Cambridge University Press & Assessment 978-1-316-51967-7 — Linear State/Signal Systems Damir Z. Arov , Olof J. Staffans Table of Contents <u>More Information</u>

Contents

Preface pa					
List	of Not	tations		xxiii	
1	1 Introduction and Overview				
	1.1	Linear 7	Fime-Invariant Dynamical Systems	1	
		1.1.1	State Systems	2	
		1.1.2	Systems That Interact with the Outside World	3	
		1.1.3	Input/State/Output Systems	3	
		1.1.4	Input/Output Systems	4	
		1.1.5	Classical (Sub)networks	5	
		1.1.6	Port-Hamiltonian Systems	5	
		1.1.7	Behavioral Systems	6	
		1.1.8	State/Signal Systems	7	
		1.1.9	State/Signal versus I/S/O Systems	8	
		1.1.10	Frequency Domain Systems	10	
		1.1.11	Boundary Triplets	11	
		1.1.12	State/Signal versus Behavioral Systems	11	
		1.1.13	How to Read This Book	12	
		1.1.14	H-Spaces	12	
		1.1.15	Where to Go from Here?	13	
	1.2	An Ove	erview of State/Signal and Input/State/Output Systems	14	
		1.2.1	Input/State/Output Systems	14	
		1.2.2	Well-Posed I/S/O Systems	17	
		1.2.3	State/Signal Systems	18	
		1.2.4	I/S/O Representations	19	
		1.2.5	Similarity of I/S/O and State/Signal Systems	20	
		1.2.6	Input/Output Invariant Properties of I/S/O Systems	23	
		1.2.7	Properties of I/S/O Systems in the State/Signal Sense	e 25	

Cambridge University Press & Assessment 978-1-316-51967-7 — Linear State/Signal Systems Damir Z. Arov, Olof J. Staffans Table of Contents <u>More Information</u>

vi

2

Contents

	1.2.8	Static Transformations of I/S/O and State/Signal	
		Systems	26
	1.2.9	Invariant Subspaces of I/S/O and State/Signal	
		Systems	28
	1.2.10	Interconnections of I/S/O and State/Signal Systems	29
	1.2.11	External Characteristics of I/S/O and State/Signal	
		Systems	31
	1.2.12	Restrictions, Projections, and Compressions	31
	1.2.13	I/S/O and State/Signal Systems in Discrete Time	33
	1.2.14	The Resolvent Matrix of an I/S/O System	35
	1.2.15	The Resolvent Set and the Characteristic Bundles of	
		State/Signal Systems	37
	1.2.16	Well-Posed I/S/O and State/Signal Systems	
		in the Frequency Domain	39
	1.2.17	General Resolvable Frequency Domain I/S/O and	
		State/Signal Systems	40
	1.2.18	Dual and Adjoint I/S/O and State/Signal Systems	42
	1.2.19	Passive I/S/O and State/Signal Systems	44
	1.2.20	Passive Finite-Dimensional Electrical n-Ports	45
	1.2.21	Some Finite-Dimensional Passive 2-Ports	51
	1.2.22	Some Distributed Parameter Passive Systems	59
1.3	Notes a	nd Comments	68
State	e/Signal S	Systems: Trajectories, Transformations, and	
Inter	rconnect	ions	71
2.1	State/Si	ignal Nodes and State/Signal Systems	71
	2.1.1	The State/Signal System and Its Trajectories	71
	2.1.2	Regular and Semiregular State/Signal Nodes	75
	2.1.3	Kernel and Image Representations of Closed	
		State/Signal Nodes	80
	2.1.4	Bounded State/Signal Nodes and Systems	84
2.2	Some E	Basic Transformations of State/Signal Nodes	87
	2.2.1	Similarity of Two State/Signal Nodes	87
	2.2.2	Time Reflection of a State/Signal Node	89
	2.2.3	Time Rescaling of a State/Signal Node	91
	2.2.4	Exponentially Weighted State/Signal Nodes	92
2.3	Propert	ies of Trajectories of State/Signal Systems	93
	2.3.1	Classical, Generalized, and Mild Trajectories	93
	2.3.2	Existence and Uniqueness of Trajectories	95

3

		Contents	vii
	2.3.3	Connections between Classical, Generalized, and	
		Mild Trajectories	100
2.4	Some A	Additional Transformations of State/Signal Nodes	104
	2.4.1	The (P, Q) -Image of a State/Signal Node	104
	2.4.2	Parts and Static Projections of a State/Signal Node	107
	2.4.3	Adding Inputs and Output to a State/Signal Node	111
2.5	Interco	onnections of State/Signal Nodes	118
	2.5.1	The Cross Product of Two State/Signal Nodes	118
	2.5.2	(P, Q)-Interconnections of State/Signal Nodes	119
	2.5.3	A Short Circuit Connection of State/Signal Nodes	120
	2.5.4	Examples of Interconnections of State/Signal Nodes	121
2.6	Examp	oles of Infinite-Dimensional State/Signal Systems	123
State	e/Signal	Systems: Dynamic and Frequency Domain Properties	132
3.1	Signal	Behaviors and Their State/Signal Realizations	132
	3.1.1	Future Signal Behaviors	132
	3.1.2	External Equivalence of State/Signal Systems	133
3.2	Dynam	nic Properties of State/Signal Systems	133
	3.2.1	Controllability and Observability of State/Signal	
		Systems	134
	3.2.2	Intertwinements of State/Signal Systems	140
	3.2.3	Compressions, Restrictions, and Projections of	
		State/Signal Systems	142
	3.2.4	Examples of Minimal Compressions	148
	3.2.5	State/Signal Systems with the Continuation Property	153
3.3	State S	Systems	156
	3.3.1	A State System and Its Trajectories	157
	3.3.2	The Homogeneous Cauchy Problem	158
	3.3.3	Bounded State Systems and Uniformly Continuous	
		Groups	159
	3.3.4	Well-Posed State Systems and Strongly Continuous	
		Semigroups	163
	3.3.5	Transformations and Interconnections of State Nodes	169
	3.3.6	Invariant Subspaces of State Nodes	171
	3.3.7	Intertwinement of State Nodes	173
3.4	Freque	ency Domain Characteristics of State/Signal Nodes	174
	3.4.1	The Characteristic Node Bundle	174
	3.4.2	The Characteristic Control Bundle	178
	3.4.3	The Characteristic Observation Bundle	179
	3.4.4	The Characteristic Signal Bundle	180

Cambridge University Press & Assessment 978-1-316-51967-7 — Linear State/Signal Systems Damir Z. Arov, Olof J. Staffans Table of Contents <u>More Information</u>

> viii Contents 3.4.5 The Characteristic Bundles of Transformed State/Signal Systems 182 The Resolvent of a Regular State Node 3.4.6 189 The Resolvent Set of a State/Signal Node 3.4.7 191 Invariance with Respect to Similarities 3.5 192 3.6 Dual and Adjoint State/Signal Nodes and Systems 194 3.6.1 The Dual of a State/Signal System 194 3.6.2 The Duals of Some Transformed State/Signal Nodes 202 The Characteristic Bundles of Dual State/Signal Nodes 3.6.3 206 3.6.4 The Adjoint State/Signal System 207 3.7 Notes to Chapters 2 and 3 213 4 Input/State/Output Representations 217 4.1 Input/State/Output Nodes and Systems 217 4.1.1 Regular I/S/O Nodes 217 4.1.2 General I/S/O Nodes and Systems 220 4.1.3 Kernal and Image Representations of Closed I/S/O Nodes 223 State, Input/State and State/Output Nodes and Systems 4.1.4 226 4.1.5 Input/State and State/Output Representations of State/Signal Systems 228 229 4.1.6 Free Inputs and Continuously Determined Outputs 4.1.7 Existence and Uniqueness of Trajectories 230 4.1.8 Bounded I/S/O Nodes and Systems 232 4.2 Input/State/Output Representations of State/Signal Nodes and Systems 234 4.2.1 The State/Signal Node Induced by an I/S/O Node 234 4.2.2 I/O Representations of the Signal Space 236 4.2.3 General I/S/O Representations of a State/Signal Node 239 4.2.4 Semiregular I/S/O Representations of a Semiregular State/Signal Node 241 4.2.5 Regular I/S/O Representations of a Regular State/Signal 242 Node 4.2.6 Parametrization of I/S/O Representations 246 4.2.7 Bounded I/S/O Representations of Bounded State/Signal Nodes 248 4.2.8 Parametrization of Bounded I/S/O Representations 251 4.3 State Feedback and Output Injection Representations 256 4.3.1 State Feedback Representations 256 4.3.2 **Output Injection Representations** 259

			Contents	ix
	4.4	Basic '	Transformations of Input/State/Output Nodes	261
		4.4.1	Similarity of I/S/O Nodes	261
		4.4.2	Time Reflection of an I/S/O Node	263
		4.4.3	Time Rescaling of an I/S/O Node	264
		4.4.4	Exponentially Weighted I/S/O Nodes	265
	4.5	Proper	ties of Trajectories of Input/State/Output Systems	267
		4.5.1	Basic Properties of the Sets of Classical	
			and Generalized Trajectories	267
		4.5.2	Solvability and the Uniqueness Property	268
		4.5.3	Connections between Classical, Generalized,	
			and Mild Trajectories	270
	4.6	Some	Simple Input/State/Output Examples	273
5	Inpu	ıt/State/	Output Systems: Dynamic and Frequency Domain	
	Proj	perties		276
	5.1	Additi	onal Transformations of Input/State/Output Nodes	276
		5.1.1	Adding a Feedthrough Term to an I/S/O Node	276
		5.1.2	Modifying Inputs and Outputs of an I/S/O Node	277
		5.1.3	The (P, R, Q) -Image of an I/S/O Node	278
		5.1.4	Parts and Static Projections of an I/S/O Node	281
		5.1.5	Static Output Feedback	285
		5.1.6	Adding Inputs and Outputs to an I/S/O Node	287
		5.1.7	A Second Look at State Feedbacks and Output	
			Injections	297
	5.2	Interco	onnections of Input/State/Output Nodes	303
		5.2.1	The Cross Product of Two I/S/O Nodes	303
		5.2.2	(P, R, Q)-Interconnections of I/S/O Nodes	305
		5.2.3	A Short Circuit Connection of I/S/O Nodes	306
		5.2.4	T-Junctions, Sum Junctions, and Difference	
			Junctions	307
		5.2.5	Parallel and Difference Connections	311
		5.2.6	Cascade Connections	313
		5.2.7	Dynamic Feedback	316
		5.2.8	Examples of I/S/O Interconnections	317
	5.3	Realiz	ations of Input/Output Behaviors	318
		5.3.1	Future I/O Behaviors	318
		5.3.2	External Equivalence of I/S/O Systems	319
	5.4	Dynan	nic Properties of Input/State/Output Systems	320
		5.4.1	Controllability and Observability of I/S/O Systems	320
		5.4.2	Intertwinements of I/S/O Systems	325

х			Contents	
		5.4.3	Compressions, Restrictions, and Projections of I/S/O	
			Systems	326
		5.4.4	I/S/O Systems with the Continuation Property	330
	5.5	Freque	ency Domain Characteristics of Input/State/Output Nodes	331
		5.5.1	The Characteristic Node Bundle of an I/S/O Node	331
		5.5.2	The I/S/O Resolvent Matrix of an I/S/O Node	334
		5.5.3	Resolvability of Transformed I/S/O Nodes	338
		5.5.4	Frequency Domain I/S/O-Admissible I/O	
			Representations	341
	5.6	The Co	prrespondence between State/Signal and Input/State/Output	
		Notion	IS	343
		5.6.1	I/O Invariant Notions	343
		5.6.2	Properties of I/S/O Systems in the State/Signal Sense	349
	5.7	Adjoin	it and Dual Input/State/Output Nodes and Systems	351
		5.7.1	The Adjoint and the Dual of an I/S/O Node	351
		5.7.2	Adjoint and Dual I/S/O Representations	354
		5.7.3	I/S/O Lagrange Identities	355
		5.7.4	Properties of Adjoint and Dual I/S/O Nodes and	
			Systems	359
		5.7.5	The Adjoints and Duals of Some Transformed I/S/O	
			Nodes	360
		5.7.6	The Adjoints and Duals of Some Interconnected	
			I/S/O Nodes	364
	5.8	Notes	to Chapters 4 and 5	366
6	Bou	nded In	put/State/Output Systems in Continuous and Discrete	
	Tim	e		370
	6.1	Bound	ed State Operators and Nodes	370
		6.1.1	The Spectral Radius of a Bounded State Operator	370
		6.1.2	Invariant Subspaces of Bounded State Operators	
			and Uniformly Continuous Groups	372
		6.1.3	Parts and Projections of Bounded State Operators	373
		6.1.4	Parts and Projections of Uniformly Continuous	
			Groups	375
		6.1.5	Intertwinements of Bounded State Operators and	
			Uniformly Continuous Groups	377
		6.1.6	Compressions of Bounded State Operators and	
			Uniformly Continuous Groups	379
		6.1.7	The General Structure of a Compression of a	
			Bounded State Operator	385

Cambridge University Press & Assessment 978-1-316-51967-7 — Linear State/Signal Systems Damir Z. Arov, Olof J. Staffans Table of Contents <u>More Information</u>

		Contents	xi
	6.1.8	The Adjoints of Bounded State Operators and	
		Uniformly Continuous Groups	390
6.2	Static 1	Properties of Bounded Input/State/Output Nodes	393
	6.2.1	Transformations of Bounded I/S/O Nodes	393
	6.2.2	Interconnections of Bounded I/S/O Nodes	403
	6.2.3	The I/S/O Resolvent Matrix of a Bounded I/S/O Node	406
6.3	Dynan	nic Properties of Bounded Input/State/Output Systems	407
	6.3.1	Strongly Invariant and Unobservably Invariant	
		Subspaces	407
	6.3.2	External Equivalence of Bounded I/S/O Systems	415
	6.3.3	Intertwinements of Bounded I/S/O Systems	417
	6.3.4	Restrictions and Projections of Bounded I/S/O Systems	421
	6.3.5	Compressions of Bounded I/S/O Systems	423
	6.3.6	The General Structure of a Bounded I/S/O Compression	428
	6.3.7	Compressions into Minimal Bounded I/S/O Systems	435
6.4	The A	djoint and the Dual of a Bounded Input/State/Output	
	Node		439
6.5	Discret	te Time Input/State/Output Systems	444
	6.5.1	Introduction to Discrete Time I/S/O Systems	444
	6.5.2	Properties of Discrete Time I/S/O Systems	445
	6.5.3	Time Reflection of Discrete Time I/S/O Systems	448
	6.5.4	Power Weightings of Discrete Time I/S/O Systems	449
	6.5.5	Frequency Domain Shifts of Discrete Time I/S/O	
		Systems	450
	6.5.6	Stable Discrete Time I/S/O Systems	451
	6.5.7	Connections between Continuous and Discrete Time	
		I/S/O Properties	453
	6.5.8	Dynamic Notions for Bounded I/S/O Nodes	454
6.6	Bound	ed Input/State/Output Realizations	456
	6.6.1	Analyticity at Infinity of the I/S/O Resolvent Matrix	456
	6.6.2	Existence of a Bounded I/S/O Realization	457
Boui	nded Sta	ate/Signal Systems in Continuous and Discrete Time	460
7.1	Static 1	Properties of Bounded State/Signal Nodes	460
	7.1.1	The I/S/O-Bounded Resolvent Set of a Bounded	
		State/Signal Node	460
	7.1.2	Transformations of Bounded State/Signal Nodes	462
	7.1.3	Resolvability of Transformations of State/Signal	
		Nodes	476
7.2	Dynan	nic Properties of Bounded State/Signal Systems	481

7

Cambridge University Press & Assessment 978-1-316-51967-7 — Linear State/Signal Systems Damir Z. Arov , Olof J. Staffans Table of Contents <u>More Information</u>

xii

8

Contents

	7.2.1	Strongly Invariant and Unobservably Invariant	
		Subspaces	481
	7.2.2	External Equivalence of Bounded State/Signal Systems	489
	7.2.3	Intertwinements of Bounded State/Signal Systems	490
	7.2.4	Restrictions and Projections of Bounded State/Signal	
		Systems	494
	7.2.5	Compressions of Bounded State/Signal Systems	496
	7.2.6	The General Structure of a Bounded State/Signal	
		Compression	498
	7.2.7	Compressions into Minimal Bounded State/Signal	
		Systems	504
	7.2.8	Bounded State/Signal Realizations	505
7.3	The Dua	al and the Adjoint of a Bounded State/Signal Node	506
7.4	Discrete	Time State/Signal Systems	510
	7.4.1	Introduction to Discrete Time State/Signal Systems	510
	7.4.2	Properties of Discrete Time State/Signal Systems	511
	7.4.3	Time Reflection of Discrete Time State/Signal Systems	513
	7.4.4	Power Weightings of Discrete Time State/Signal	
		Systems	513
	7.4.5	Frequency Domain Shifts of Discrete Time State/Signal	
		Systems	514
	7.4.6	Stable Discrete Time State/Signal Systems	515
	7.4.7	Connections between Continuous and Discrete Time	
		State/Signal Properties	515
	7.4.8	Dynamic Notions for Bounded State/Signal Nodes	516
7.5	Notes to	Chapters 6 and 7	518
Semi	bounded	d Input/State/Output Systems	521
8.1	C_0 Semi	groups and Well-Posed State Systems	521
	8.1.1	On the Resolvents of Generators of C_0	
		Semigroups	521
	8.1.2	The Inhomogeneous Cauchy Problem	524
	8.1.3	Invariant Subspaces of C_0 Semigroups	530
	8.1.4	Parts, Projections, and Restrictions of Single-Valued	
		Resolvable Main Operators	530
	8.1.5	Parts and Projections of C_0 Semigroups	533
	8.1.6	Intertwinements of C_0 Semigroups	535
	8.1.7	Compressions of C_0 Semigroups	536
	8.1.8	The General Structure of a Compression of a C_0	
		Semigroup	539

9

		Contents	xiii
	8.1.9	The Adjoint of a C_0 Semigroup	542
8.2	Semi-b	pounded Input/State/Output Systems	544
	8.2.1	Introduction to Semi-bounded I/S/O Systems	544
	8.2.2	Transformations of Semi-bounded I/S/O Nodes	547
	8.2.3	Interconnections of Semi-bounded I/S/O Nodes	551
	8.2.4	The I/S/O Resolvent Matrix of a Semi-bounded I/S/O Node	552
8.3	Dynan	nic Properties of Semi-bounded Input/State/Output	
	System	ns	553
	8.3.1	Strongly Invariant and Unobservably Invariant	
		Subspaces	553
	8.3.2	External Equivalence of Semi-bounded I/S/O Systems	559
	8.3.3	Intertwinements of Semi-bounded I/S/O Systems	559
	8.3.4	Restrictions and Projections of Semi-bounded I/S/O	
		Systems	562
	8.3.5	Compressions of Semi-bounded I/S/O Systems	563
	8.3.6	The General Structure of a Semi-bounded I/S/O	
	- - -	Compression	565
	8.3.7	Compressions into Minimal Semi-bounded I/S/O	570
0.4		Systems	570
8.4	The A	djoint of a Semi-bounded input/State/Output Node	572
Sem	i-bound	ed State/Signal Systems	576
9.1	Static 1	Properties of Semi-bounded State/Signal Nodes	576
	9.1.1	Introduction to Semi-bounded State/Signal Nodes	
		and Systems	576
	9.1.2	The I/S/O Semi-bounded Resolvent Set of a	
		Semi-bounded State/Signal Node	580
	9.1.3	Transformations and Interconnections	
	5	of Semi-bounded State/Signal Nodes	581
9.2	Dynan	nic Properties of Semi-bounded State/Signal Systems	581
	9.2.1	Strongly Invariant and Unobservably Invariant	501
	0.0.0	Subspaces	581
	9.2.2	External Equivalence of Semi-bounded State/Signal	501
	0 2 2	Systems Intertwinements of Semi bounded State/Signal Systems	505
	9.2.3	Bostrictions and Broisstions of Somi hounded	383
	7.2.4	State/Signal Systems	587
	025	Compressions of Semi-bounded State/Signal Systems	588
	2.4.3	Compressions of Senn-bounded State/Signal Systems	200

xiv			Contents	
		9.2.6	The General Structure of a Semi-bounded State/Signal Compression	589
		9.2.7	Compressions into Minimal Semi-bounded State/Signal	
			Systems	593
	9.3	The Adj	joint of a Semi-bounded State/Signal Node	594
	9.4	Notes to	Chapters 8 and 9	596
10	Reso	lvable In	put/State/Output and State/Signal Nodes	599
	10.1	Resolva	ble State Nodes	599
		10.1.1	Linear Operator-Valued Pencils	599
		10.1.2	The Resolvent of a State Node	601
		10.1.3	The Interpolation Space of a Semiregular State Node	606
		10.1.4	The Extrapolation Space of a Regular Resolvable	
			State Node	607
		10.1.5	The Duals of the Interpolation and Extrapolation	
			Spaces	610
		10.1.6	The Interpolation and Extrapolation Spaces of a	
			Semigroup Generator	613
	10.2	Resolva	ble Input/State/Output Nodes	614
		10.2.1	Resolvability of an I/S/O Node	615
		10.2.2	Kernel and Image Representations of the I/S/O	
			Resolvent Matrix	618
		10.2.3	The I/S/O Resolvent Identity	620
		10.2.4	Representations of the System Operator	624
		10.2.5	Semiregular and Regular Resolvable I/S/O Nodes	628
		10.2.6	The Observation and Control Operators of a Regular	
			Resolvable I/S/O Node	631
		10.2.7	Some Examples of Regular Resolvable I/S/O Nodes	637
		10.2.8	Resolvability of Transformed I/S/O Nodes	640
		10.2.9	Resolvability of Interconnected I/S/O Nodes	647
		10.2.10	The Resolvent Family of Bounded I/S/O Nodes	652
		10.2.11	A Finite-Dimensional Nonregular Resolvable I/S/O	
			Node	653
		10.2.12	The Adjoint and the Dual of a Resolvable I/S/O Node	655
	10.3	Resolva	ble State/Signal Nodes	658
		10.3.1	On the Resolvent Set of a Closed State/Signal Node	658
		10.3.2	Frequency Domain I/S/O-Admissible I/O	
			Representations	662
		10.3.3	Resolvability of Transformed State/Signal Nodes	669
		10.3.4	The Resolvent Family of Bounded State/Signal Nodes	673

	Contents			XV
		10.3.5	The Dual and the Adjoint of a Resolvable State/Signal	
			System	674
	10.4	Notes an	nd Comments	676
11	Freq	uency Do	omain Input/State/Output Systems	679
	11.1	Frequen	cy Domain Input/State/Output Systems	679
		11.1.1	Introduction to Frequency Domain I/S/O Systems	679
		11.1.2	Frequency Domain Controllability and Observability	681
		11.1.3	Frequency Domain Invariance	682
		11.1.4	The Frequency Domain Behavior and External	
			Equivalence	689
		11.1.5	Frequency Domain Intertwinements	690
		11.1.6	Frequency Domain Compressions, Restrictions,	
			and Projections	696
		11.1.7	Resolvable Frequency Domain Compressions,	
			Restrictions, and Projections	698
		11.1.8	The General Structure of a Resolvable Frequency	
			Domain Compression	704
		11.1.9	Compressions into Ω -Minimal I/S/O Systems	712
	11.0	11.1.10	Results for Connected Frequency Domains	715
	11.2	The Adj	joint and the Dual of a Frequency Domain	
		Input/St	ate/Output System	725
		11.2.1	Frequency Domain Lagrange Identities	726
		11.2.2	Properties of Adjoint and Dual Frequency Domain	720
	11.0	Б	I/S/O Systems	728
	11.3	Frequen	cy Domain Notions for 22-Resolvable Input/State/Output	720
		Nodes		/30
		11.3.1	Dynamic Properties of the Resolvent Family of	720
	11 /	Dagalwa	Bounded I/S/O Nodes	730
	11.4		Frequency Domain State Systems	133
		11.4.1	Frequency Domain Invariance	/34
		11.4.2	Compressions	724
		11/2	Compressions Posults for Connected Frequency Domains	734
		11.4.3	Fraguency Domain Duality	730
	115	Notes a	ad Comments	740
	-			/ + 1
12	Freq	uency Do	omain State/Signal Systems	743
	12.1	Frequen	Cy Domain State/Signal Systems	143
		12.1.1	Introduction to Frequency Domain State/Signal	- 10
			Systems	143

Cambridge University Press & Assessment 978-1-316-51967-7 — Linear State/Signal Systems Damir Z. Arov, Olof J. Staffans Table of Contents <u>More Information</u>

> xvi Contents 12.1.2 Separately and Jointly I/S/O Admissible Frequency 745 Domains 12.1.3 Frequency Domain Controllability and Observability 747 12.1.4 Frequency Domain Invariance 748 12.1.5 The Frequency Domain Behavior and External Equivalence 752 12.1.6 Frequency Domain Intertwinements 755 12.1.7 Frequency Domain Compressions, Restrictions, 761 and Projections 12.1.8 Resolvable Frequency Domain Compressions, Restrictions, and Projections 763 12.1.9 The General Structure of a Resolvable Frequency **Domain Compression** 769 12.1.10 Compressions into Ω -Minimal State/Signal Systems 773 12.2 Local Frequency Domain Notions 775 Local Frequency Domain Notions for Ω -Resolvable 12.2.1 State/Signal Systems 776 12.2.2 **Connected Frequency Domains** 783 12.3 The Dual and the Adjoint of a Frequency Domain State/Signal 793 System 12.3.1 Frequency Domain Lagrange Identities 794 12.3.2 Properties of Dual and Adjoint Frequency Domain State/Signal Systems 795 12.4 Frequency Domain Notions for Ω -Resolvable State/Signal Nodes 798 12.4.1 Dynamic Properties of the Resolvent Family of Bounded State/Signal Nodes 798 12.5 Notes and Comments 801 13 **Internally Well-Posed Systems** 802 13.1 Internally Well-Posed Input/State/Output Systems 802 **Basic Definitions and Properties** 13.1.1 802 13.1.2 Transformations and Interconnections 804 13.2 Frequency-Domain Internally Well-Posed Input/State/Output **Systems** 805 13.2.1 Frequency Domain Invariance 806 13.2.2 Frequency Domain Intertwinements 806 13.2.3 Frequency-Domain Restrictions, Projections, and Compressions 807 13.2.4 The General Structure of $\rho_{+\infty}(\Sigma)$ -Compressions 809

		Contents					
	13.3	Internal	lly Well-Posed State/Signal Systems	812			
		13.3.1	Basic Definitions and Properties	812			
		13.3.2	Frequency-Domain Compressions of Internally				
			Well-Posed State/Signal Systems	813			
	13.4	Notes a	nd Comments	814			
14	Well	-Posed I	nput/State/Output Systems	816			
	14.1	Basic P	roperties of Well-Posed Input/State/Output Systems	816			
		14.1.1	The Definition of a Well-Posed I/S/O System	816			
		14.1.2	Alternative Conditions for Well-Posedness	819			
		14.1.3	The Fundamental I/S/O Solution of a Well-Posed				
			I/S/O System	825			
	14.2	The Gr	owth Bound of a Well-Posed Input/State/Output System	833			
		14.2.1	The Growth Bound of a Well-Posed I/S/O System	833			
		14.2.2	Stable I/S/O Systems	838			
	14.3	Resolva	ability of Well-Posed Input/State/Output Systems	842			
		14.3.1	Well-Posed I/S/O Systems Are Resolvable	842			
		14.3.2	Growth Estimates for the I/S/O Resolvent Matrix	847			
	14.4	Realiza	tions of Shift-Invariant Causal Linear Operators	850			
		14.4.1	Shift Invariant Causal Linear Operators	850			
		14.4.2	Realizations of Shift Invariant Causal Linear Operators	852			
		14.4.3	Toeplitz and Hankel Operators	853			
	14.5	Transfe	ormations and Interconnections of Well-Posed	~			
		Input/S	tate/Output Systems	857			
		14.5.1	Well-Posedness and Stability of Transformed I/S/O	0.57			
		1150	Systems	857			
		14.5.2	Well-Posedness and Stability of Interconnected I/S/O	0.64			
		1450	Systems	864			
	14.0	14.5.3 D	Stabilizable and Detectable I/S/O Systems	867			
	14.0	Dynam	Steep else Inversiont and Linghammable Inversiont	869			
		14.0.1	Strongly invariant and Unobservably invariant	0(0			
		1460	Subspaces	809			
		14.0.2	Intertwinements of well-Posed I/S/O Systems	870			
		14.0.5	The Conoral Structure of a Wall Deced US/O	0/4			
		14.0.4	Compression	870			
		1465	Compressions Into Minimal Wall Dasad I/S/O Systems	019			
	1/17	14.0.J Woll D	Compressions into minimal well-rosed 1/5/O Systems	000			
	14./	Domair	osca inpurstato ouput systems in the riequency	887			
		14 7 1	Time and Frequency Domain External Equivalence	888			
		14.7.1	Time and Frequency Domain External Equivalence	888			
		17./.4	This and Trequency Domain Invariance	000			

xviii			Contents	
		14.7.3	Time and Frequency Domain Compressions and	
			Intertwinements	889
		14.7.4	Frequency Domain Stability	891
	14.8	The Ad	joint of a Well-Posed Input/State/Output System	893
	14.9	Scatteri	ng Passive Input/State/Output Systems	897
		14.9.1	Hilbert Space I/S/O Nodes and Systems	897
		14.9.2	Scattering Passive I/S/O Systems	898
		14.9.3	The Internal I/S/O Cayley Transform	901
		14.9.4	The Adjoint of a Passive Scattering System	904
	14.10) Notes a	nd Comments	904
15	Well	-Posed S	tate/Signal Systems	907
	15.1	Basic P	roperties of Well-Posed State/Signal Systems	907
		15.1.1	Basic Definitions	907
		15.1.2	Well-Posedness and Stability of Transformed I/S/O	
			Systems	913
		15.1.3	The Behaviors Induced by a Well-Posed State/Signal	
			System	914
		15.1.4	The Past/Present and Present/Future Maps of a	
			Well-Posed State/Signal System	916
	15.2	Stable S	State/Signal Systems	920
		15.2.1	Stable State/Signal Trajectories	920
		15.2.2	Stable State/Signal Behaviors	921
		15.2.3	Stabilizable and Detectable State/Signal Systems	922
	15.3	Realiza	tions of Well-Posed Behaviors	925
		15.3.1	Well-Posed Future, Past, and Two-Sided Behaviors	925
		15.3.2	State/Signal Realizations of Well-Posed Behaviors	929
		15.3.3	The Past/Future Map of a Well-Posed Behavior	929
	15.4	Dynam	ic Properties of Well-Posed State/Signal Systems	930
		15.4.1	Strongly Invariant and Unobservably Invariant	
			Subspaces	930
		15.4.2	Intertwinements of Well-Posed State/Signal Systems	932
		15.4.3	Restrictions, Projections, and Compressions of Well-	
			Posed State/Signal Systems	933
		15.4.4	The General Structure of a Compression	936
		15.4.5	Compressions into Minimal Well-Posed State/Signal	
		*** **	Systems	939
	15.5	Well-Po	osed State/Signal Systems in the Frequency Domain	940
	15.6	The Ad	Joint of a Well-Posed State/Signal Node	942
	15.7	Passive	State/Signal Systems	944

	Contents		xix
	15.7.1	Kreĭn Spaces	944
	15.7.2	The Krein Node Space of a Scattering Passive I/S/O	
		System	945
	15.7.3	Passive State/Signal Systems	946
15.8	Notes a	nd Comments	949
Appendix	A O	perators and Analytic Vector Bundles in <i>H-Spaces</i>	950
A.1	H-Spac	es	950
	A.1.1	Using More than One Norm in a Vector Space	950
	A.1.2	Introduction to H-Spaces	952
	A.1.3	Linear Operators in H-Spaces	953
	A.1.4	Closed Linear Operators in H-Spaces	955
	A.1.5	Complementary Projections and Coordinate	
		Respresentations of H-Spaces	956
	A.1.6	Isomorphisms in H-Spaces	960
	A.1.7	Partial Inverses of Bounded Linear Operators	961
	A.1.8	Inversion of Block Matrix Operators	964
	A.1.9	The Graph Norm and Graph Topology	965
	A.1.10	Linear Multivalued Operators in H-Spaces	966
	A.1.11	The Single-Valued and Injective Parts of a	
		Multivalued Operator	969
	A.1.12	On the Resolvent of a Bounded Operator	970
A.2	Duality in <i>H</i> -Spaces		971
	A.2.1	The Dual of an <i>H</i> -Space	971
	A.2.2	The Adjoint of a Bounded Linear Operator	973
	A.2.3	Duals of Product Spaces	976
	A.2.4	The Duals of the Components of a Direct Sum	
		Decomposition	979
	A.2.5	The Adjoint of a Linear Operator with Dense Domain	982
	A.2.6	The Dual of a Continuous Dense Embedding	983
	A.2.7	The Adjoint of a Multivalued Operator	984
A.3	Analyti	c Vector Bundles and Analytic Operator-Valued	
11.0	Functions		988
	A.3.1	The Dual Vector Bundle	992
References	5		994
Index			1005