ADVANCED MODELING WITH THE MATLAB RESERVOIR SIMULATION TOOLBOX (MRST)

Many leading experts contribute to this follow-up to *An Introduction to Reservoir Simulation Using MATLAB/GNU Octave: User Guide for the MATLAB Reservoir Simulation Toolbox (MRST).* It introduces more advanced functionality that has been recently added to the open-source MRST software. It is also a self-contained introduction to a variety of modern numerical methods for simulating multiphase flow in porous media. Application examples include geothermal energy, chemical enhanced oil recovery (EOR), geomechanics, flow in fractured and unconventional reservoirs, and unsaturated flow in deformable media. The reader will learn how to implement new models and algorithms in a robust, efficient manner. A large number of numerical examples are included, all fully equipped with code and data so that the reader can reproduce the results and use them as a starting point for their own work. Like the original textbook, this book will prove invaluable for researchers, professionals, and advanced students using reservoir simulation methods.

KNUT-ANDREAS LIE is Chief Scientist at SINTEF in Oslo, Norway. Over the last 20 years he has developed commercial and in-house software solutions for the international petroleum industry. He is a founding father of two pieces of opensource community software (MRST and OPM). He is the author of the textbook *An Introduction to Reservoir Simulation Using MATLAB/GNU Octave: User Guide for the MATLAB Reservoir Simulation Toolbox (MRST)*. He has authored 170 scientific papers and supervised 70 MSc/PhD students. Lie is a fellow of the Society for Industrial and Applied Mathematics (SIAM) and an elected member of the Norwegian Academy of Technological Sciences, and recently served as executive editor of *SPE Journal*, a publication of the Society of Petroleum Engineers.

OLAV MØYNER is a research scientist at SINTEF in Oslo, Norway. For the past 10 years, he has been one of the primary developers of the MRST open-source community software. His work on multiscale methods for reservoir simulation won him the 2017 prize from the Dimitris N. Chorafas Foundation for the best PhD thesis at the Norwegian University of Science and Technology (NTNU), Trondheim. In 2019 he was awarded the Early Career Prize from the SIAM Activity Group on Geosciences for his "elegant and insightful contributions to theory, algorithms, and software for multiscale porous flow simulation, and for his exceptional scholarly productivity and impact on practice."

ADVANCED MODELING WITH THE MATLAB RESERVOIR SIMULATION TOOLBOX (MRST)

Edited by

KNUT-ANDREAS LIE SINTEF

> OLAV MØYNER *SINTEF*

Cambridge University Press 978-1-316-51996-7 — Advanced Modelling with the MATLAB Reservoir Simulation Toolbox Edited by Knut-Andreas Lie, Olav Møyner Frontmatter More Information

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781316519967 DOI: 10.1017/9781009019781

© Cambridge University Press 2021

This work is in copyright. It is subject to statutory exceptions and to the provisions of relevant licensing agreements; with the exception of the Creative Commons version, the link for which is provided below, no reproduction of any part of this work may take place without the written permission of Cambridge University Press.

An online version of this work is published at doi.org/10.1017/9781009019781 under a Creative Commons Open Access license CC-BYNC-ND 4.0 which permits re-use, distribution and reproduction in any medium for non-commercial purposes providing appropriate credit to the original work is given. You may not distribute derivative works without permission. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/4.0

All versions of this work may contain content reproduced under license from third parties. Permission to reproduce this third-party content must be obtained from these third-parties directly.

When citing this work, please include a reference to the DOI 10.1017/9781009019781

First published 2021

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

ISBN 978-1-316-51996-7 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

1

Cambridge University Press 978-1-316-51996-7 — Advanced Modelling with the MATLAB Reservoir Simulation Toolbox Edited by Knut-Andreas Lie , Olav Møyner Frontmatter <u>More Information</u>

Contents

List	of Cont	tributors	<i>page</i> xiv			
Prej	Preface					
Ack	nowledg	gments	xxiv			
Nav	rigating	the Book and the MRST Modules	XXV			
Par	tI Gr	id Generation, Discretizations, and Solvers	1			
Uns	tructure	d PEBI Grids Conforming to Lower-Dimensional Objects	3 3			
RUN	AR L. BE	RGE, ØYSTEIN S. KLEMETSDAL, AND KNUT-ANDREAS LIE				
1.1	Introd	uction	3			
1.2	Basic	Introduction to PEBI Grids	5			
	1.2.1	Delaunay Triangulation	6			
	1.2.2	PEBI Grids	7			
	1.2.3	Clipping PEBI Grids	10			
1.3	Three	Approaches for Optimizing PEBI Grids	11			
	1.3.1	Background Cartesian Grids	11			
	1.3.2	Delaunay Optimization	12			
	1.3.3	Minimized Centroidal Energy Function	13			
1.4	Intern	al Face Constraints	14			
	1.4.1	First Method: Simplex Conformity	15			
	1.4.2	Configuring the Simplex-Conformity Methods	18			
	1.4.3	Second Method: PEBI Conformity	21			
1.5	Adapt	ing Cell Centroids	24			
1.6	Worke	ed Examples	27			
	1.6.1	Complex Fault Network in 2D	28			
	1.6.2	Statistical Fracture Distribution	30			
	1.6.3	Adapting to Permeability (SPE10)	32			
	1.6.4	Conforming to Triangulated Surfaces in 3D	35			

v

vi		Contents	
	1.6.5	Representing a Multilateral Well Path	37
	1.6.6	A More Realistic 3D Case	38
	1.7 Concl	uding Remarks	40
	References		43
2	Nonlinear I	Finite-Volume Methods for the Flow Equation	
	in Porous N	<i>M</i> edia	46
	MOHAMMED	AL KOBAISI AND WENJUAN ZHANG	
	2.1 Introd	luction	46
	2.2 Mode	l Equations	47
	2.3 Nonli	near Finite-Volume Methods	47
	2.3.1	Construction of One-Sided Fluxes	48
	2.3.2	Harmonic Averaging Point	50
	2.3.3	Nonlinear TPFA	54
	2.3.4	Nonlinear MPFA	55
	2.3.5	Nonlinear Solver	57
	2.4 Nume	erical Examples	57
	2.4.1	Example 1: Homogeneous Permeability	57
	2.4.2	Example 2: Discontinuous Permeability	62
	2.4.3	Example 3: No-Flow Boundary Conditions	65
	2.5 Concl	uding Remarks	67
	References		67
3	Implicit Di	scontinuous Galerkin Methods for Transport Equations	
	in Porous N	<i>M</i> edia	70
	ØYSTEIN S. F	KLEMETSDAL AND KNUT-ANDREAS LIE	
	3.1 Introd	luction	70
	3.2 Mode	1 Equations	71
	3.3 Disco	ntinuous Galerkin Methods	73
	3.3.1	Weak Residual Form	73
	3.3.2	Basis Functions	74
	3.3.3	Numerical Integration	77
	3.3.4	Evaluating the Interface Flux	79
	3.3.5	Velocity Interpolation	80
	3.3.6	Limiters	80
	3.4 Nume	erical Examples	83
	3.4.1	1D Buckley–Leverett Displacement	83
	3.4.2	Smearing of Trailing Waves	86
	3.4.3	Inverted Five-Spot Pattern on a Perpendicular	
		Bisector Grid	87
	3.4.4	Grid-Orientation Errors for Adverse Mobility Ratios	89
	3.4.5	Channelized Medium	91

			Contents	vii
	3.5 Refe	Concluerences	uding Remarks	92 95
4	Mul	tiscale l	Pressure Solvers for Stratigraphic and Polytopal Grids	97
	KNU	T-ANDRI	EAS LIE AND OLAV MØYNER	
	4.1	Introd	uction and Background Discussion	97
		4.1.1	Why Do We Need Multiscale Methods?	98
		4.1.2	Basic Flow Model and Abstract Notation	100
		4.1.3	Local Upscaling	100
	4.2	Multis	scale Finite-Volume Methods	101
		4.2.1	Geometric Formulation of the Original MsFV Method	102
		4.2.2	Algebraic Formulation of the Original MsFV Method	105
		4.2.3	Deficiencies and Limitations of the Original	
			MsFV Method	108
		4.2.4	The Multiscale Restriction-Smoothed Basis Method	110
		4.2.5	Introduction to the MRST Implementation	112
		4.2.6	Iterative Formulation	117
	4.3	Nume	rical Examples	121
		4.3.1	Lack of Monotonicity	122
		4.3.2	Grid-Orientation Errors	123
		4.3.3	Coarsening Complex Meshes	123
		4.3.4	Multiscale Methods as an Alternative to Upscaling	127
		4.3.5	Incompressible Multiphase Flow in Fractured Media	129
		4.3.6	Gravity Segregation	132
		4.3.7	Compressible Black-Oil Models: Fully Implicit	
			Methods and CPR	133
		4.3.8	Compressible Black-Oil Models: Sequential	
			Solution Methods	137
		4.3.9	Compositional Flow	139
	4.4	Concl	uding Remarks	142
	Refe	erences		143
	Par	t II R	apid Prototyping and Accelerated Computation	149
5	Bett	er AD S	Simulators with Flexible State Functions and Accurate	
	Disc	cretizati	ons	151
	0LA 5 1	v MØYNE Introd	ek uction	150
	5.1 5.2	Numa	rical Models in MPST	152
	5.2	5 0 1	A Canaria Multicomponent Flow Model	155
		J.2.1	A Deteric Multicomponent Flow Model	133
		5.2.2	Anatomy of a stepFunction	130

5.2.3 Validation and Preparation 161

viii		Contents	
	5.3	StateFunctions: Framework for AD Functions	162
		5.3.1 A Crash Course in State Functions	163
		5.3.2 Evaluation of Properties	168
		5.3.3 Examples of State Functions	171
		5.3.4 The StateFunctionGrouping Class	173
	5.4	Discretization with State Functions	177
		5.4.1 The Simulator as a Graph	178
		5.4.2 The Component Implementation	180
		5.4.3 Temporal Discretizations	184
		5.4.4 Example: Fully Implicit, Explicit, and Adaptive Implicit	189
		5.4.5 Spatial Discretizations	192
	5.5	Concluding Remarks	198
	Refe	erences	198
6	Fast	ter Simulation with Optimized Automatic Differentiation and	
	Con	npiled Linear Solvers	200
	OLA	V MØYNER	
	6.1	Introduction	200
	6.2	Accelerated Implementation of Automatic Differentiation	203
		6.2.1 Different Backends for Automatic Differentiation	205
		6.2.2 Motivation for Different Types of AD Backends	207
		6.2.3 Sparse AD Backends in MRST	212
		6.2.4 High Performance: DiagonalAutoDiffBackend	214
		6.2.5 Performance of AD Backends	224
	6.3	High-Performance Linear Solvers	231
		6.3.1 Selecting Different Linear Solvers	231
	6.4	Setting Up and Managing Simulation Cases	238
		6.4.1 Packed Problems: Storing and Running Simulation Cases	239
		6.4.2 Automatic Setup of ECLIPSE DataSets	242
	6.5	Numerical Examples	243
		6.5.1 Packed Problems: Simulation of an Ensemble	244
		6.5.2 Bringing It All Together: Running a Big Model	246
	6.6	Concluding Remarks	249
		Appendix A Compilation of MRST Extensions	250
		Appendix B Output from AD Benchmark	251
	Refe	erences	252
	Par	t III Modeling of New Physical Processes	255
7	Usir	ng State Functions and MRST's AD-OO Framework to Implement	
	Sim	ulators for Chemical EOR	257
	XIN	SUN, KNUT-ANDREAS LIE, AND KAI BAO	

			Contents	ix
	7.1	Introd	uction	257
	7.2	Effect	ive Modeling Using Black-Oil-Type Equations	262
		7.2.1	Immiscible Flow Models	262
		7.2.2	Physical Effects of Polymer	264
		7.2.3	Physical Effects of Surfactants	281
	7.3	The S	urfactant–Polymer Flooding Simulator	290
		7.3.1	Design of Flexible Model Classes	291
		7.3.2	The Full Three-Phase, Five-Component Model	291
		7.3.3	A Generic Surfactant–Polymer Model	295
		7.3.4	Running the Simulator from an Input Deck	299
	7.4	Nume	rical Examples	300
		7.4.1	Numerical Resolution of Trailing Waves	301
		7.4.2	Subset from SPE10: Conformance Improvement	305
		7.4.3	The Dynamics of Slug Injection	307
		7.4.4	Validation against a Commercial Simulator	313
	7.5	Direct	tions and Suggestions for Future Improvements	318
	Refe	erences		321
8	Con	npositio	onal Simulation with the AD-OO Framework	324
	OLA	V MØYNI	ER	
	8.1	Introd	luction	324
	8.2	Gover	ming Equations	326
		8.2.1	Basic Flow Equations	327
		8.2.2	Thermodynamics	328
	8.3	Solvin	ng the Flash Problem	330
		8.3.1	Rachford–Rice: Determination of Vapor–Liquid	
			Equilibrium	330
		8.3.2	Updating the Thermodynamic Equilibrium	332
		8.3.3	Phase Stability Testing	338
		8.3.4	Equation of State	338
	8.4	Coupl	ed Flow and Thermodynamics	343
		8.4.1	Overall Composition Formulation	344
		8.4.2	Natural Variables Formulation	346
		8.4.3	Comparison between Different Formulations	349
		8.4.4	Implementation as Generic Models	354
		8.4.5	State Functions for Compositional Models	357
		8.4.6	Limitations and Caveats	361
	8.5	Exam	ples	362
		8.5.1	Validation of MRST's Simulators	362
		8.5.2	Numerical Accuracy	363
		8.5.3	Surface Volumes and Separators	365

х	Contents	
	8.5.4 Miscibility	368
	8.5.5 Performance of Compositional Solvers	369
	8.6 Concluding Remarks	370
	References	371
9	Embedded Discrete Fracture Models	375
	DANIEL WONG, FLORIAN DOSTER, AND SEBASTIAN GEIGER	
	9.1 Introduction	375
	9.2 Fracture Permeability	379
	9.3 Mathematical Formulation	379
	9.4 Hierarchical Fracture Model Module	383
	9.5 Two-Phase Flow through a Simple Fracture Network	385
	9.6 Upscaling a Stochastically Generated Fracture Network	394
	9.7 Simulation of Well Test Response in an Outcrop-Based	
	Fracture Network	400
	9.8 Concluding Remarks	403
	References	405
10	Numerical Modeling of Fractured Unconventional Oil	
	and Gas Reservoirs	409
	OLUFEMI OLORODE, BIN WANG, AND HARUN UR RASHID	
	10.1 Introduction	409
	10.2 Shale Module	414
	10.3 Compositional Flow and Modeling of Fractured Reservoirs	417
	10.3.1 Governing Equations for Compositional Flow	
	in Conventional Reservoirs	417
	10.3.2 Modeling of Fractured Reservoirs in MRST	418
	10.3.3 The pEDFM Transmissibilities	423
	10.4 EDFM and Compositional Simulation in MRST	424
	10.5 Stochastic Generation of Fractures with Arbitrary	
	Orientations in 3D	428
	10.5.1 Generation of Fracture Sets Using ADFNE	428
	10.6 Applications of 3D pEDFM to Model UOG Reservoirs	431
	10.6.1 Basic Model Parameters Representative of the Eagle	
	Ford Shale	431
	10.6.2 Implementation Steps	434
	10.6.3 Eagle Ford Shale Reservoir Simulation Results	436
	10.7 Modeling Transport and Storage Mechanisms in Organic-	
	Rich Source Rocks	440

	Contents	xi
	10.7.1 Sorption	442
	10.7.2 Molecular Diffusion	445
	10.7.3 Geomechanics Effect	447
	References	451
11	A Unified Framework for Flow Simulation in Fractured Reservoirs	454
	RAFAEL MARCH, CHRISTINE MAIER, FLORIAN DOSTER, AND SEBASTIAN GEIGER	
	11.1 Introduction	454
	11.2 Modeling and Simulation Techniques for Fractured	
	Reservoirs	456
	11.2.1 Governing Equations	459
	11.2.2 Multicontinuum Models	460
	11.2.3 Discrete Fracture and Matrix Model	463
	11.3 Implementation in MRST	465
	11.3.1 Multicontinuum and Discrete Fracture and Matrix Models	465
	11.3.2 A Brief Note on Other Methods	471
	11.3.3 Description of the fractures Module	472
	11.4 Applications	473
	11.4.1 Validation of the DFM Implementation	474
	11.4.2 Pressure Buildup in Fractured Aquifers during CO ₂	
	Storage Operations	475
	11.4.3 A Model with Explicit Fractures and Dual Porosity	478
	11.4.4 Multirate Transfer in Multicontinuum Model	482
	11.5 Summary and Conclusion	485
	References	487
12	Simulation of Geothermal Systems Using MRST	491
	MARINE COLLIGNON, ØYSTEIN S. KLEMETSDAL, AND OLAV MØYNER	
	12.1 Introduction	491
	12.2 Governing Equations for Geothermal Applications	493
	12.3 The Geothermal Module	496
	12.3.1 A Simple Worked Example	496
	12.3.2 Utility and State Functions	500
	12.4 Numerical Examples	502
	12.4.1 Benchmark with TOUGH2	503
	12.4.2 Subset of SPE10 Model 2	505
	12.4.3 Enhanced Geothermal System	507
	12.4.4 Thermal Aquifer Energy Storage	509
	12.5 Concluding Remarks	511
	References	513

xii	Contents	
13	A Finite-Volume-Based Module for Unsaturated Poroelasticity	515
	JHABRIEL VARELA, SARAH E. GASDA, EIRIK KEILEGAVLEN, AND JAN MARTIN	
	NORDBOTTEN	
	13.1 Introduction	515
	13.2 Governing Equations	517
	13.2.1 Richards' Equation	517
	13.2.2 Unsaturated Poroelasticity	519
	13.2.3 Boundary and Initial Conditions	520
	13.3 Discretization and Implementation	521
	13.3.1 MPFA and MPSA	521
	13.3.2 Discretization	523
	13.3.3 Solving the Equations	529
	13.4 Numerical Examples	530
	13.4.1 Numerical Convergence Tests	530
	13.4.2 Water Infiltration in a Column of Dry Soil	533
	12.5 Concluding Democra	557
	Deferences	544
	Kelelences	545
14	A Brief Introduction to Poroelasticity and Simulation of Coupled	
	Geomechanics and Flow in MRST	549
	ODD ANDERSEN	
	14.1 Introduction	549
	14.2 Governing Equations	551
	14.2.1 Equations of Linear Elasticity	551
	14.2.2 Equations of Linear Poroelasticity	558
	14.2.3 The Linear Poroelastic Equations	560
	14.3 Moduli, Moduli, Moduli	563
	14.3.1 The Biot–Willis Coefficient, α	565
	14.3.2 Drained and Undrained Moduli	566
	14.3.3 Specific Storage Coefficients	567
	14.3.4 Geertma's Uniaxial Expansion Coefficient, C_m	568
	14.3.5 Automatic Computation of Poroelastic Parameters	569 572
	14.4 Coupling Strategies	572
	14.4.1 Fully Coupled and Sequentially Split Schemes	572
	14.4.2 The Fixed Stress Split Scheme	515
	14.4.3 The ad-mechanics would in MKST	576
	14.5.1 Compression of a Dry Sample	576
	17.5.1 Compression of a Dry Sample	570

Contents	xiii
14.5.2 Compression of a Wet Sample: The Terzaghi Problem	581
14.5.3 Mandel's Problem	587
14.6 Concluding Remarks	594
References	595

Contributors

Odd Ander	sen	Mathen	natics & (Cybern	etics, SINTEF	Digital,	Oslo, Norway	
IZ ' D	17.0		0 0 1		COVERE DU	101		

Kai Bao Mathematics & Cybernetics, SINTEF Digital, Oslo, Norway

- Runar L. Berge Computational Geosciences and Modelling, NORCE, Bergen, Norway
- Marine Collignon Department of Earth Sciences, University of Geneva, Switzerland
- Florian Doster Institute of GeoEnergy Engineering, Heriot-Watt University, Edinburgh, UK
- Sarah E. Gasda Computational Geosciences and Modelling, NORCE, Bergen, Norway
- Sebastian Geiger Institute of GeoEnergy Engineering, Heriot-Watt University, Edinburgh, UK
- Eirik Keilegavlen Department of Mathematics, University of Bergen, Norway
- Øystein S. Klemetsdal Mathematics & Cybernetics, SINTEF Digital, Oslo, Norway
- Mohammed Al Kobaisi Department of Petroleum Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE
- Knut-Andreas Lie Mathematics & Cybernetics, SINTEF Digital, Oslo, Norway
- Christine Maier Institute of GeoEnergy Engineering, Heriot-Watt University, Edinburgh, UK
- Rafael March Institute of GeoEnergy Engineering, Heriot-Watt University, Edinburgh, UK
- Olav Møyner Mathematics & Cybernetics, SINTEF Digital, Oslo, Norway
- Jan Martin Nordbotten Department of Mathematics, University of Bergen, Norway
- Olufemi Olorode Craft & Hawkins Department of Petroleum Engineering, Louisiana State University, USA

xiv

Cambridge University Press 978-1-316-51996-7 — Advanced Modelling with the MATLAB Reservoir Simulation Toolbox Edited by Knut-Andreas Lie, Olav Møyner Frontmatter More Information

Contributors

XV

- Harun Ur Rashid Craft & Hawkins Department of Petroleum Engineering, Louisiana State University, USA
- Xin Sun School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, China
- Jhabriel Varela Department of Mathematics, University of Bergen, Norway
- Bin Wang Craft & Hawkins Department of Petroleum Engineering, Louisiana State University, USA
- Daniel Wong Institute of GeoEnergy Engineering, Heriot-Watt University, Edinburgh, UK
- Wenjuan Zhang Department of Petroleum Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE

Preface

The book you are holding is a follow-up to *An Introduction to Reservoir Simulation Using MATLAB/GNU Octave* published by Cambridge University Press in 2019, which gives a unique introduction on reservoir simulation, with its strong focus on computational aspects and how you would implement all the methods in practice. It also serves as a user guide to the MATLAB Reservoir Simulation Toolbox (MRST), and we thus herein refer to it as the "MRST textbook." In the current book, we expand on the material from the MRST textbook by explaining more recent features in MRST for rapid prototyping and improved computational performance and teaching the mathematical models and computational methods underlying new modules aiming at more accurate and efficient simulations or more advanced reservoir physics.

MRST: From Internal Research Tool to a Community Code

The MATLAB Reservoir Simulation Toolbox (MRST) has come a long way since the Computational Geosciences group at SINTEF first started developing it in late 2007. Originally, the software was intended as an internal toolbox to support the development of consistent discretizations and multiscale mixed finite-element methods on stratigraphic and unstructured grids. To be able to test new methods on the type of grids used by industry, we had to spend quite some time developing robust grid-processing and visualization routines for corner point, perpendicular bisector (PEBI), and other types of unstructured grids. We also developed a variety of data structures to represent petrophysical parameters, fluid behavior, boundary conditions, wells, etc. SINTEF has a long tradition of developing software tools of professional quality as part of our contract research, and it was therefore natural for us to put some effort into code quality and documentation even for an internal prototyping tool. The toolbox quickly proved to be quite versatile in terms of grid complexity, but we doubted that it had much commercial value, because it lacked many of the essential features seen in contemporary simulators.

xvii

Cambridge University Press 978-1-316-51996-7 — Advanced Modelling with the MATLAB Reservoir Simulation Toolbox Edited by Knut-Andreas Lie, Olav Møyner Frontmatter More Information

xviii

Preface

However, we nonetheless thought that it might have some value for students and other researchers, and in early 2009 we decided to give our toolbox a name and release it as free, open source, using a license that would prevent others from turning (parts of) it into a commercial product. (To be honest, we also harbored a small hope that free access to the new mimetic and multiscale methods would contribute to trigger additional interest from industry.)

So, on April 1, 2009, MATLAB Reservoir Simulation Toolbox version 1.1 was published online. The first release consisted of 147 MATLAB scripts, containing 8 594 lines of comments and 6 747 lines of code according to cloc. The toolbox offered three pressure solvers (two-point, mimetic, and multiscale mixed finite elements) and two transport solvers (implicit/explicit), both for incompressible flow, as well as a set of user tutorials and routines for 2D/3D plotting, grid processing, setting up data structure, unit conversion, etc.

Since then, the toolbox has gradually developed into a community code with a worldwide user base, as evidenced by the more than 190 master/PhD theses and 430 external scientific papers that we know for certain have used it.¹ Starting in 2011, MRST has followed a biannual release cycle, and since 2018 the underlying software repositories have been publicly available on Bitbucket.

Over the 23 published releases, the software has grown quite a lot, and the latest version, MRST 2021a, consists of a core module with basic tools for rapid prototyping of new computational methods plus 56 different add-on modules, large and small, that address a wide variety simulation and modeling needs. Sixteen of these modules have either been fully or partially developed by people outside of SINTEF. Altogether, the code base counts 3 387 MATLAB files with 246 000 lines of code and more than 117 000 lines of comments. Adding to this, there are now 3.3 times as many C/C++ code lines for MEX-accelerated functionality as the number of MATLAB code lines in the original release. You can also find third-party modules online that for various reasons are not included in the official release (e.g., because they have not been kept fully up to date or because the authors want to distribute the code themselves). There are also several modules in development, externally or internally in SINTEF, that we hope will be added to future releases.

Altogether, MRST has become a powerful prototyping tool for developing, validating, and verifying new computational methods and modeling methodologies. It is therefore natural that many modules implement methodologies that are still at the research front and have not yet been adopted in engineering practice. On the

¹ You can find an updated list of theses and publications on the MRST website. The list is far from complete and consists of work that Google Scholar or the authors have notified us of or work we have stumbled upon while reading scientific literature. We thus expect the real number to be higher, in particular for master/PhD theses.

Preface

other hand, the software also offers a lot of functionality found in commercial engineering tools, including industry-grade simulation capabilities for black-oil and compositional models. As a result, we see that an increasing number of users wish to apply MRST as if it was a standard simulator. Significant effort has therefore been invested into making MRST more computationally efficient and scalable, by removing computational overhead and integrating more high-performing linear solvers; this is discussed in more detail in Chapter 6.

One feature that distinguishes MRST from many other commercial tools is that any simulator built using the object-oriented, automatic differentiation (AD-OO) framework is differentiable or can quite easily be configured to be so, which means that users can obtain sensitivities and gradients with respect to model parameters. This is particularly useful for applications in optimization, model calibration, and uncertainty quantification. In fact, MRST supported solution of adjoint equations even before the AD-OO framework was introduced, and many of our primary users therefore came from research groups working on various aspects of long-term production optimization.

Back in 2009, the original scope of MRST was to develop new simulation technology for Darcy-type, single-continuum flow processes on a reservoir scale; e.g., as encountered in hydrocarbon recovery from clastic rocks. Since then, the scope has been significantly broadened. One of the first new applications introduced was modeling of long-term CO₂ storage in large-scale saline aquifers. To derive detailed trapping inventories over thousands of years, we developed a comprehensive set of modeling capabilities including geometric methods for deriving static capacity estimates, spill-point methods for simple dynamic estimates, as well as vertically integrated flow models, adaptively coupled with local 3D models, for accurate simulation of all trapping mechanisms except for mineral trapping. Likewise, the first third-party contribution included in the official release of MRST came in 2012 in the form of a module for discrete fracture modeling (DFM). Later, modeling of fractured reservoirs became much more developed and now includes modules for hierarchical and embedded discrete fracture modeling, dual-porosity modeling, multi-continuum models, and modeling of unconventional shale oil/gas. Likewise, new add-on modules have also been introduced for simulating geochemistry, geomechanical, and geothermal processes.

An important part of making a community code is to ensure that the software is properly documented, not only in terms of tutorials and inline or help-line documentation of functions and key data structures but also in terms of technical user guides that describe the underlying methods and models and discuss potential applications and important limitations. Early on, one of us (K-A) started writing such a user guide. Finishing it took almost 10 years, primarily because MRST kept expanding and hence also the scope of the book. At some point we had to draw

XX

Preface

the line and what we herein will refer to as the MRST textbook was published in 2019 by Cambridge University Press under Gold Open Access thanks to a generous donation from Equinor. The book gives a thorough introduction to the models, methods, and design principles underlying key parts of MRST, including grids and petrophysics, incompressible flow simulation (the incomp family of modules), compressible (black-oil) models, rapid prototyping and the AD-OO framework, as well as three selected workflow elements (grid coarsening, upscaling, and flow diagnostics to better understand the dynamic heterogeneity and volumetric communication in a reservoir). Although the book is quite long (650+ pages), it leaves large parts of the software undocumented. Even before the book was officially published, it was clear to us that we at some point would have to write a follow-up to satisfy the many requests for user guides for the more advanced parts of MRST. We quickly decided that such a book would have to be a multiauthored volume focusing on individual modules of the software.

The Need for This Book

Before the summer of 2019, we therefore put out a public call for contributed chapters to a new book on advanced functionality developed using MRST. The call stated that each chapter should be written in textbook form and should function as a user guide and tutorial for a specific module (what constitutes a module in MRST is explained in the next paragraph). To this end, the chapter should motivate the module; explain why it is interesting, and what types of problems it can be applied for; teach the methods and/or models implemented; and go through a few selected examples that outline the main functionality. The style should be much like in the first MRST book; e.g., with code excerpts intermingled with background theory and examples the readers can run themselves. All results should be reproducible, so that each chapter should be accompanied by a full set of code and data that are part of the official MRST releases and should be publicly accessible on Bitbucket.

To further explain the background of the book, a module in MRST is, strictly speaking, a collection of functions, object declarations, and example scripts located in a folder. Each module needs to have a unique name and reside in a different folder than other modules. Our only requirements are that the code is well tested and documented in a format that does not deviate too far from that used elsewhere in MRST; uses a clear naming convention that avoids potential clashes with other parts of MRST; and contains a few tutorial examples that outline the main functionality and explain the most common syntax. The code also needs to contain a clear specification of copyright and the license under which it can be used (the GNU General Public License). In addition, we recommend that modules do not use functionality from MATLAB's many toolboxes, which potential users may not have access to.

Preface

Following these specifications, we received close to 30 chapter proposals, and 17 of these were later developed into full manuscripts. After a careful peer and editorial review of the manuscripts and the accompanying code, 14 chapters were approved for inclusion in the book. These chapters span a wide variety of applications and research directions and have been subdivided into three parts.

Overview of the Book

Part I of the book focuses on grid generation, discretizations, and solvers and consists of four chapters. Chapter 1 discusses generation of constrained Voronoi grids that adapt to line and surface constraints. Using the methods in this chapter, you can easily generate complex unstructured grids that adapt to fault surfaces, fractures, or well paths. Chapters 2 and 3 discuss new methods for spatial discretization: nonlinear finite-volume schemes to ensure consistent pressure discretization that preserve the monotonicity of the solution, and discontinuous Galerkin discretization for improved spatial resolution of transport terms, which, e.g., can be used to reduce numerical smearing of linear and weakly nonlinear waves. Chapter 4 explains in detail the type of multiscale finite-volume methods that recently have been implemented in the commercial INTERSECT simulator and shows how this technology can be used to accelerate reservoir simulation.

Part II discusses recent developments in MRST that have been introduced to improve prototyping capabilities and ensure that the computational cost of running large simulation cases is more comparable with that of simulators written in compiled languages. Chapter 5 explains the concept of state functions and outlines further steps that have been taken to modularize the AD-OO framework. As a result, any simulator written using this framework can now be viewed as a differentiable graph in which the individual components, like fluid and pressure-volumetemperature properties or spatial/temporal discretizations, can easily be extended or replaced; e.g., to change the spatial and temporal discretization. State functions also play an essential part in the implementation of simulators for chemical enhanced oil recovery (EOR) and compositional simulations in Chapters 7 and 8. Chapter 6 discusses new backends that reduce the computational overhead of automatic differentiation as well as use of external, high-end iterative solvers that aim to improve MRST's scalability to larger models. The chapter also outlines tools for setting up and managing simulations cases so that aborted simulations can be restarted and results from previous simulations can be quickly retrieved without having to repeat the full simulation.

Part III concerns modeling of new physical processes beyond the simple incompressible and compressible black-oil models discussed in the MRST textbook. Chapter 7 gives a quick introduction to the salient physical mechanisms for surfactant and polymer flooding, which are two primary examples of chemical EOR

Cambridge University Press 978-1-316-51996-7 — Advanced Modelling with the MATLAB Reservoir Simulation Toolbox Edited by Knut-Andreas Lie, Olav Møyner Frontmatter More Information

xxii

Preface

techniques. The implementation in MRST relies heavily on the new state-function concept, and Chapter 5 is therefore strongly suggested as a pre-read. The chapter also reviews basic fractional-flow analysis and explains why trailing chemical waves are particularly susceptible to numerical smearing. Chapter 8 outlines the compositional module of MRST, whose development initially motivated the introduction of state functions and new accelerated AD backends.

Chapters 9–11 all concern modeling of fractured media. By reading Chapter 9, you will learn about embedded discrete fracture models (EDFMs), in which the fracture network is represented implicitly on a lower-dimensional grid constructed independently of the grid that represents the solid rock (matrix). Applicability of EDFMs is demonstrated on three examples, including a stochastically generated fracture network and a data set sourced from the Jandaira carbonate formation in Brazil. Chapter 10 introduces you to two other types of fracture modeling approaches. In discrete fracture and matrix (DFM) modeling, fractures are represented explicitly as lower-dimensional elements in the grid, whereas multicontinuum models represent the fractures and matrix as distinct continua that interact through transfer functions. The chapter presents a unified modeling framework that enables you to develop hybridized models that combine both approaches. The framework makes no distinction between dual-continuum and DFM methods and treats fractures and matrix as flowing or virtual domains, with transfer functions reinterpreted as fluxes between cells in different domains.

In Chapter 11, the authors combine and extend functionality from the modules for compositional flow and EDFM to model storage and transport mechanisms in fractured unconventional oil and gas reservoirs. Such reservoirs consist of organicrich source rocks and have very low matrix permeability and porosity. Hydrocarbons are usually produced by inducing hydraulic fractures, propped by solid particles, that connect the inherent natural fracture networks to the horizontal production wells to extract hydrocarbons stored in void spaces in the rock matrix, in microcracks, and in the natural fractures. The chapter discusses how to model the specific storage and transport mechanisms of unconventional reservoirs, including storage of gas in the sorbed state, contributions from molecular diffusion to the mass flux, and permeability changes in the fractured rock induced when pressure drops during production.

In enhanced geothermal systems (EGS), fractures are induced in a region with low permeability and high temperature and serve the same purpose as the fins of a conventional heat exchanger. Chapter 12 presents a new MRST module for modeling low- to moderate-enthalpy geothermal systems such as EGS and hightemperature aquifer thermal energy storage (HT-ATES).

Chapters 13 and 14 introduce you to some of the physics governing deformable rocks. Chapter 13 discusses unsaturated flow in non-deformable and deformable

Preface

porous media, modeled by the Richards' equation and the equations of unsaturated poroelasticity, respectively. Accurate modeling of such flow processes has high relevance in environmental sciences, hydrogeology, soil mechanics, and agriculture, and in the chapter, you will be introduced to the pertinent mathematical models and a new family of multipoint finite-volume solvers. Chapter 14 concerns the combined effects of flow and geomechanics, as modeled by a full linear poroelastic system. Inclusion of geomechanical effects is important to model processes such as fracturing pressure, fault (re)activation, seismicity, and subsidence. The chapter teaches the basic principles of geomechanics and its coupling to flow and outlines various solution strategies, including fully coupled, sequentially split, and fixed-stress split schemes.

xxiii

Acknowledgments

This book is primarily the result of work of the authors of each individual chapter. Without your hard work and willingness to share your code, neither this book nor the corresponding MRST modules would have existed. We, the editors, sincerely thank you for the important contribution you have made to the continued development of MRST as a research platform for the general benefit of the subsurface community. We also thank the anonymous referees, who spent considerable time reviewing both the chapter manuscripts and the accompanying codes to ensure that they are correct, accessible, and of high scientific quality. Finally, we thank our colleagues at SINTEF for all of the useful discussions and the support we have received during the work with this book.

Like the first MRST textbook, electronic copies of this book can be downloaded for free from the Cambridge University Press website. This was made possible by a grant from VISTA, which paid for the Gold Open Access fee. VISTA is a basic research program funded by Equinor (formerly Statoil) and conducted in close collaboration with the Norwegian Academy of Science and Letters.

Navigating the Book and the MRST Modules

This book can be seen as a user guide to some of the add-on modules in the MAT-LAB Reservoir Simulation Toolbox (MRST). To help you navigate the book, we provide a list that connects chapters and MRST modules and also ties connections among the different chapters and other parts of MRST.

Chapter	Module	Maintained by	Comments
Part I:			
1	upr	NORCE/SINTEF	Developed by Berge in cooperation with SINTEF while he was a master's student at NTNU and a PhD student at the University of Bergen. Complements chapter 3 in the MRST textbook but can be read independently of the other chapters herein.
2	nfvm	Khalifa University, SINTEF	The authors have asked SINTEF to maintain the module, which complements the mimetic and mpfa modules discussed in Chapter 6 of the MRST textbook. The chapter can be read independently of the other chapters herein.

xxvi	Navigating the Book and the MRST Modules					
Chapter	Module	Maintained by	Comments			
3	dg	SINTEF	Can be read independently of the other chapters but includes a discussion of numerical smearing that complements Chapter 7.			
-		SILVILI	the other chapters of the book. MsRSB is an alternative to the algebraic multigrid methods discussed in Chapter 6.			
Part II:						
5	ad-core	SINTEF	Introduces state functions and generic model classes, which are used in modules such as ad-blackoil, ad-eor, compositional, and geothermal Complements chapter 12 in the MRST textbook and is a suggested preread for most chapters in Part III			
6	ad-core, linearsolvers	SINTEF	Introduces new AD backends and explains how to use external iterative solvers and how to set up batch simulations. The content is relevant for Chapters 4 and 7–14 but not a necessary preread.			
Part III:						
7	ad-eor	SINTEF	Uses state functions from ad-core extensively and thus complements the discussion in Chapters 5 and 8.			

Chapter	Module	Maintained by	Comments
8	compositional	SINTEF	Can be read independently of the other chapters but is a suggested preread for Chapter 10. Likewise, Chapter 5 is a suggested preread.
9	hfm	Heriot-Watt University	Can be read independently of the other chapters but is a suggested preread for Chapter 10, because this chapter extends the EDFM method
10	shale	Louisiana State University	Builds on the compositional and hfm modules from Chapters 8 and 9.
11	fractures	Heriot-Watt University	Uses state functions from Chapter 5 but can be read independently of the other chapters in the book.
12	geothermal	SINTEF	Uses state functions from Chapter 5 and grids from Chapter 1 but can be read independently of the other chapters in the book.
13	fv-unsat (+fvbiot)	University of Bergen	The new fv-unsat module is built on top of fvbiot, which provides discrete MPFA and MPSA operators, along with the coupling operators for the flow/mechanical problem. Can be read independently of the other chapters.
14	ad-mechanics (+vemmech)	SINTEF	Uses a virtual element solver from vemmech. Can be read independently of the other chapters in the book.

xxvii