Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>page xxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Notations</td>
<td>xxiii</td>
</tr>
</tbody>
</table>

1 Introduction and Overview

1.1 Linear Time-Invariant Dynamical Systems
1.1.1 State Systems 1
1.1.2 Systems That Interact with the Outside World 3
1.1.3 Input/State/Output Systems 3
1.1.4 Input/Output Systems 4
1.1.5 Classical (Sub)networks 5
1.1.6 Port-Hamiltonian Systems 5
1.1.7 Behavioral Systems 6
1.1.8 State/Signal Systems 7
1.1.9 State/Signal versus I/S/O Systems 8
1.1.10 Frequency Domain Systems 10
1.1.11 Boundary Triplets 11
1.1.12 State/Signal versus Behavioral Systems 11
1.1.13 How to Read This Book 12
1.1.14 H-Spaces 12
1.1.15 Where to Go from Here? 13

1.2 An Overview of State/Signal and Input/State/Output Systems 14
1.2.1 Input/State/Output Systems 14
1.2.2 Well-Posed I/S/O Systems 17
1.2.3 State/Signal Systems 18
1.2.4 I/S/O Representations 19
1.2.5 Similarity of I/S/O and State/Signal Systems 20
1.2.6 Input/Output Invariant Properties of I/S/O Systems 23
1.2.7 Properties of I/S/O Systems in the State/Signal Sense 25
Contents

1.2.8 Static Transformations of I/S/O and State/Signal Systems 26
1.2.9 Invariant Subspaces of I/S/O and State/Signal Systems 28
1.2.10 Interconnections of I/S/O and State/Signal Systems 29
1.2.11 External Characteristics of I/S/O and State/Signal Systems 31
1.2.12 Restrictions, Projections, and Compressions 31
1.2.13 I/S/O and State/Signal Systems in Discrete Time 33
1.2.14 The Resolvent Matrix of an I/S/O System 35
1.2.15 The Resolvent Set and the Characteristic Bundles of State/Signal Systems 37
1.2.16 Well-Posed I/S/O and State/Signal Systems in the Frequency Domain 39
1.2.17 General Resolvable Frequency Domain I/S/O and State/Signal Systems 40
1.2.18 Dual and Adjoint I/S/O and State/Signal Systems 42
1.2.19 Passive I/S/O and State/Signal Systems 44
1.2.20 Passive Finite-Dimensional Electrical n-Ports 45
1.2.21 Some Finite-Dimensional Passive 2-Ports 51
1.2.22 Some Distributed Parameter Passive Systems 59
1.3 Notes and Comments 68

2 State/Signal Systems: Trajectories, Transformations, and Interconnections 71

2.1 State/Signal Nodes and State/Signal Systems 71
2.1.1 The State/Signal System and Its Trajectories 71
2.1.2 Regular and Semiregular State/Signal Nodes 75
2.1.3 Kernel and Image Representations of Closed State/Signal Nodes 80
2.1.4 Bounded State/Signal Nodes and Systems 84
2.2 Some Basic Transformations of State/Signal Nodes 87
2.2.1 Similarity of Two State/Signal Nodes 87
2.2.2 Time Reflection of a State/Signal Node 89
2.2.3 Time Rescaling of a State/Signal Node 91
2.2.4 Exponentially Weighted State/Signal Nodes 92
2.3 Properties of Trajectories of State/Signal Systems 93
2.3.1 Classical, Generalized, and Mild Trajectories 93
2.3.2 Existence and Uniqueness of Trajectories 95
Contents

2.3.3 Connections between Classical, Generalized, and Mild Trajectories 100

2.4 Some Additional Transformations of State/Signal Nodes 104
 2.4.1 The \((P, Q)\)-Image of a State/Signal Node 104
 2.4.2 Parts and Static Projections of a State/Signal Node 107
 2.4.3 Adding Inputs and Output to a State/Signal Node 111

2.5 Interconnections of State/Signal Nodes 118
 2.5.1 The Cross Product of Two State/Signal Nodes 118
 2.5.2 \((P, Q)\)-Interconnections of State/Signal Nodes 119
 2.5.3 A Short Circuit Connection of State/Signal Nodes 120
 2.5.4 Examples of Interconnections of State/Signal Nodes 121

2.6 Examples of Infinite-Dimensional State/Signal Systems 123

3 State/Signal Systems: Dynamic and Frequency Domain Properties 132

3.1 Signal Behaviors and Their State/Signal Realizations 132
 3.1.1 Future Signal Behaviors 132
 3.1.2 External Equivalence of State/Signal Systems 133

3.2 Dynamic Properties of State/Signal Systems 133
 3.2.1 Controllability and Observability of State/Signal Systems 134
 3.2.2 Intertwinements of State/Signal Systems 140
 3.2.3 Compressions, Restrictions, and Projections of State/Signal Systems 142
 3.2.4 Examples of Minimal Compressions 148
 3.2.5 State/Signal Systems with the Continuation Property 153

3.3 State Systems 156
 3.3.1 A State System and Its Trajectories 157
 3.3.2 The Homogeneous Cauchy Problem 158
 3.3.3 Bounded State Systems and Uniformly Continuous Groups 159
 3.3.4 Well-Posed State Systems and Strongly Continuous Semigroups 163
 3.3.5 Transformations and Interconnections of State Nodes 169
 3.3.6 Invariant Subspaces of State Nodes 171
 3.3.7 Intertwinement of State Nodes 173

3.4 Frequency Domain Characteristics of State/Signal Nodes 174
 3.4.1 The Characteristic Node Bundle 174
 3.4.2 The Characteristic Control Bundle 178
 3.4.3 The Characteristic Observation Bundle 179
 3.4.4 The Characteristic Signal Bundle 180
Contents

3.4.5 The Characteristic Bundles of Transformed State/Signal Systems 182
3.4.6 The Resolvent of a Regular State Node 189
3.4.7 The Resolvent Set of a State/Signal Node 191
3.5 Invariance with Respect to Similarities 192
3.6 Dual and Adjoint State/Signal Nodes and Systems 194
3.6.1 The Dual of a State/Signal System 194
3.6.2 The Duals of Some Transformed State/Signal Nodes 202
3.6.3 The Characteristic Bundles of Dual State/Signal Nodes 206
3.6.4 The Adjoint State/Signal System 207
3.7 Notes to Chapters 2 and 3 213

4 Input/State/Output Representations 217
4.1 Input/State/Output Nodes and Systems 217
4.1.1 Regular I/S/O Nodes 217
4.1.2 General I/S/O Nodes and Systems 220
4.1.3 Kernel and Image Representations of Closed I/S/O Nodes 223
4.1.4 State, Input/State and State/Output Nodes and Systems 226
4.1.5 Input/State and State/Output Representations of State/Signal Systems 228
4.1.6 Free Inputs and Continuously Determined Outputs 229
4.1.7 Existence and Uniqueness of Trajectories 230
4.1.8 Bounded I/S/O Nodes and Systems 232
4.2 Input/State/Output Representations of State/Signal Nodes and Systems 234
4.2.1 The State/Signal Node Induced by an I/S/O Node 234
4.2.2 I/O Representations of the Signal Space 236
4.2.3 General I/S/O Representations of a State/Signal Node 239
4.2.4 Semiregular I/S/O Representations of a Semiregular State/Signal Node 241
4.2.5 Regular I/S/O Representations of a Regular State/Signal Node 242
4.2.6 Parametrization of I/S/O Representations 246
4.2.7 Bounded I/S/O Representations of Bounded State/Signal Nodes 248
4.2.8 Parametrization of Bounded I/S/O Representations 251
4.3 State Feedback and Output Injection Representations 256
4.3.1 State Feedback Representations 256
4.3.2 Output Injection Representations 259
4.4 Basic Transformations of Input/State/Output Nodes 261
4.4.1 Similarity of I/S/O Nodes 261
4.4.2 Time Reflection of an I/S/O Node 263
4.4.3 Time Rescaling of an I/S/O Node 264
4.4.4 Exponentially Weighted I/S/O Nodes 265
4.5 Properties of Trajectories of Input/State/Output Systems 267
4.5.1 Basic Properties of the Sets of Classical and Generalized Trajectories 267
4.5.2 Solvability and the Uniqueness Property 268
4.5.3 Connections between Classical, Generalized, and Mild Trajectories 270
4.6 Some Simple Input/State/Output Examples 273

5 Input/State/Output Systems: Dynamic and Frequency Domain Properties 276
5.1 Additional Transformations of Input/State/Output Nodes 276
5.1.1 Adding a Feedthrough Term to an I/S/O Node 276
5.1.2 Modifying Inputs and Outputs of an I/S/O Node 277
5.1.3 The \((P, R, Q)\)-Image of an I/S/O Node 278
5.1.4 Parts and Static Projections of an I/S/O Node 281
5.1.5 Static Output Feedback 285
5.1.6 Adding Inputs and Outputs to an I/S/O Node 287
5.1.7 A Second Look at State Feedbacks and Output Injections 297
5.2 Interconnections of Input/State/Output Nodes 303
5.2.1 The Cross Product of Two I/S/O Nodes 303
5.2.2 \((P, R, Q)\)-Interconnections of I/S/O Nodes 305
5.2.3 A Short Circuit Connection of I/S/O Nodes 306
5.2.4 \(T\)-Junctions, Sum Junctions, and Difference Junctions 307
5.2.5 Parallel and Difference Connections 311
5.2.6 Cascade Connections 313
5.2.7 Dynamic Feedback 316
5.2.8 Examples of I/S/O Interconnections 317
5.3 Realizations of Input/Output Behaviors 318
5.3.1 Future I/O Behaviors 318
5.3.2 External Equivalence of I/S/O Systems 319
5.4 Dynamic Properties of Input/State/Output Systems 320
5.4.1 Controllability and Observability of I/S/O Systems 320
5.4.2 Intertwinements of I/S/O Systems 325
5.4.3 Compressions, Restrictions, and Projections of I/S/O Systems 326
5.4.4 I/S/O Systems with the Continuation Property 330

5.5 Frequency Domain Characteristics of Input/State/Output Nodes 331
5.5.1 The Characteristic Node Bundle of an I/S/O Node 331
5.5.2 The I/S/O Resolvent Matrix of an I/S/O Node 334
5.5.3 Resolvability of Transformed I/S/O Nodes 338
5.5.4 Frequency Domain I/S/O-Admissible I/O Representations 341

5.6 The Correspondence between State/Signal and Input/State/Output Notions 343
5.6.1 I/O Invariant Notions 343
5.6.2 Properties of I/S/O Systems in the State/Signal Sense 349

5.7 Adjoint and Dual Input/State/Output Nodes and Systems 351
5.7.1 The Adjoint and the Dual of an I/S/O Node 351
5.7.2 Adjoint and Dual I/S/O Representations 354
5.7.3 I/S/O Lagrange Identities 355
5.7.4 Properties of Adjoint and Dual I/S/O Nodes and Systems 359
5.7.5 The Adjoints and Duals of Some Transformed I/S/O Nodes 360
5.7.6 The Adjoints and Duals of Some Interconnected I/S/O Nodes 364

5.8 Notes to Chapters 4 and 5 366

6 Bounded Input/State/Output Systems in Continuous and Discrete Time 370
6.1 Bounded State Operators and Nodes 370
6.1.1 The Spectral Radius of a Bounded State Operator 370
6.1.2 Invariant Subspaces of Bounded State Operators and Uniformly Continuous Groups 372
6.1.3 Parts and Projections of Bounded State Operators 373
6.1.4 Parts and Projections of Uniformly Continuous Groups 375
6.1.5 Intertwinements of Bounded State Operators and Uniformly Continuous Groups 377
6.1.6 Compressions of Bounded State Operators and Uniformly Continuous Groups 379
6.1.7 The General Structure of a Compression of a Bounded State Operator 385
Contents

6.1.8 The Adjoints of Bounded State Operators and Uniformly Continuous Groups 390

6.2 Static Properties of Bounded Input/State/Output Nodes 393
 6.2.1 Transformations of Bounded I/S/O Nodes 393
 6.2.2 Interconnections of Bounded I/S/O Nodes 403
 6.2.3 The I/S/O Resolvent Matrix of a Bounded I/S/O Node 406

6.3 Dynamic Properties of Bounded Input/State/Output Systems 407
 6.3.1 Strongly Invariant and Unobservably Invariant Subspaces 407
 6.3.2 External Equivalence of Bounded I/S/O Systems 415
 6.3.3 Intertwinements of Bounded I/S/O Systems 417
 6.3.4 Restrictions and Projections of Bounded I/S/O Systems 421
 6.3.5 Compressions of Bounded I/S/O Systems 423
 6.3.6 The General Structure of a Bounded I/S/O Compression 428
 6.3.7 Compressions into Minimal Bounded I/S/O Systems 435

6.4 The Adjoint and the Dual of a Bounded Input/State/Output Node 439

6.5 Discrete Time Input/State/Output Systems 444
 6.5.1 Introduction to Discrete Time I/S/O Systems 444
 6.5.2 Properties of Discrete Time I/S/O Systems 445
 6.5.3 Time Reflection of Discrete Time I/S/O Systems 448
 6.5.4 Power Weightings of Discrete Time I/S/O Systems 449
 6.5.5 Frequency Domain Shifts of Discrete Time I/S/O Systems 450
 6.5.6 Stable Discrete Time I/S/O Systems 451
 6.5.7 Connections between Continuous and Discrete Time I/S/O Properties 453
 6.5.8 Dynamic Notions for Bounded I/S/O Nodes 454

6.6 Bounded Input/State/Output Realizations 456
 6.6.1 Analyticity at Infinity of the I/S/O Resolvent Matrix 456
 6.6.2 Existence of a Bounded I/S/O Realization 457

7 Bounded State/Signal Systems in Continuous and Discrete Time 460
 7.1 Static Properties of Bounded State/Signal Nodes 460
 7.1.1 The I/S/O-Bounded Resolvent Set of a Bounded State/Signal Node 460
 7.1.2 Transformations of Bounded State/Signal Nodes 462
 7.1.3 Resolvability of Transformations of State/Signal Nodes 476

 7.2 Dynamic Properties of Bounded State/Signal Systems 481
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.1 Strongly Invariant and Unobservably Invariant Subspaces</td>
<td>481</td>
</tr>
<tr>
<td>7.2.2 External Equivalence of Bounded State/Signal Systems</td>
<td>489</td>
</tr>
<tr>
<td>7.2.3 Intertwinements of Bounded State/Signal Systems</td>
<td>490</td>
</tr>
<tr>
<td>7.2.4 Restrictions and Projections of Bounded State/Signal Systems</td>
<td>494</td>
</tr>
<tr>
<td>7.2.5 Compressions of Bounded State/Signal Systems</td>
<td>496</td>
</tr>
<tr>
<td>7.2.6 The General Structure of a Bounded State/Signal Compression</td>
<td>498</td>
</tr>
<tr>
<td>7.2.7 Compressions into Minimal Bounded State/Signal Systems</td>
<td>504</td>
</tr>
<tr>
<td>7.2.8 Bounded State/Signal Realizations</td>
<td>505</td>
</tr>
<tr>
<td>7.3 The Dual and the Adjoint of a Bounded State/Signal Node</td>
<td>506</td>
</tr>
<tr>
<td>7.4 Discrete Time State/Signal Systems</td>
<td>510</td>
</tr>
<tr>
<td>7.4.1 Introduction to Discrete Time State/Signal Systems</td>
<td>510</td>
</tr>
<tr>
<td>7.4.2 Properties of Discrete Time State/Signal Systems</td>
<td>511</td>
</tr>
<tr>
<td>7.4.3 Time Reflection of Discrete Time State/Signal Systems</td>
<td>513</td>
</tr>
<tr>
<td>7.4.4 Power Weightings of Discrete Time State/Signal Systems</td>
<td>513</td>
</tr>
<tr>
<td>7.4.5 Frequency Domain Shifts of Discrete Time State/Signal Systems</td>
<td>514</td>
</tr>
<tr>
<td>7.4.6 Stable Discrete Time State/Signal Systems</td>
<td>515</td>
</tr>
<tr>
<td>7.4.7 Connections between Continuous and Discrete Time State/Signal Properties</td>
<td>515</td>
</tr>
<tr>
<td>7.4.8 Dynamic Notions for Bounded State/Signal Nodes</td>
<td>516</td>
</tr>
<tr>
<td>7.5 Notes to Chapters 6 and 7</td>
<td>518</td>
</tr>
<tr>
<td>8 Semi-bounded Input/State/Output Systems</td>
<td>521</td>
</tr>
<tr>
<td>8.1 C_0 Semigroups and Well-Posed State Systems</td>
<td>521</td>
</tr>
<tr>
<td>8.1.1 On the Resolvents of Generators of C_0 Semigroups</td>
<td>521</td>
</tr>
<tr>
<td>8.1.2 The Inhomogeneous Cauchy Problem</td>
<td>524</td>
</tr>
<tr>
<td>8.1.3 Invariant Subspaces of C_0 Semigroups</td>
<td>530</td>
</tr>
<tr>
<td>8.1.4 Parts, Projections, and Restrictions of Single-Valued Resolvable Main Operators</td>
<td>530</td>
</tr>
<tr>
<td>8.1.5 Parts and Projections of C_0 Semigroups</td>
<td>533</td>
</tr>
<tr>
<td>8.1.6 Intertwinements of C_0 Semigroups</td>
<td>535</td>
</tr>
<tr>
<td>8.1.7 Compressions of C_0 Semigroups</td>
<td>536</td>
</tr>
<tr>
<td>8.1.8 The General Structure of a Compression of a C_0 Semigroup</td>
<td>539</td>
</tr>
</tbody>
</table>
Contents

8.1.9 The Adjoint of a C_0 Semigroup 542

8.2 Semi-bounded Input/State/Output Systems 544

8.2.1 Introduction to Semi-bounded I/S/O Systems 544
8.2.2 Transformations of Semi-bounded I/S/O Nodes 547
8.2.3 Interconnections of Semi-bounded I/S/O Nodes 551
8.2.4 The I/S/O Resolvent Matrix of a Semi-bounded I/S/O Node 552

8.3 Dynamic Properties of Semi-bounded Input/State/Output Systems 553
8.3.1 Strongly Invariant and Unobservably Invariant Subspaces 553
8.3.2 External Equivalence of Semi-bounded I/S/O Systems 559
8.3.3 Intertwinements of Semi-bounded I/S/O Systems 559
8.3.4 Restrictions and Projections of Semi-bounded I/S/O Systems 562
8.3.5 Compressions of Semi-bounded I/S/O Systems 563
8.3.6 The General Structure of a Semi-bounded I/S/O Compression 565
8.3.7 Compressions into Minimal Semi-bounded I/S/O Systems 570

8.4 The Adjoint of a Semi-bounded Input/State/Output Node 572

9 Semi-bounded State/Signal Systems 576
9.1 Static Properties of Semi-bounded State/Signal Nodes 576
9.1.1 Introduction to Semi-bounded State/Signal Nodes and Systems 576
9.1.2 The I/S/O Semi-bounded Resolvent Set of a Semi-bounded State/Signal Node 580
9.1.3 Transformations and Interconnections of Semi-bounded State/Signal Nodes 581

9.2 Dynamic Properties of Semi-bounded State/Signal Systems 581
9.2.1 Strongly Invariant and Unobservably Invariant Subspaces 581
9.2.2 External Equivalence of Semi-bounded State/Signal Systems 584
9.2.3 Intertwinements of Semi-bounded State/Signal Systems 585
9.2.4 Restrictions and Projections of Semi-bounded State/Signal Systems 587
9.2.5 Compressions of Semi-bounded State/Signal Systems 588
9.2.6 The General Structure of a Semi-bounded State/Signal Compression 589
9.2.7 Compressions into Minimal Semi-bounded State/Signal Systems 593
9.3 The Adjoint of a Semi-bounded State/Signal Node 594
9.4 Notes to Chapters 8 and 9 596
10 Resolvable Input/State/Output and State/Signal Nodes 599
10.1 Resolvable State Nodes 599
10.1.1 Linear Operator-Valued Pencils 599
10.1.2 The Resolvent of a State Node 601
10.1.3 The Interpolation Space of a Semiregular State Node 606
10.1.4 The Extrapolation Space of a Regular Resolvable State Node 607
10.1.5 The Duals of the Interpolation and Extrapolation Spaces 610
10.1.6 The Interpolation and Extrapolation Spaces of a Semigroup Generator 613
10.2 Resolvable Input/State/Output Nodes 614
10.2.1 Resolvability of an I/S/O Node 615
10.2.2 Kernel and Image Representations of the I/S/O Resolvent Matrix 618
10.2.3 The I/S/O Resolvent Identity 620
10.2.4 Representations of the System Operator 624
10.2.5 Semiregular and Regular Resolvable I/S/O Nodes 628
10.2.6 The Observation and Control Operators of a Regular Resolvable I/S/O Node 631
10.2.7 Some Examples of Regular Resolvable I/S/O Nodes 637
10.2.8 Resolvability of Transformed I/S/O Nodes 640
10.2.9 Resolvability of Interconnected I/S/O Nodes 647
10.2.10 The Resolvent Family of Bounded I/S/O Nodes 652
10.2.11 A Finite-Dimensional Nonregular Resolvable I/S/O Node 653
10.2.12 The Adjoint and the Dual of a Resolvable I/S/O Node 655
10.3 Resolvable State/Signal Nodes 658
10.3.1 On the Resolvent Set of a Closed State/Signal Node 658
10.3.2 Frequency Domain I/S/O-Admissible I/O Representations 662
10.3.3 Resolvability of Transformed State/Signal Nodes 669
10.3.4 The Resolvent Family of Bounded State/Signal Nodes 673
Contents

10.3.5 The Dual and the Adjoint of a Resolvable State/Signal System 674
10.4 Notes and Comments 676

11 Frequency Domain Input/State/Output Systems 679
11.1 Frequency Domain Input/State/Output Systems 679
11.1.1 Introduction to Frequency Domain I/S/O Systems 679
11.1.2 Frequency Domain Controllability and Observability 681
11.1.3 Frequency Domain Invariance 682
11.1.4 The Frequency Domain Behavior and External Equivalence 689
11.1.5 Frequency Domain Intertwinements 690
11.1.6 Frequency Domain Compressions, Restrictions, and Projections 696
11.1.7 Resolvable Frequency Domain Compressions, Restrictions, and Projections 698
11.1.8 The General Structure of a Resolvable Frequency Domain Compression 704
11.1.9 Compressions into Ω-Minimal I/S/O Systems 712
11.1.10 Results for Connected Frequency Domains 715
11.2 The Adjoint and the Dual of a Frequency Domain Input/State/Output System 725
11.2.1 Frequency Domain Lagrange Identities 726
11.2.2 Properties of Adjoint and Dual Frequency Domain I/S/O Systems 728
11.3 Frequency Domain Notions for Ω-Resolvable Input/State/Output Nodes 730
11.3.1 Dynamic Properties of the Resolvent Family of Bounded I/S/O Nodes 730
11.4 Resolvable Frequency Domain State Systems 733
11.4.1 Frequency Domain Invariance 734
11.4.2 Frequency Domain Intertwinements and Compressions 734
11.4.3 Results for Connected Frequency Domains 738
11.4.4 Frequency Domain Duality 740
11.5 Notes and Comments 741

12 Frequency Domain State/Signal Systems 743
12.1 Frequency Domain State/Signal Systems 743
12.1.1 Introduction to Frequency Domain State/Signal Systems 743
Contents

12.1.2 Separately and Jointly I/S/O Admissible Frequency Domains 745
12.1.3 Frequency Domain Controllability and Observability 747
12.1.4 Frequency Domain Invariance 748
12.1.5 The Frequency Domain Behavior and External Equivalence 752
12.1.6 Frequency Domain Intertwinements 755
12.1.7 Frequency Domain Compressions, Restrictions, and Projections 761
12.1.8 Resolvable Frequency Domain Compressions, Restrictions, and Projections 763
12.1.9 The General Structure of a Resolvable Frequency Domain Compression 769
12.1.10 Compressions into Ω-Minimal State/Signal Systems 773
12.2 Local Frequency Domain Notions 775
12.2.1 Local Frequency Domain Notions for Ω-Resolvable State/Signal Systems 776
12.2.2 Connected Frequency Domains 783
12.3 The Dual and the Adjoint of a Frequency Domain State/Signal System 793
12.3.1 Frequency Domain Lagrange Identities 794
12.3.2 Properties of Dual and Adjoint Frequency Domain State/Signal Systems 795
12.4 Frequency Domain Notions for Ω-Resolvable State/Signal Nodes 798
12.4.1 Dynamic Properties of the Resolvent Family of Bounded State/Signal Nodes 798
12.5 Notes and Comments 801

13 Internally Well-Posed Systems 802
13.1 Internally Well-Posed Input/State/Output Systems 802
13.1.1 Basic Definitions and Properties 802
13.1.2 Transformations and Interconnections 804
13.2 Frequency-Domain Internally Well-Posed Input/State/Output Systems 805
13.2.1 Frequency Domain Invariance 806
13.2.2 Frequency Domain Intertwinements 806
13.2.3 Frequency-Domain Restrictions, Projections, and Compressions 807
13.2.4 The General Structure of $\rho_{+\infty}(\Sigma)$-Compressions 809
13.3 Internally Well-Posed State/Signal Systems 812
13.3.1 Basic Definitions and Properties 812
13.3.2 Frequency-Domain Compressions of Internally Well-Posed State/Signal Systems 813
13.4 Notes and Comments 814

14 Well-Posed Input/State/Output Systems 816
14.1 Basic Properties of Well-Posed Input/State/Output Systems 816
14.1.1 The Definition of a Well-Posed I/S/O System 816
14.1.2 Alternative Conditions for Well-Posedness 819
14.1.3 The Fundamental I/S/O Solution of a Well-Posed I/S/O System 825
14.2 The Growth Bound of a Well-Posed Input/State/Output System 833
14.2.1 The Growth Bound of a Well-Posed I/S/O System 833
14.2.2 Stable I/S/O Systems 838
14.3 Resolvability of Well-Posed Input/State/Output Systems 842
14.3.1 Well-Posed I/S/O Systems Are Resolvable 842
14.3.2 Growth Estimates for the I/S/O Resolvent Matrix 847
14.4 Realizations of Shift-Invariant Causal Linear Operators 850
14.4.1 Shift Invariant Causal Linear Operators 850
14.4.2 Realizations of Shift Invariant Causal Linear Operators 852
14.4.3 Toeplitz and Hankel Operators 853
14.5 Transformations and Interconnections of Well-Posed Input/State/Output Systems 857
14.5.1 Well-Posedness and Stability of Transformed I/S/O Systems 857
14.5.2 Well-Posedness and Stability of Interconnected I/S/O Systems 864
14.5.3 Stabilizable and Detectable I/S/O Systems 867
14.6 Dynamic Properties of Well-Posed Input/State/Output Systems 869
14.6.1 Strongly Invariant and Unobservably Invariant Subspaces 869
14.6.2 Intertwinements of Well-Posed I/S/O Systems 870
14.6.3 Restrictions, Projections, and Compressions 874
14.6.4 The General Structure of a Well-Posed I/S/O Compression 879
14.6.5 Compressions Into Minimal Well-Posed I/S/O Systems 886
14.7 Well-Posed Input/State/Output Systems in the Frequency Domain 887
14.7.1 Time and Frequency Domain External Equivalence 888
14.7.2 Time and Frequency Domain Invariance 888
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.7.3 Time and Frequency Domain Compressions and Intertwinements</td>
<td>889</td>
</tr>
<tr>
<td>14.7.4 Frequency Domain Stability</td>
<td>891</td>
</tr>
<tr>
<td>14.8 The Adjoint of a Well-Posed Input/State/Output System</td>
<td>893</td>
</tr>
<tr>
<td>14.9 Scattering Passive Input/State/Output Systems</td>
<td>897</td>
</tr>
<tr>
<td>14.9.1 Hilbert Space I/S/O Nodes and Systems</td>
<td>897</td>
</tr>
<tr>
<td>14.9.2 Scattering Passive I/S/O Systems</td>
<td>898</td>
</tr>
<tr>
<td>14.9.3 The Internal I/S/O Cayley Transform</td>
<td>901</td>
</tr>
<tr>
<td>14.9.4 The Adjoint of a Passive Scattering System</td>
<td>904</td>
</tr>
<tr>
<td>14.10 Notes and Comments</td>
<td>904</td>
</tr>
<tr>
<td>15 Well-Posed State/Signal Systems</td>
<td>907</td>
</tr>
<tr>
<td>15.1 Basic Properties of Well-Posed State/Signal Systems</td>
<td>907</td>
</tr>
<tr>
<td>15.1.1 Basic Definitions</td>
<td>907</td>
</tr>
<tr>
<td>15.1.2 Well-Posedness and Stability of Transformed I/S/O Systems</td>
<td>913</td>
</tr>
<tr>
<td>15.1.3 The Behaviors Induced by a Well-Posed State/Signal System</td>
<td>914</td>
</tr>
<tr>
<td>15.1.4 The Past/Present and Present/Future Maps of a Well-Posed State/Signal System</td>
<td>916</td>
</tr>
<tr>
<td>15.2 Stable State/Signal Systems</td>
<td>920</td>
</tr>
<tr>
<td>15.2.1 Stable State/Signal Trajectories</td>
<td>920</td>
</tr>
<tr>
<td>15.2.2 Stable State/Signal Behaviors</td>
<td>921</td>
</tr>
<tr>
<td>15.2.3 Stabilizable and Detectable State/Signal Systems</td>
<td>922</td>
</tr>
<tr>
<td>15.3 Realizations of Well-Posed Behaviors</td>
<td>925</td>
</tr>
<tr>
<td>15.3.1 Well-Posed Future, Past, and Two-Sided Behaviors</td>
<td>925</td>
</tr>
<tr>
<td>15.3.2 State/Signal Realizations of Well-Posed Behaviors</td>
<td>929</td>
</tr>
<tr>
<td>15.3.3 The Past/Future Map of a Well-Posed Behavior</td>
<td>929</td>
</tr>
<tr>
<td>15.4 Dynamic Properties of Well-Posed State/Signal Systems</td>
<td>930</td>
</tr>
<tr>
<td>15.4.1 Strongly Invariant and Unobservably Invariant Subspaces</td>
<td>930</td>
</tr>
<tr>
<td>15.4.2 Intertwinements of Well-Posed State/Signal Systems</td>
<td>932</td>
</tr>
<tr>
<td>15.4.3 Restrictions, Projections, and Compressions of Well-Posed State/Signal Systems</td>
<td>933</td>
</tr>
<tr>
<td>15.4.4 The General Structure of a Compression</td>
<td>936</td>
</tr>
<tr>
<td>15.4.5 Compressions into Minimal Well-Posed State/Signal Systems</td>
<td>939</td>
</tr>
<tr>
<td>15.5 Well-Posed State/Signal Systems in the Frequency Domain</td>
<td>940</td>
</tr>
<tr>
<td>15.6 The Adjoint of a Well-Posed State/Signal Node</td>
<td>942</td>
</tr>
<tr>
<td>15.7 Passive State/Signal Systems</td>
<td>944</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.7.1</td>
<td>Kreĭn Spaces</td>
<td>944</td>
</tr>
<tr>
<td>15.7.2</td>
<td>The Kreĭn Node Space of a Scattering Passive I/S/O System</td>
<td>945</td>
</tr>
<tr>
<td>15.7.3</td>
<td>Passive State/Signal Systems</td>
<td>946</td>
</tr>
<tr>
<td>15.8</td>
<td>Notes and Comments</td>
<td>949</td>
</tr>
</tbody>
</table>

Appendix A Operators and Analytic Vector Bundles in H-Spaces

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1</td>
<td>H-Spaces</td>
</tr>
<tr>
<td>A.1.1</td>
<td>Using More than One Norm in a Vector Space</td>
</tr>
<tr>
<td>A.1.2</td>
<td>Introduction to H-Spaces</td>
</tr>
<tr>
<td>A.1.3</td>
<td>Linear Operators in H-Spaces</td>
</tr>
<tr>
<td>A.1.4</td>
<td>Closed Linear Operators in H-Spaces</td>
</tr>
<tr>
<td>A.1.5</td>
<td>Complementary Projections and Coordinate Representations of H-Spaces</td>
</tr>
<tr>
<td>A.1.6</td>
<td>Isomorphisms in H-Spaces</td>
</tr>
<tr>
<td>A.1.7</td>
<td>Partial Inverses of Bounded Linear Operators</td>
</tr>
<tr>
<td>A.1.8</td>
<td>Inversion of Block Matrix Operators</td>
</tr>
<tr>
<td>A.1.9</td>
<td>The Graph Norm and Graph Topology</td>
</tr>
<tr>
<td>A.1.10</td>
<td>Linear Multivalued Operators in H-Spaces</td>
</tr>
<tr>
<td>A.1.11</td>
<td>The Single-Valued and Injective Parts of a Multivalued Operator</td>
</tr>
<tr>
<td>A.1.12</td>
<td>On the Resolvent of a Bounded Operator</td>
</tr>
<tr>
<td>A.2</td>
<td>Duality in H-Spaces</td>
</tr>
<tr>
<td>A.2.1</td>
<td>The Dual of an H-Space</td>
</tr>
<tr>
<td>A.2.2</td>
<td>The Adjoint of a Bounded Linear Operator</td>
</tr>
<tr>
<td>A.2.3</td>
<td>Duals of Product Spaces</td>
</tr>
<tr>
<td>A.2.4</td>
<td>The Duals of the Components of a Direct Sum Decomposition</td>
</tr>
<tr>
<td>A.2.5</td>
<td>The Adjoint of a Linear Operator with Dense Domain</td>
</tr>
<tr>
<td>A.2.6</td>
<td>The Dual of a Continuous Dense Embedding</td>
</tr>
<tr>
<td>A.2.7</td>
<td>The Adjoint of a Multivalued Operator</td>
</tr>
<tr>
<td>A.3</td>
<td>Analytic Vector Bundles and Analytic Operator-Valued Functions</td>
</tr>
<tr>
<td>A.3.1</td>
<td>The Dual Vector Bundle</td>
</tr>
</tbody>
</table>

References

Index