsonic edges 133

7 Conical Fields in Supersonic Flow

7.1 The general solution for the velocity components 135
7.2 Flow outside the Mach cone of the vertex 139
7.3 Flow inside the Mach cone of the vertex 147
CONTENTS

7.4 Flow inside the Mach cone of the vertex: the symmetrical problem for nearly plane wings 151
7.5 Flow inside the Mach cone of the vertex: the anti-symmetrical problem for plane wings 152
7.6 Superposition of conical fields 161

8 Application of Operational Methods to Supersonic Flow
8.1 Heaviside transforms 165
8.2 Flow past quasi-cylindrical ducts 167
8.3 External flow at zero incidence 168
8.4 External flow at incidence 170
8.5 The functions $W(z), V_n(z)$ and $M(z)$ 172
8.6 Internal flow at zero incidence 176
8.7 The singularities and discontinuities in $T(z)$ 178
8.8 The singularities in the internal flow at zero incidence 179
8.9 Internal flow at incidence 182
8.10 Axially symmetrical supersonic free jets 182
8.11 Plane wings 184

PART III. SLENDER-BODY THEORY

9 Flow at and near the Surfaces of Slender Bodies
9.1 The linearized potential for axially symmetrical subsonic flow past a body of revolution 187
9.2 The linearized potential for axially symmetrical supersonic flow past a body of revolution 190
9.3 The linearized potentials for flows past more general bodies 192
9.4 The accuracy of the slender-body approximation 196
9.5 The boundary condition on the body 198
9.6 The coefficients a_0 and b_0 199
9.7 Lateral forces and moments 200
9.8 The drag force 202
CONTENTS

9.9 Application to bodies of revolution

9.10 Plane wings of small aspect-ratio

9.11 Winged bodies of revolution

9.12 Supersonic flow past bodies of revolution when $S'(a)$ is discontinuous

9.13 Ducted bodies of revolution with annular intakes

APPENDIX 1. Integral Identities

APPENDIX 2. The Linearized Equations for Nearly Parallel Steady Flows

BIBLIOGRAPHY

INDEX

page 206

208

210

214

219

222

224

229

241
PREFACE

The difficulty of solving the non-linear equations of motion of a compressible fluid has led to the extensive use of linear approximations to these equations in applications to aeronautics. The solutions of these linearized equations are subject to somewhat severe limitations, and a knowledge of the nature of the physical and mathematical approximations made in their derivation is helpful in assessing their applicability to particular problems. In the first part of this monograph, I have tried to set down a logical development of the theory for steady flows, giving due attention to the assumptions on which the theory is based. Perhaps an ideal course would have been to give an account of such more accurate theory as exists, and then to compare the linear approximations with it at every stage, but this would have greatly increased the size of the volume. Instead, I have quoted briefly the results of more exact theory wherever it has seemed necessary, and assumed the rest to be known or obtainable from other more complete works on the subject. Thus a knowledge of at least the elements of the theory and practice of compressible fluid flow is required from the reader. The second part deals with applications to special problems, and is mostly concerned with supersonic flows. The third part contains an account of slender-body theory, which in some ways is distinct from ordinary linearized theory and requires a separate derivation, since it is generally more accurate on and near the body and less accurate at great distances.

In developing the general theory, I have made extensive use of vectorial notation, which not only leads to a concise exposition, but, even more importantly in my opinion, helps to reveal the physical meaning of the equations. I am well aware that this will be a slight hindrance to some readers, but the notation is becoming more and more widely used, and I feel sure that the comparatively small amount of time required to learn it will be amply repaid in many other contexts. In this notation the linearized equations of
xiv P R E F A C E

motion are first-order differential equations, each of which has a simple physical interpretation, and which are shown to be integrable directly without introducing auxiliary potential functions even if they exist. The possibility thus opened up, namely to work entirely in terms of the particle velocity, appeals to me as giving a more physically satisfying approach to the subject than to work in terms of potentials. It turns out that this approach has many advantages over the more conventional treatment, and actually simplifies the analysis in many cases. Nevertheless, in order not to depart too far from standard treatments, I have exploited this possibility only in some parts of the development of the general theory, and in the chapter on conical fields. Similar considerations apply to the introduction of sources and sinks, which can have no physical reality and moreover in supersonic flow have a non-existent (infinite) mass flux unless some artifice such as that of taking the finite part of a divergent integral is employed. But the concept of sources and sinks can be a useful aid to thought, and there seems to be no point in omitting mention of these and other singularities.

As readers will rapidly become aware, the monograph shows a strong personal bias in the selection of material. This is mainly due to the fact that the monograph is a slightly revised and shortened version of an essay submitted in competition for the Adams Prize for 1949–50 in the University of Cambridge. My original intention was to expand the essay into a full-length treatise, but on consideration of the rapid rate at which the subject is developing, I have come to the conclusion that a greatly extended permanent account is not desirable at the present time. This has meant that some interesting approaches to specific problems are only mentioned briefly or are not mentioned at all, and I can only hope that this monograph with all its limitations will stimulate readers to refer to the original papers listed in the Bibliography.

I am very pleased to be able to take this opportunity of acknowledging my indebtedness to Professor S. Goldstein, Professor
PREFACE

M. J. Lighthill and my many other friends in the Department of Mathematics at Manchester University for the many very happy years that I spent working with them, and for all the assistance that they gave me so generously, without which it would not have been possible for me to write this monograph. My thanks are also due to Mrs D. Fahy for her careful typing of my manuscript, and to my wife for her assistance, particularly during proof-reading.

Cranfield
August 1954

G. N. W.