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This chapter introduces kinematics, which is about the connections between displacement, 

velocity and acceleration. When you have completed it, you should

 ■ know the terms ‘displacement’, ‘velocity’, ‘acceleration’ and ‘deceleration’ for motion in a 

straight line

 ■ be familiar with displacement–time and velocity–time graphs

 ■ be able to express speeds in di� erent systems of units

 ■ know formulae for constant velocity and constant acceleration

 ■ be able to solve problems on motion with constant velocity and constant acceleration, 

including problems involving several such stages

 ■ understand what is meant by the terms ‘average speed’ and ‘average velocity’.

Chapter 1

Velocity and acceleration
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1.1 Motion with constant velocity
A Roman legion marched out of the city of Alexandria along a straight road, with a 

velocity of 100 paces per minute due east. Where was the legion 90 minutes later?

Notice the word velocity, rather than speed. This is because you are told not only how 

fast the legion marched, but also in which direction. Velocity is speed in a particular 

direction.

Two cars travelling in opposite directions on a north–south motorway may have the 

same speed of 90 kilometres per hour, but they have different velocities. One has a 

velocity of 90 k.p.h. north, the other a velocity of 90 k.p.h. south.

The abbreviation k.p.h. is used here for ‘kilometres per hour’ because this is the form often used 

on car speedometers. A scientist would use the abbreviation km h−1, and this is the form that will 

normally be used in this book.

The answer to the question in the i rst paragraph is, of course, that the legion was 

9000 paces (9 Roman miles) east of Alexandria. The legion made a displacement of 

9000 paces east. Displacement is distance in a particular direction.

This calculation, involving the multiplication 100 × 90 = 9000, is a special case of a 

general rule.

An object moving with constant velocity u units in a particular direction for a 

time t units makes a displacement s units in that direction, where s = ut.

The word ‘units’ is used three times in this statement, and it has a different sense 

each time. For the Roman legion the units are paces per minute, minutes and paces 

respectively. You can use any suitable units for velocity, time and displacement 

provided that they are consistent.

The equation s = ut can be rearranged into the forms u
s

t
=  or t

s

u
= . You decide which 

form to use according to which quantities you know and which you want to i nd.

EXAMPLE 1.1.1

An airliner l ies from Cairo to Harare, a displacement of 5340 kilometres south, 

at a speed of 800 k.p.h. How long does the l ight last?

You know that s = 5340 and u = 800, and want to i nd t. So use

t
s

u
= = =

5340

800
6 675. .675

 For the units to be consistent, the unit of time must be hours. The l ight 

lasts 6.675 hours, or 6 hours and 40 1
2

 minutes.

This is not a sensible way of giving the answer. In a real l ight the aircraft will travel 

more slowly while climbing and descending. It is also unlikely to travel in a straight 

line, and the i gure of 800 k.p.h. for the speed looks like a convenient approximation. 

The solution is based on a mathematical model, in which such complications are 
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ignored so that the data can be put into a simple mathematical equation. But 

when you have i nished using the model, you should then take account of the 

approximations and give a less precise answer, such as ‘about 7 hours’.

The units almost always used in mechanics are metres (m) for displacement, seconds 

(s) for time and metres per second (written as m s−1) for velocity. These are called 

SI units (SI stands for Système Internationale), and scientists all over the world have 

agreed to use them.

EXAMPLE 1.1.2

Express a speed of 144 k.p.h. in m s−1.

 If you travel 144 kilometres in an hour at a constant speed, you go 
144

60 60×
 

kilometres in each second, which is 1
25

 of a kilometre in each second. 

A kilometre is 1000 metres, so you go 1
25

 of 1000 metres in a second. 

Thus a speed of 144 k.p.h. is 40 m s−1.

You can extend this result to give a general rule: to convert any speed in k.p.h. to 

m s−1, you multiply by 40

144
, which is 5

18
.

Note that in this section you have met two pairs of quantities which are related in the 

same way to each other:

velocity is speed in a certain direction

displacement is distance in a certain direction.

Quantities that are directionless are known as scalar quantities: speed and distance 

are two examples. Quantities that have a direction are known as vector quantities: 

velocity and displacement are two examples. You will meet several different types of 

quantities during the mechanics course. For each one, it is important to ask yourself 

whether it is a scalar or vector quantity. It would be incorrect to say that something 

has a velocity of 30 km h−1 without giving a direction, and it would also be wrong to say 

that it had a speed of 30 km h−1 due south.

1.2 Graphs for constant velocity
You do not always have to use equations to describe mathematical models. 

Another method is to use graphs. There are two kinds of graph which are 

often useful in kinematics.

The i rst kind is a displacement–time graph, as shown in Fig. 1.1. The 

coordinates of any point on the graph are (t,s), where s is the displacement 

of the moving object after a time t (both in appropriate units). Notice that 

s = 0 when t = 0, so the graph passes through the origin. If the velocity is 

constant, then 
s

t
u= , and the gradient of the line joining (t,s) to the origin has 

the constant value u . So the graph is a straight line with gradient u.

For an object moving along a straight line with constant velocity u, the 

displacement–time graph is a straight line with gradient u.

Displacement

Time

(t,s)

gradient 

Fig. 1.1

3

Chapter 1: Velocity and acceleration

www.cambridge.org/9781316600306
www.cambridge.org


Cambridge University Press
978-1-316-60030-6 — Cambridge International AS and A Level Mathematics: Mechanics 1 Coursebook
Douglas Quadling , Julian Gilbey 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

The second kind of graph is a velocity–time graph (see Fig. 1.2). The coordinates of 

any point on this graph are (t,v), where v is the velocity of the moving object at time t. 

If the velocity has a constant value u, then the graph has equation v = u, and it is a 

straight line parallel to the time-axis.

Velocity

Time

( , )

Velocity

Time

area

Fig. 1.2 Fig. 1.3

How is displacement shown on the velocity–time graph? Fig. 1.3 answers this question 

for motion with constant velocity u. The coordinates of any point on the graph are 

(t,u), and you know that s = ut. This product is the area of the shaded rectangle in the 

i gure, which has width t and height u.

For an object moving along a straight line with constant velocity, the 

displacement from the start up to any time t is represented by the area of the 

region under the velocity–time graph for values of the time from 0 to t.

Exercise 1A
1 How long will an athlete take to run 1500 metres at 7.5 m s−1?

2 A train maintains a constant velocity of 60 m s−1 due south for 20 minutes. What is 

its displacement in that time? Give the distance in kilometres.

3 How long will it take for a cruise liner to sail a distance of 530 nautical miles at a 

speed of 25 knots? (A knot is a speed of 1 nautical mile per hour.)

4 Some Antarctic explorers walking towards the South Pole expect to average 

1.8 kilometres per hour. What is their expected displacement in a day in which 

they walk for 14 hours?

5 Here is an extract from the diary of Samuel Pepys for 4 June 1666, written in 

London.

 ‘We i nd the Duke at St James’s, whither he is lately gone to lodge. So walking 

through the Parke we saw hundreds of people listening to hear the guns.’

 These guns were at the battle of the English l eet against the Dutch off the Kent 

coast, a distance of between 110 and 120 km away. The speed of sound in air is 

344 m s−1. How long did it take the sound of the guni re to reach London?

6 Light travels at a speed of 3.00 × 108 m s−1. Light from the star Sirius takes 

8.65 years to reach the Earth. What is the distance of Sirius from the Earth in 

kilometres?
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7 The speed limit on a motorway is 120 km per hour. What is this in SI units?

8 The straightest railway line in the world runs across the Nullarbor Plain in 

southern Australia, a distance of 500 kilometres. A train takes 12 1
2

 hours to cover 

the distance.

 Model the journey by drawing

 a a velocity–time graph, b a displacement–time graph.

  Label your graphs to show the numbers 500 and 12 1
2

 and to indicate the units 

used.

 Suggest some ways in which your models may not match the actual journey.

9 An aircraft l ies due east at 800 km per hour from Kingston to Antigua, a 

displacement of about 1600 km. Model the l ight by drawing

 a a displacement–time graph, b a velocity–time graph.

 Label your graphs to show the numbers 800 and 1600 and to indicate the units 

used. Can you suggest ways in which your models could be improved to describe 

the actual l ight more accurately?

1.3 Acceleration
A vehicle at rest cannot suddenly start to move with constant velocity. There has to be 

a period when the velocity increases. The rate at which the velocity increases is called 

the acceleration.

In the simplest case the velocity increases at a constant rate. For example, suppose 

that a train accelerates from 0 to 144 k.p.h. in 100 seconds at a constant rate. You 

know from Example 1.1.2 that 144 k.p.h. is 40 m s−1, so the speed is increasing by 

0.4 m s−1 in each second.

The SI unit of acceleration is ‘m s−1 per second’, or (m s−1) s−1; this is always simplii ed 

to m s−2 and read as ‘metres per second squared’. Thus in the example above the train 

has a constant acceleration of 40
100

 m s−2, which is 0.4 m s−2.

Consider the period of acceleration. After t seconds the train will have 

reached a speed of 0.4t  m s−1. So the velocity–time graph has equation v = 0.4t. 

This is a straight line segment with gradient 0.4, joining (0,0) to (100,40). It is 

shown in Fig. 1.4.

This is a special case of a general rule.

The velocity–time graph for an object moving with constant acceleration a is a 

straight line segment with gradient a.

Now suppose that at a later time the train has to stop at a signal. The brakes are 

applied, and the train is brought to rest in 50 seconds. If the velocity drops at a 

constant rate, this is 40
50

 m s−2, or 0.8 m s−2. The word for this is deceleration (some 

people use retardation).

Fig. 1.5 shows the velocity–time graph for the braking train. If time is measured 

from the instant when the brakes are applied, the graph has equation 

v = 40 − 0.8t.

Velocity

(m s–1)

Time (s)
100

40

= 0.4

Fig. 1.4

Velocity
(m s–1)

Time (s)50

40

= 40 − 0.8

Fig. 1.5

5

Chapter 1: Velocity and acceleration

www.cambridge.org/9781316600306
www.cambridge.org


Cambridge University Press
978-1-316-60030-6 — Cambridge International AS and A Level Mathematics: Mechanics 1 Coursebook
Douglas Quadling , Julian Gilbey 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

There are two new points to notice about this graph. First, it doesn’t pass through the 

origin, since at time t = 0 the train has a velocity of 40 m s−1. The velocity when t = 0 is 

called the initial velocity.

Secondly, the graph has negative gradient, because the velocity is decreasing. This 

means that the acceleration is negative. You can either say that the acceleration 

is – 0.8 m s−2, or that the deceleration is 0.8 m s−2.

The displacement is still given by the area of the region between the velocity–time 

graph and the t-axis, even though the velocity is not constant. In Fig. 1.4 this region is 

a triangle with base 100 and height 40, so the area is 1
2

100 40 2000× ×100 = . This means 

that the train covers a distance of 2000 m, or 2 km, while gaining speed.

In Fig. 1.5 the region is again a triangle, with base 50 and height 40, so the train 

comes to a standstill in 1000 m, or 1 km.

A justii cation that the displacement is given by the area will be found in Section 11.3.

1.4 Equations for constant acceleration
You will often have to do calculations like those in the last section. It is worth 

having algebraic formulae to solve problems about objects moving with constant 

acceleration.

Fig. 1.6 shows a velocity–time graph which could apply to any problem of this type. 

The initial velocity is u, and the velocity at time t is denoted by v. If the acceleration 

has the constant value a, then between time 0 and time t the velocity increases by 

at. It follows that, after time t,

v = u + at.

Remember that in this equation u and a are constants, but t and v can vary. 

In fact, this equation is just like y = mx + c (or, for a closer comparison, y = c + mx). 

The acceleration a is the gradient, like m, and the initial velocity u is the intercept, 

like c. So v = u + at is just the equation of the velocity–time graph.

There is, though, one important difference. This equation only applies so long as the 

constant acceleration lasts, so the graph is just part of the line.

There are no units in the equation v = u + at. You can use it with any units you like, 

provided that they are consistent.

To i nd a formula for the displacement, you need to i nd the area of the shaded 

region under the graph between (0,u) and (t,v) in Fig. 1.6. You can work this out in 

either of two ways, illustrated in Figs. 1.7 and 1.8.

Velocity

Time

Velocity

Time

Fig. 1.7 Fig. 1.8

Velocity

Time

( , )

gradient 

Fig. 1.6
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In Fig. 1.7 the region is shown as a trapezium, with parallel vertical sides of length u 

and v, and width t. The formula for the area of a trapezium gives

s t1
2
( )u v+u .

Fig. 1.8 shows the region split into a rectangle, whose area is ut, and a triangle with 

base t and height at, whose area is 1
2

× t a× t . These combine to give the formula

s ut at= ut 1
2

2 .

EXAMPLE 1.4.1

A racing car enters the i nal straight travelling at 35 m s−1, and covers the 600 m 

to the i nishing line in 12 s. Assuming constant acceleration, i nd the car’s speed 

as it crosses the i nishing line.

Measuring the displacement from the start of the i nal straight, and using SI 

units, you know that u = 35. You are told that when t = 12, s = 600, and you 

want to know v at that time. So use the formula connecting u, t, s and v.

Substituting in the formula s t1
2
( )u v+u ,

600 5 121
2

= 1
2

×( )35 +35 .

This gives 35
600 2

12
100+ =

×
=v , so v = 65.

Assuming constant acceleration, the car crosses the i nishing line at 65 m s−1.

EXAMPLE 1.4.2

A cyclist reaches the top of a slope with a speed of 1.5 m s−1, and accelerates at 

2 m s−2. The slope is 22 m long. How long does she take to reach the bottom of 

the slope, and how fast is she moving then?

You are given that u = 1.5 and a = 2, and want to i nd t when s = 22. The 

formula which connects these four quantities is s ut at= ut 1
2

2 , so 

displacement and time are connected by the equation

s = 1.5t + t 2.

When s = 22, t satisi es the quadratic equation t 2 + 1.5t  − 22 = 0. Solving this 

by the quadratic formula (see P1 Section 4.4), t =
− ± − ×1 5 1 5 4 1×

2

2. .±5 1 ( )−22
, 

giving t = −5.5 or 4. In this model t must be positive, so t = 4. The cyclist 

takes 4 seconds to reach the bottom of the slope.

To i nd how fast she is then moving, you have to calculate v when t = 4. Since 

you now know u, a, t and s, you can use either of the formulae involving v.

The algebra is simpler using v = u + at, which gives

v = 1.5 + 2 × 4 = 9.5.

The cyclist’s speed at the bottom of the slope is 9.5 m s−1.
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Exercise 1B
1 A police car accelerates from 15 m s−1 to 35 m s−1 in 5 seconds. The acceleration 

is constant. Illustrate this with a velocity–time graph. Use the equation v = u + at 

to calculate the acceleration. Find also the distance travelled by the car in that 

time.

2 A marathon competitor running at 5 m s−1 puts on a sprint when she is 100 metres 

from the i nish, and covers this distance in 16 seconds. Assuming that her 

acceleration is constant, use the equation s t1
2
( )u v+u  to i nd how fast she is 

running as she crosses the i nishing line.

3 A train travelling at 20 m s−1 starts to accelerate with constant acceleration. It covers 

the next kilometre in 25 seconds. Use the equation s ut at= ut 1
2

2  to calculate 

the acceleration. Find also how fast the train is moving at the end of this time. 

Illustrate the motion of the train with a velocity–time graph.

 How long does the train take to cover the i rst half kilometre?

4 A long-jumper takes a run of 30 metres to accelerate to a speed of 10 m s−1 from a 

standing start. Find the time he takes to reach this speed, and hence calculate his 

acceleration. Illustrate his run-up with a velocity–time graph.

5 Starting from rest, an aircraft accelerates to its take-off speed of 60 m s−1 in a 

distance of 900 metres. Assuming constant acceleration, i nd how long the take-off 

run lasts. Hence calculate the acceleration.

6 A train is travelling at 80 m s−1 when the driver applies the brakes, producing a 

deceleration of 2 m s−2 for 30 seconds. How fast is the train then travelling, and 

how far does it travel while the brakes are on?

7 A balloon at a height of 300 m is descending at 10 m s−1 and decelerating at a rate of 

0.4 m s−2. How long will it take for the balloon to stop descending, and what will its 

height be then?

1.5 More equations for constant acceleration
All the three formulae in Section 1.4 involve four of the i ve quantities u, a, t, v and s. 

The i rst leaves out s, the second a and the third v. It is also useful to have formulae 

which leave out t and u, and you can i nd these by combining the formulae you 

already know.

To i nd a formula which omits t, rearrange the formula v = u + at to give at = v  − u, so 

t
v u

a
= . If you now substitute this in s t1

2
( )u v+u , you get

s
v u

a
×1

2
( )u v+u ,

which is 2as = (u  + v)(v  − u). The right side of this is (v  + u)(v  − u) = v 2 − u2, so that 

i nally 2as = v 2 − u2, or

v 2 = u2  + 2as.
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The i fth formula, which omits u, is less useful than the others. Turn the formula 

v = u + at round to get u = v − at. Then, substituting this in s ut at= ut 1
2

2 , you get 

s t at( )v at−v 1
2

2 , which simplii es to

s vt atvt 1
2

2 .

For an object moving with constant acceleration a and initial velocity u, the 

following equations connect the displacement s and the velocity v after a time t.

at s ut at v u as

s t s vt at

= +u = ut = +u

vt

1
2

1
2

1
2

2 2
v

2

2

2

( )u v+u

You should learn these formulae, because you will use them frequently throughout 

this mechanics course.

EXAMPLE 1.5.1

The barrel of a shotgun is 0.9 m long, and the shot emerges from the muzzle 

with a speed of 240 m s−1. Find the acceleration of the shot in the barrel, and the 

length of time the shot is in the barrel after i ring.

In practice the constant acceleration model is likely to be only an approximation, but it 

will give some idea of the quantities involved.

The shot is initially at rest, so u = 0. You are given that v = 240 when s = 0.9, 

and you want to i nd the acceleration, so use v2 = u2 + 2as.

240 0 2 0 92 20= 00 × ×a . .9

This gives a = =
240

2 0× 9
32000

2

.
.

You can now use any of the other formulae to i nd the time. The simplest is 

probably v = u + at, which gives 240 = 0 + 32 000t, so t = 0.0075.

Taking account of the approximations in the model and the data, you can 

say that the acceleration of the shot is about 30 000 m s−2, and that the shot is 

in the barrel for a little less than one-hundredth of a second.

EXAMPLE 1.5.2

The driver of a car travelling at 96 k.p.h. in mist suddenly sees a stationary bus 

100 metres ahead. With the brakes full on, the car can decelerate at 4 m s−2 in 

the prevailing road conditions. Can the driver stop in time?

You know from Example 1.1.2 that 96 k.p.h. is 96 5
18

1
×

−ms , or 80
3

1ms− . 

This suggests writing u = 80
3

 and a = −4 in the formula v2 = u2 + 2as to i nd v 

when s = 100. Notice that a is negative because the car is decelerating.
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When you do this, you get v 2 2

3
800
9

2 4 100= ( )80
3

− 2 × =100 − . This is clearly a 

ridiculous answer, since a square cannot be negative.

The reason for the absurdity is that the equation only holds so long as the 

constant acceleration model applies. In fact the car stops before s reaches 

the value 100, and after that it simply stays still.

To avoid this, it is better to begin by substituting only the constants in the 

equation, leaving v and s as variables. The equation is then

v s
2 6400

9
8 .

This model holds so long as v 2 0≥ . The equation gives v = 0 when s = =
×

6400
9 8

800
9

, 

which is less than 100. So the driver can stop in time.

This example could be criticised because it assumes that the driver puts the brakes on 

as soon as he sees the bus. In practice there would be some ‘thinking time’, perhaps 

0.3 seconds, while the driver reacts. At 80
3

1ms− , the car would travel 8 metres in this 

time, so you should add 8 metres to the distance calculated in the example. You can 

see that the driver will still avoid an accident, but only just.

Exercise 1C
1 Interpret each of the following in terms of the motion of a particle along a 

line, and select the appropriate constant acceleration formula to i nd the answer. 

The quantities u, v, s and t are all positive or zero, but a may be positive or 

negative.

 a u = 9, a = 4, s = 5, i nd v b u = 10, v = 14, a = 3, i nd s

 c u = 17, v = 11, s = 56, i nd a d u = 14, a = −2, t = 5, i nd s

 e v = 20, a = 1, t = 6, i nd s f u = 10, s = 65, t = 5, i nd a

 g u = 18, v = 12, s = 210, i nd t h u = 9, a = 4, s = 35, i nd t

 i u = 20, s = 110, t = 5, i nd v j s = 93 v = 42, t = 3
2

, i nd a

 k u = 24, v = 10, a = −0.7, i nd t l s = 35, v = 12, a = 2, i nd u

 m v = 27, s = 40, a = −4 1
2

, i nd t n a = 7, s = 100, v − u = 20, i nd u

2 A train goes into a tunnel at 20 m s−1 and emerges from it at 55 m s−1. The tunnel 

is 1500 m long. Assuming constant acceleration, i nd how long the train is in the 

tunnel for, and the acceleration of the train.

3 A motor-scooter moves from rest with acceleration 0.1 m s−2. Find an expression for 

its speed, v  m s−1, after it has gone s metres. Illustrate your answer by sketching an 

(s,v) graph.

4 A cyclist riding at 5 m s−1 starts to accelerate, and 200 metres later she is riding at 

7 m s−1. Find her acceleration, assumed constant.

5 A train travelling at 55 m s−1 has to reduce speed to 35 m s−1 to pass through a 

junction. If the deceleration is not to exceed 0.6 m s−2, how far ahead of the 

junction should the train begin to slow down?
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