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Preface

The theory presented in this book arose as a product of a continued collaboration
between the two authors during the years 2003–2021. The basis for this collabo-
ration was our common interest in passive linear time-invariant input/state/output
systems theory. At the time this project started, O. Staffans was preparing a joint ar-
ticle (Ball and Staffans, 2006) with Prof. J. Ball that, in particular, explored the con-
nections between conservative input/state/output systems theory on the one hand
and some results in the behavioral theory introduced by J. Willems in the late 1980s
on the other hand. After extensive discussions on this approach, comparing it to the
theory of passive electrical networks, we understood that this opens up a new direc-
tion in the study of passive linear time-invariant systems.We called the new class of
systems that arose in this way passive state/signal systems. From the outset, it was
clear that the notion of passivity with an arbitrary supply rate fits more naturally
into the state/signal setting than in the input/state/output setting, and that the stan-
dard “diagonal transformation” of Livšic, the Potapov–Ginzburg transformation,
and the Redheffer and chain-scattering transformations have natural interpretations
as transformations between input/output resolvents of different input/state/output
representations of a passive state/signal system. We also soon discovered that virtu-
ally all the standard control theory notions such as controllability and observability,
minimality, stability, stabilizability, detectability, and well-posedness have natural
state/signal counterparts.

Our first article (Arov and Staffans, 2005) on the state/signal system was com-
pleted and submitted for publication in the fall of 2003, and it was followed by
many others. Some of the results presented in this book were obtained in collabo-
ration with Ph.D. Mikael Kulula. The bulk of the work was done during D. Arov’s
regular visits to Åbo Akademi during August–October 2003–2010 and to Aalto
University during August–October 2011–2017, with an average length of almost
three months. These visits were financed by the Academy of Finland, the Magnus
Ehrnrooth Foundation, and the Finnish Society of Sciences and Letters.

www.cambridge.org/9781316519677
www.cambridge.org


Cambridge University Press & Assessment
978-1-316-51967-7 — Linear State/Signal Systems
Damir Z. Arov , Olof J. Staffans 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

xxii Preface

In the fall of 2009, it was decided that the theory was sufficiently mature to be
presented in terms of a book, and the writing of this book began on August 30,
2009. By the end of November 2009, a preliminary list of contents was ready. Two
significant factors in this decision were the research grant from the Academy of
Finland that relieved O. Staffans from teaching duties during the academic year
2009–2010 and the leave of absence for D. Arov for extensive periods of time from
the South Ukrainian Pedagogical University based on a joint exchange agreement
with Åbo Akademi.

The book we originally planned to write was supposed to be devoted to linear
time-invariant systems in discrete time. In 2011, we realized that it would be more
important to, instead, write a book on linear time-invariant systems in continu-
ous time, and in 2013 it was clear that it was not feasible to write only one book
on systems in continuous time. The continuous time theory contains a number of
mathematical difficulties that must first be sorted out, and this is done in the present
volume. The application of this theory to passive state/signal systems in continuous
time remains to be written down.

We thank the Academy of Finland, the Magnus Ehrnrooth Foundation, and the
Finnish Society of Sciences and Letters for their financial support, without which
this work could not have been carried out. We also thank Åbo Akademi and Aalto
University for excellent working facilities, and the South Ukrainian Pedagogical
University for giving D. Arov ample time to devote to research.

Above all, we are grateful to our wives Nataliya and Satu-Marjatta for their
constant support, understanding, and patience while this work was carried out.
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Notations

Basic Sets and Symbols

C The complex plane.

C
+
ω , C

+
ω C

+
ω := {z ∈C | ℜz> ω} and C

+
ω := {z ∈C | ℜz≥ ω}.

C
−
ω , C

−
ω C

−
ω := {z ∈C | ℜz< ω} and C

−
ω := {z ∈C | ℜz≤ ω}.

C
+, C

+
C

+ :=C
+
0 and C

+ :=C
+
0 .

C
−, C

−
C

− :=C
−
0 and C

− :=C
−
0 .

D
+
r , D

+
r D

+
r := {z ∈C | |z| > r} and D

+
r := {z ∈C | |z| ≥ r}.

D
−
r , D

−
r D

−
r := {z ∈C | |z| < r} and D

−
r := {z ∈C | |z| ≤ r}.

D
+, D

+
D

+ :=D
+
1 and D

+ :=D
+
1 .

D
−, D

−
D

− :=D
−
1 and D

− :=D
−
1 .

R R := (−∞, ∞).

R
+, R

+
R

+ := (0, ∞) and R
+ := [0, ∞).

R
−, R

−
R

− := (−∞, 0) and R
− := (−∞, 0].

T The unit circle in the complex plane.

N N is the set of natural numbers, i.e., N := {1, 2, 3, . . .}.
Z Z is the set of all integers, i.e., Z := {±1, ±2, ±3, . . .}.
Z

+, Z
−

Z
+ := {0, 1, 2, . . .} and Z

− := {−1, −2, −3, . . .}.
j j :=

√
−1.

0 The number 0, or the zero vector in a vector space, or the zero
operator.

1 The number 1 and also the identity operator.

�∗, �† �∗ =
{
λ

∣∣ λ ∈ �
}
and �† =

{
−λ

∣∣ λ ∈ �
}
.
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xxiv List of Notations

Operators and Related Symbols

A, B, C, D In connection with an input/state/output system, A is usually the
main operator, B is the control operator, C is the observation
operator, and D is a feedthrough operator.

A, B, C, D Often A is the evolution semigroup, B is the input map, C is
the output map, and D is the input/output map of a well-posed
linear input/state/output system. See Definition 14.1.14.

Â, B̂, Ĉ, D̂ Often Â is the state/state resolvent, B̂ is the input/state resol-
vent, Ĉ is the state/output resolvent, and D̂ is the input/output
resolvent of an input/state/output node. See Definition 5.5.8.

�̂(λ) If � is a state/signal node with a characteristic node bundle
Ê[=E], then �̂(λ) is the state/signal node with generating sub-
space Ê(λ), and if � is an input/state/output node with a (for-
mal) input/state/output resolvent matrix Ŝ, then �̂(λ) is the in-
put/state/output node with a system operator Ŝ(λ). See Defini-
tion 5.5.8 and Lemma 10.3.3.

B(U;Y), B(U) The set of continuous linear operators from the H-space (or
topological vector space) U into the H-space (or topological
vector space) Y , respectively, from U into itself. See Notation
A.1.15.

ISO(U;Y), The set of continuously invertible linear operators mapping the
ISO(U) H-space (or topological vector space) U one-to-one onto the

H-space (or topological vector space) Y , respectively, from U

into itself. See Definition 2.1.28.

L(U;Y), L(U) The set of linear (single-valued) operators from the H-space (or
topological vector space) U into the H-space (or topological
vector space) Y , respectively, from U into itself. See Definition
A.1.13.

ML(U;Y), The set of multivalued linear operators from the H-space
ML(U) (or topological vector space) U into the H-space (or topological

vector space) U into Y , respectively, from U into itself. See
Definition A.1.51.

τ t The bilateral shift operator on R: τ tu(s) := u(s+ t), t, s ∈R

(this is a left shift when t> 0 and a right shift when t< 0).

τ ∗t τ ∗t = τ−t (this is a right shift when t> 0 and a left shift when
t< 0).
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List of Notations xxv

τ t+ The left shift operator on R
+: τ t+u(s) := u(s+ t), s ∈R

+. Here
t ∈R

+.

τ ∗t
+ The right shift operator on R

+: τ ∗t
+ u(s) := 0, 0≤ s< t and

τ ∗t
+ u(s) := u(s− t), s≥ t. Here t ∈R

+.

τ t− The left shift operator on R
−: τ t−u(s) := 0, −t< s≤ 0 and

τ t−u(s) := u(s+ t), s≤ −t. Here t ∈R
+.

τ ∗t
+ The right shift operator on R

−: τ ∗t
+ u(s) := u(s− t), s ∈R

−.
Here t ∈R

+.

ιI The embedding operator Lploc(I) →֒ Lploc(R): (ιIu)(t) := u(t), t ∈
I and (ιIu)(t) := 0, t /∈ I. Here I ⊂R.

ι+, ι− ι+ := ι[0,∞) and ι− := ι(−∞,0].

ρI The restriction operator Lploc(R) → Lploc(I): (ρIu)(t) := u(t), t ∈
I. Here I ⊂R. ρIιI = 1Lploc(I) and ιIρI = πI .

ρ+, ρ− ρ+ := ρ[0,∞) and ρ− := ρ(−∞,0].

πI The projection operator in Lploc(R) with range Lploc(I) and kernel
Lploc(R \ I): (πIu)(s) := u(s) if s ∈ I and (πIu)(s) := 0 if s /∈ I.
Here I ⊂R. ρIπI = ρI and πIιI = ιI .

π+, π− π+ := π[0,∞) and π− := π(−∞,0].

R Ris the time reflection operator in R, i.e., ( Rf )(t) = f (−t),
t ∈R. See Definition 2.2.9.

Rts Rts is the time reflection operator in the time interval [s, t], i.e.,
( Rts f )(v) = f (s+ t− v), v ∈ [s, t].

〈x, x∗〉 The continuous linear functional x∗ evaluated at x.

E⊥ If E⊂X , then E⊥ = {x∗ ∈X ∗ | 〈x, x∗〉 = 0 for all x ∈ E}, and if
F∗ ⊂X ∗, then (F∗)⊥ = {x ∈X | 〈x, x∗〉 = 0 for all x∗ ∈ F∗}.

A∗ The (antilinear) adjoint of the operator A.

A−∗ A−∗ = (A∗)−1 = (A−1)∗.

A|X The restriction of the operator A to the subspace X .

A⊂ B If A, B ∈ML(X ;Y) or A, B ∈L(X ;Y) and gph (A) ⊂ gph (B),
then we say that A is a restriction of B and that B is an extension
of A, and write A⊂ B.

dom (A) The domain of the operator A.

rng (A) The range of the operator A.

ker (A) The null space (kernel) of the operator A.

mul (A) The multivalued part of the operator A.
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xxvi List of Notations

dim(X ) The dimension of the space X .

ρ(A) The resolvent set of the operator A (see Definitions 3.4.27 and
10.1.3).

ρ∞(A) The unbounded component of the resolvent set of the bounded
operator A (see Notation 6.1.2).

r∞(A) The spectral radius of the bounded operator A (see Notation
6.1.2).

ρi/s/o(S) The input/state/output resolvent set of S (see Definition 5.5.8).

ρ(�) The resolvent set of the input/state/output or state/signal system
� (see Definitions 5.5.8 and 10.3.1).

ρbnd(�) The union of the resolvent sets of all bounded input/state/output
representations of the bounded state/signal system � (see Def-
inition 7.1.1).

ρbnd
∞ (�) The unbounded component of ρbnd(�) (see Definition 7.1.1).

ρsbd(�) The union of the resolvent sets of all semi-bounded input/state/
output representations of the semi-bounded state/signal system
� (see Definition 9.1.9).

ρsbd
+∞(�) The component of ρsbd(�) that contains a right half-plane (see

Definition 9.1.9).

ω(A) The growth bound of the semigroup A. See (8.1.1).

TI, TIC TI stands for the set of all shift invariant operators, and TIC
stands for the set of all shift invariant and causal operators. See
Definition 14.4.1 for details.

Vector Spaces

H-space A topological vector space X that is isomorphic to a Hilbert
space, i.e., the topology in X is induced by a norm induced by
a Hilbert space inner product. See Definitions 2.1.2 and A.1.6.

B-space A topological vector space X that is isomorphic to a Banach
space, i.e., the topology in X is induced by a Banach space
norm. See Definitions 2.1.2 and A.1.6.

U Frequently the input space of an input/state/output system.

X Frequently the state space of an input/state/output or state/signal
system.

Y Frequently the output space of an input/state/output system.

W Frequently the signal space of a state/signal system.
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List of Notations xxvii

X•, X◦ X• is the interpolation space and X◦ is the extrapolation space
induced by a closed operator A in X with a dense domain. See
Definitions 10.1.13 and 10.1.17.

A•, A◦ A• is the part of A in X• and A◦ is the extension of A to a closed
operator in X◦.

A•, A◦ A• is the restriction of the C0 semigroup A in X to a C0 semi-
group in X• and A◦ is the extension of AA to a C0 semigroup
in X◦.

X =X1 ∔X2 X =X1 ∔X2 means that X is an H-space that is the direct sum
of its two closed subspaces X1 and X2, i.e., every x ∈X has
a unique representation of the form x= x1 + x2, where x1 ∈X1

and x2 ∈X2.

PZ
Y

If X =Y ∔Z , then PZ
Y
is the projection in X onto Y along Z ,

i.e., the range of PU
Y
is Y and the kernel is U .

QZ
Y

If X =Y ∔Z , then QZ
Y
x= y, where y ∈Y is the unique vector

in Y in the decomposition x= y+ zwith y ∈Y and z ∈Z . Thus,
QZ
Y
is equal to PZ

Y
, reinterpreted as an operator in B(X ;Y) (in-

stead of an operator in B(X )). See Definition A.1.29.[
U
Y

]
The cross-product of the two H-spaces U and Y . Thus,

[
U
Y

]
=[

U
0

]
∔

[
0
Y

]
. Also denoted by U ×Y .

U ×Y The cross-product of the two H-spaces U and Y . Also denoted
by

[
U
Y

]
.

Special Functions

eω eω(t) = eωt for ω, t ∈R.

log The natural logarithm.

Function Spaces

V(I;Z) Functions of type V (= Lp, C, BC, etc.) on the interval I ⊂R

with range in Z .

Vloc(I;Z) Functions that are locally of type V , i.e., they are defined on
I ⊂R with range in Z , and they belong to V(I′;Z) for every
compact subinterval I′ ⊂ I.

V⋄(I;Z) Functions in V(I;Z) with compact support.

V⋄,loc(I;Z) Functions in Vloc(I;Z) whose support is bounded to the left.

Vloc,⋄(I;Z) Functions in Vloc(I;Z) whose support is bounded to the right.
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xxviii List of Notations

Vω(I;Z) The set of functions u for which (t �→ e−ωtu(t)) ∈ V(I;Z). See
also the special cases listed below.

V⋄,ω(I;Z) Functions in Vω(I;Z) whose support is bounded to the left.

Vω,loc(I;Z) The set of functions u ∈ Vloc(I;Z) that satisfy ρI∩R−u ∈
Vω(I ∩R

−;Z).

V◦(I;Z) The closure of V⋄(I;Z) in V(I;Z). Functions in V◦(I;Z)

“vanish at infinity.” See also the special cases listed below.

BC The space of bounded continuous functions with the sup-norm.

BC◦ Functions in BC that tend to zero at ±∞.

BCω Functions u for which (t �→ e−ωtu(t)) ∈ BC.
BCω,loc Continuous functions whose restrictions to R− belong to BCω.

BC◦,ω Functions u for which (t �→ e−ωtu(t)) ∈ BC◦.

BC◦,ω,loc Continuous functions whose restrictions toR− belong to BC◦,ω.

BUC Bounded uniformly continuous functions with the sup-norm.

BUCn Functions that together with their n first derivatives belong to
BUC.

C Continuous functions. The same space as BCloc.

Cn n times continuously differentiable functions. The same space
as BCnloc.

Lp, 1≤ p< ∞ See Notation 2.1.4.

Lploc Functions that belong locally to Lp.

Lp⋄ Functions in Lp with compact support.

Lp⋄,loc Functions in Lploc whose support is bounded to the left.

Lpω Functions u for which (t �→ e−ωtu(t)) ∈ Lp.
Lpω,loc(R;Z) Functions u ∈ Lploc(R;Z) that satisfy ρ−u ∈ Lpω(R−;Z).

W1,p Functions in Lp that have a (distribution) derivative in Lp. See
Notation 2.6.1.

H∞(�;X ) The space of bounded analytic X -valued functions on �.

Spaces of Sequences

ℓp, 1≤ p< ∞ Sequences z= {zn}n∈I satisfying
∑

I|zn|
p
Z

< ∞. See
Notation 6.6.3.

ℓ∞ The vector space of bounded sequences z= {zn}n∈I . See
Notation 6.6.3.
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