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Introduction and Overview

The class of linear time-invariant state/signal systems studied in this monograph is general

enough to include most of the standard classes of linear time-invariant dynamical sys-

tems, and at the same time, it is small enough that standard control theory notions for

input/state/output (i/s/o) systems have natural extensions to this class. This includes the

notions of controllability and observability, minimality, stability, stabilizability and de-

tectability, passivity, and optimal control. Like an i/s/o system, a state/signal system has

a state component that can be used to model energy-storing elements and energy sources

and sinks, and it also has a signal component that connects the system to the outside world

and can be used to observe, control, and interconnect state/signal systems. In this chapter,

we first discuss different mathematical approaches to the notion of a linear time-invariant

dynamical system and explain the motivation behind our state/signal approach, and then

continue with an overview of the contents of this monograph.

1.1 Linear Time-Invariant Dynamical Systems

There are many different mathematical approaches to the theory of dynamical systems.

A dynamical system describes the evolution of some quantities as a function of a time

variable, which can be discrete (i.e., the time variable takes integer values) or continuous

(i.e., the time variable takes real values). In our case, this quantity will be a vector in a

vector space, whose value changes with time. This varying value gives rise to a trajectory

of the system, which is a vector-valued function of a scalar time variable. In the most

general setting, the dynamical systems are allowed to be nonlinear and time dependent,

but this monograph is devoted to the study of linear and time-invariant systems. Linearity

means that the set of trajectories is invariant both under multiplications by scalars and

under additions of trajectories defined on the same time interval, and time invariance means

that trajectories that are shifted forward or backward in time remain trajectories of the

same system. Most of the time, we take the time variable to be continuous (defined on a

subinterval of the real line), but we also include a short discussion on bounded systems

with a discrete time variable.
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2 Introduction and Overview

1.1.1 State Systems

In the simplest version of a linear time-invariant system in continuous time, the trajecto-

ries consist of a finite set of real or complex state variables that satisfy a finite system of

differential equations. (If the time variable is discrete, then this system is replaced by a

system of difference equations.) The linearity and time invariance of this system mean that

the coefficients in the system of differential equations are independent of both the state and

the time variables. We call a system of this type a (linear time-invariant) finite-dimensional

state system. It can often be rewritten in the vector form

ẋ(t) = Ax(t), t ∈R, (1.1.1)

where x(t) is an n-dimensional real or complex vector (i.e., x(t) ∈R
n or x(t) ∈C

n), ẋ(t) is

the time derivative of x, and A is an n× n matrix for a positive integer n. This system is

well-posed (or well defined), i.e., it is true that for every initial state x0 ∈R
n or x0 ∈C

n and

every initial time t0 ∈R, the system has a unique trajectory, defined on the full real line

R= (−∞, ∞) with the given initial state x0 at the given initial time t0. Due to the time

invariance of the system, the initial time is irrelevant in the sense that we can always take

t0 to be zero (by a simple time shift). Thus, the past and future evolution of such a system

is determined completely by the state x(0) at time zero.

If we replace the system of differential equations (1.1.1) with some other type of equa-

tions, such as a system of partial differential equations, or integral equations, or delay

equations, or a mixture of such equations, then the dynamics of the system become more

complicated. Such a system can often still be described by a linear first-order differential

equation (of a very general type) in an infinite-dimensional vector space X with opera-

tor (possibly unbounded or multivalued) coefficients that depend neither on the space nor

the time variable. In the sequel, we refer to X as the state space of the system. Depend-

ing on the situation, the state space X may be taken to be a Hilbert space, or a Banach

space, or an even more general topological vector space. In this monograph, we concen-

trate our attention on the case where the state space is a Hilbert space (or strictly speaking,

an H-space, as explained in Section 1.1.14). The well-posedness of a system of this type

may depend on the direction of time, i.e., a system may be well-posed in the forward time

direction without being well-posed in the backward time direction. Under suitable assump-

tions, a first-order system of this type can often be rewritten as an abstract differential

equation

ẋ(t) = Ax(t), t ∈ I, (1.1.2)

where I is a subinterval of the real line R= (−∞, ∞) and A is a linear operator from its

domain dom (A) ⊂X into X . In some cases, equation (1.1.2) needs to be replaced with the

even more general equation

ẋ(t) ∈ Ax(t), t ∈ I, (1.1.3)

where A is a linear multivalued operator, and the inclusion ẋ(t) ∈ Ax(t) is equivalent to the

requirement that
[

ẋ(t)
x(t)

]

∈ gph (A), where gph (A) is the graph of A.
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1.1 Linear Time-Invariant Dynamical Systems 3

1.1.2 Systems That Interact with the Outside World

The dynamical systems that we have considered so far are “closed” (as opposed to being

“open” in the sense of Livšic (1973)), i.e., they do not include any channels that can be

used to interconnect the system with the outside world. Such channels are needed if one

wants to monitor the system from the outside, or to guide the system to a desired state, or

to interconnect two systems with each other, and they can be created in different ways.

(i) In the input/state/output (i/s/o) approach, one adds an input channel and an output

channel to a state system of the type described in (1.1.3), through which information

can enter and leave the state system. In this approach, each trajectory has three com-

ponents, all of which are functions of the time variable t, namely a state component

x(t), an input component u(t), and an output component y(t).

(ii) In the input/output (i/o) approach, each trajectory consists of two components, namely

an input component u(t) and an output component y(t). Here, the focus of attention is

on how the output y depends on the input u. This can be thought of as a “black box”

model of an i/s/o system of the type described in (i), where the underlying state system

is not known (or ignored).

(iii) In classical network theory, one starts from a finite-dimensional state system and adds

a bidirectional (multidimensional) interaction channel that connects this state system

to the outside world and permits information to both enter and leave the state system.

This channel is not a priori split into an input channel and an output channel. In this

approach, each trajectory has two components, namely a state component x(t) and an

interaction signal w(t).

(iv) In a port-Hamiltonian system, each trajectory consists of a state component and a

signal component. The equations for the “internal dynamics” of the state component

are energy preserving, and the interaction with the surroundings takes place through

the same type of (finite- or infinite-dimensional) energy-preserving port structure as

in network theory. Dissipative systems are modeled by terminating one of the ports

with a dissipative element.

(v) In the behavioral approach, trajectories are functions with values in a “signal space,”

and the attention is focused on interactions between different parts of the signal with-

out an explicit splitting of the signals into an “input part” and an “output part.” This

can be thought of as a “black box” model of a generalized version of a network of the

type described in (iii), where the underlying state system is not known (or ignored). In

this approach, each trajectory has only a signal component and no state component.

These different types of approaches are discussed in more detail in the following sections.

1.1.3 Input/State/Output Systems

In the finite-dimensional setting, it is easy to add inputs and outputs to a state system of the

type (1.1.1) by adding input and output terms to (1.1.1) to get an i/s/o system of the form
{

ẋ(t) = Ax(t) + Bu(t),

y(t) =Cx(t) +Du(t),
t ∈R, (1.1.4)
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4 Introduction and Overview

where u(t) and y(t) are p-dimensional and q-dimensional real or complex vectors, and B,

C, and D are matrices of appropriate dimensions. The same approach works well in the

infinite-dimensional setting, where x(t), u(t), and y(t) take their values in some Hilbert

spaces X , U , and Y , and the operators A, B, C, and D are bounded linear operators between

the appropriate spaces. We call the resulting system a bounded i/s/o system. We may even

relax the condition for A and only require that it is the generator of a strongly continuous

semigroup in X , but keep the assumption that B, C, and D are bounded, in which case we

end up with a semi-bounded i/s/o system. More general i/s/o systems will be encountered

later in this monograph. In some cases, either the input u or the output y is missing, in

which case we have a state/output system and an input/state system. Classical i/s/o systems

are discussed, e.g., in Kalman et al. (1969).

1.1.4 Input/Output Systems

In the i/o setting, each trajectory has two components, namely an input component u whose

values lie in an input space U and an output component y whose values lie in an output

space Y , but there is no explicit state component x. In this setting, one wants to know

how the output component y depends on the input component u. In the finite-dimensional

case, it is typically assumed that the input u and output y satisfy a finite-order system of

differential equations of the type

Pout

( d

dt

)

y= Pin

( d

dt

)

u, (1.1.5)

where Pout and Pin are matrix-valued polynomials with the same row dimension. Under

suitable regularity assumptions, it is possible to construct an underlying i/s/o system with

the property that to each i/o pair
[

y
u

]

satisfying the relation (1.1.5), there corresponds an

i/s/o triple
[

x
y
u

]

satisfying (1.1.4). Such an i/s/o system is called a realization of the i/o

relation (1.1.5). The state x of such an i/s/o representation is not unique, but there exists a

realization with minimal state space dimension, and all realizations with the same minimal

state space dimension are similar to each other. In addition, there also exist realizations

with a nonminimal state dimension.

In the infinite-dimensional version of an i/o system, the differential equation (1.1.5)

can be replaced with some other type of linear time-invariant relation (i.e., a linear rela-

tion between u and y, which commutes with time shifts). This relation may involve par-

tial differential operators, or integral operators, or time delays, etc. The analysis of this

more general type of i/o system is often based on the existing theory of linear opera-

tors acting on some space of functions of a time variable that are invariant under right

shifts and/or left shifts, and the properties of the shift operator in various function spaces

become important. Also, in this case, it is often possible to find some underlying i/s/o

system for which the variables u and y play the role of inputs and outputs, respectively,

but that system need not be bounded or semi-bounded (and it is, of course, not

unique).
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1.1 Linear Time-Invariant Dynamical Systems 5

1.1.5 Classical (Sub)networks

A classical network (or strictly speaking, subnetwork) resembles a finite-dimensional i/s/o

system in the sense that it has a state variable, and it can exchange information with the

outside world, but this interchange of information does not take place through dedicated

input and output channels. Instead, there is an interface consisting of m≥ 1 “ports,” where

each port supports two scalar signals, so that the total number of interaction signals is

even (= 2m). In an electrical circuit, each port consists of two terminals, and the two port

variables are the current entering the port through its “positive” terminal and the voltage

between the positive and the “negative” terminals. The product of these two port vari-

ables is proportional to the power absorbed by the system through this particular port,

where a positive value means that the power is absorbed by the network, and a nega-

tive value means that the power is emitted from the network. By combining port currents

and voltages in different ways, one can group the 2m-dimensional interaction signal into

an m-dimensional input and an m-dimensional output. Some choices will lead to well-

posed i/s/o systems, meaning that for each time interval [0, T], the (final) state x(T) at

time T and the restriction of the output y to the interval [0, T] depend continuously on

the (initial) state x(0) at time 0 and the restriction of the input u to the interval [0, T].

Other combinations of port currents and voltages into an m-dimensional input and an m-

dimensional output may not lead to well-posed i/s/o systems. However, in order to con-

nect two such (sub)networks to each other, there is no need to split the port currents and

voltages into dedicated inputs and outputs; instead, one simply requires the connection to

satisfy a certain energy-preserving algebraic condition – namely that the voltages over two

connected ports are the same and that the sum of the current entering the two connected

ports must be zero (i.e., the current entering one of the connected ports must be the same

as the current leaving the other). Classical network theory is discussed in, e.g., Belevitch

(1968), Fuhrmann and Helmke (2015), Kuh and Rohrer (1967), Seshu and Reed (1961),

and Wohlers (1969).

1.1.6 Port-Hamiltonian Systems

Trajectories of a port-Hamiltonian system have both a state component and a signal com-

ponent through which the system interacts with the outside world. A port-Hamiltonian

system consists of several different components that are interconnected through an energy-

preserving structure, called a Dirac structure. Two of these components are interpreted

as “internal components,” namely an energy-preserving dynamic component and a static

dissipative component, and the interconnection to the outside world takes place through

a third part of the Dirac structure that from the outside looks like the port of a network.

In the network interpretation of a finite-dimensional port-Hamiltonian system, the state

consists of a collection of capacitors and inductors that can store potential and magnetic

energy, respectively, and energy is dissipated in resistors. The Dirac structure describes the

interconnections of these elements, the signal “flows” correspond to currents entering the

ports, and the “efforts” correspond to voltages over the ports. In an infinite-dimensional
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6 Introduction and Overview

setting where the dynamics of a port-Hamiltonian system is described with a partial dif-

ferential equation in a space domain, the signal part of the system is used to describe the

flow of energy through the boundary. A port-Hamiltonian system can be interpreted (in the

linear time-invariant case) as a special case of a passive state/signal system (a short intro-

duction to passive state/signal systems is given in Section 15.7). For an introduction and

further references to port-Hamiltonian systems, we refer the reader to Cervera et al. (2003,

2007), Le Gorrec et al. (2005), Jacob and Zwart (2012), Kurula et al. (2010), Ortega et al.

(2002), van der Schaft (2000, 2006), van der Schaft and Jeltsema (2014), van der Schaft

and Maschke (1994, 2002, 2018), and Wu et al. (2018).

1.1.7 Behavioral Systems

A behavioral system resembles an i/o system in the sense that it does not postulate the

existence of an underlying state system; on the other hand, it differs from an i/o system

in the sense that the trajectories of a behavioral system are not formally decomposed into

an input component and an output component. This resembles the behavior of the port

variables of a classical network, but there is no “port structure” imposed on the trajectories,

i.e., the dimension of the signal spaceW in which the values of the trajectories may be even

or odd, and there is no “power” associated with the trajectories. The easiest way to arrive

at the notion of a finite-dimensional behavioral system is to combine the p-dimensional

input u and the q-dimensional output y of a finite-dimensional i/o system into a (p+ q)-

dimensional signal w, and to require this signal to satisfy a simplified version of (1.1.5),

namely

P
( d

dt

)

w= 0, (1.1.6)

where P is a matrix-valued polynomial. Every relation of the form (1.1.5) can be put into

the form (1.1.6) by defining the interaction signal w to be the i/o pair
[

u
y

]

and taking

P=
[

Pin −Pout

]

. There also exist methods to go from (1.1.6) to (1.1.5), but since the

splitting of the interaction signal w into an input u and an output y is not unique, to each

signal relation of the type (1.1.6) there correspond infinitely many i/o relations of the type

(1.1.5). It is further possible to develop i/s/o representations of the type (1.1.4) for a behav-

ioral system by first splitting the signal w into an input and an output, and then applying

knownmethods for getting an i/s/o representation of the i/o relation (1.1.5). Of course, there

is now an additional free parameter in this construction: in addition to the nonuniqueness

of the state space X of the system, the splitting of the signal space W into an input space

U and an output space Y is highly nonunique. For an introduction to behavioral systems

and further references, we refer the reader to Polderman and Willems (1998), Weiland and

Willems (1991), Willems (1991, 2007), Willems and Yamamoto (2007), and Willems and

Trentelman (1998, 2002).
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1.1 Linear Time-Invariant Dynamical Systems 7

The connection between behavioral systems and the class of state/signal systems will be

discussed in Sections 1.1.8 and 1.1.12.

1.1.8 State/Signal Systems

The class of linear time-invariant dynamical systems that we introduce in this monograph

under the name “state/signal systems” can be interpreted as a generalization of the notion

of a classical network. As in the case of a classical network, each trajectory has two com-

ponents: a state component x(t) with values in a state space X and a signal component w(t)

with values in a signal space W . These spaces are allowed to be (finite-dimensional or)

infinite-dimensional Hilbert spaces (or more precisely, H-spaces, as will be explained in

Section 1.1.14), and as in behavioral theory, there is no extra “port” structure imposed

on the signal space W . The main difference between the classes of i/s/o systems and

state/signal (s/s) systems is that in a s/s system the interaction signal is not a priori split

into an input and an output. We mentioned earlier that a behavioral system can be in-

terpreted as a “black box” model of a generalized version of a network. A more precise

statement would be that a behavioral system can be interpreted as a “black box” model of

a s/s system.

The formal definition of a s/s system is very simple, and the same definition can be

used in the finite- and infinite-dimensional settings. It does not involve any unbounded

operators. To arrive at this definition, we take a closer look at equation (1.1.4), describing

the evolution of the trajectories of a linear time-invariant finite-dimensional i/s/o system.

This equation can be interpreted as a linear relation between the four variables x(t), ẋ(t),

u(t), and y(t), where x(t) and ẋ(t) belong to the state space X , u(t) belongs to the input

space U , and y(t) belongs to the output space Y . If we remove the distinction between the

input and the output, and consider both the input u(t) and the output y(t) to be parts of the

interaction signal w(t), then we end up with a linear relation between x(t) ∈X , ẋ(t) ∈X ,

and the signal w(t) ∈W , where W is the signal space. Every such linear relation can be

written in the form

[

ẋ(t)
x(t)
w(t)

]

∈ V, t ∈ I, (1.1.7)

where V is a subspace of
[

X
X
W

]

. We call V the generating subspace of the system. By a

classical trajectory of (1.1.7), we mean a pair of functions
[

x
w

]

, where x is continuously

differentiable on I, w is continuous on I, and (1.1.7) holds.

It is, of course, possible to rewrite (1.1.7) into several other equivalent forms. If V is

closed, then we can think about V as the kernel of a surjective bounded linear operator
[

−E M N
]

from
[

X
X
W

]

into an auxiliary space Y and rewrite (1.1.7) in the form

Eẋ(t) =Mx(t) +Nw(t), t ∈ I. (1.1.8)
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8 Introduction and Overview

This representation is unique up to the multiplication with a bounded linear operator with

bounded inverse from the left. We call this a kernel representation of (1.1.7). Another

possibility is to interpret V as the range of an injective bounded linear operator
[

K
F
L

]

from

an auxiliary space U into
[

X
X
W

]

, which can be used to rewrite (1.1.7) in the form

d

dt
Fv(t) =Kv(t),

x(t) = Fv(t),

w(t) = Lv(t),

t ∈ I. (1.1.9)

This representation is unique up to the multiplication with a bounded linear operator with a

bounded inverse from the right. We call this an image representation of (1.1.7). If the gen-

erating subspace V has the property that the first component ẋ(t) in (1.1.7) is determined

uniquely by the other two components
[

x(t)
w(t)

]

, and if we let G be the linear operator map-

ping
[

x(t)
w(t)

]

into ẋ(t) whose graph is equal to V , then (1.1.7) can alternatively be written in

the form

ẋ(t) =G
([

x(t)
w(t)

])

, t ∈ I. (1.1.10)

The domain of the operator G need not be the full space
[

X
W

]

or even dense in
[

X
W

]

, which

means that the implicit condition
[

x(t)
w(t)

]

∈ dom (G) hidden in (1.1.10) creates a linear de-

pendence between x(t) and w(t).

In this monograph, we primarily use the representation (1.1.7), but certain results are

easier to prove using the representation (1.1.8), (1.1.9), or (1.1.10).

1.1.9 State/Signal versus Input/State/Output Systems

Above we described how to convert the i/s/o system (1.1.4) into a s/s system (1.1.7) by

combining the input u(t) and the output y(t) into an interaction signal w(t) =

[

y(t)
u(t)

]

. This

process can be reversed by splitting the signal space W of the s/s system (1.1.7) into W =

U ∔Y , and splitting the signal w(t) accordingly into w(t) = u(t) + y(t) where u(t) ∈ U and

y(t) ∈Y . By doing so we can rewrite (1.1.7) in the form (where we have reordered the

components, so that y(t) comes before x(t))

[

ẋ(t)
y(t)
x(t)
u(t)

]

∈ Vi/s/o, t ∈ I, (1.1.11)

where Vi/s/o is the subset of

[

X
Y
X
U

]

that we obtain from the generating subspace V in (1.1.7).

If Vi/s/o has the property that the pair
[

ẋ(t)
y(t)

]

in (1.1.11) is defined uniquely by
[

x(t)
u(t)

]

, then

we can rewrite (1.1.11) into a more familiar i/s/o form

[

ẋ(t)
y(t)

]

= S
[

x(t)
u(t)

]

, t ∈ I, (1.1.12)
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1.1 Linear Time-Invariant Dynamical Systems 9

where the system operator S is the linear operator from
[

X
U

]

into
[

X
Y

]

whose graph is equal

to Vi/s/o. The advantage of the representation (1.1.12) compared with the representation

(1.1.10) is that with a suitable choice of the decompositionW = U ∔Y , it is usually possi-

ble to guarantee that the domain of S is dense in
[

X
U

]

. In the finite-dimensional case, after

working out all the details, one ends up with an equation of the type (1.1.4) (with R being

replaced by I). The i/s/o system (1.1.11) is called an i/s/o representation of the state/signal

system (1.1.7). Later, we shall sometimes drop the condition that
[

ẋ(t)
y(t)

]

in (1.1.11) is

defined uniquely by
[

x(t)
u(t)

]

and permit the operator S in (1.1.12) to be multivalued, in which

case (1.1.12) should be replaced with the relation
[

ẋ(t)
y(t)

]

∈ S
[

x(t)
u(t)

]

, t ∈ I. (1.1.13)

The close relationship between i/s/o and state/signal systems expressed by (1.1.7),

(1.1.11), and (1.1.13) makes it possible to transfer many standard system theoretic notions

for i/s/o systems to the class of state/signal systems, provided we make a small change

(with drastic consequences) in the standard definition of what one means by a classical

trajectory of an i/s/o system. In the standard finite-dimensional setting (1.1.4), if we as-

sume that x and u are continuous functions on an interval I, then it follows from (1.1.4)

that x is continuously differentiable on I and that y is continuous on I. If we replace (1.1.4)

with (1.1.12) or (1.1.13), then the continuity of y and continuous differentiability of x can

no longer be taken for granted. Instead, we therefore impose an a priori continuous dif-

ferentiability assumption on x and an a priori continuity assumption on y in (1.1.12) or

(1.1.13), in addition to the assumption that u is continuous on I. (In the finite-dimensional

well-posed case, this extra condition is redundant.) With this added smoothness condition,

there is a one-to-one correspondence between classical trajectories of (1.1.7) and those of

(1.1.12) or (1.1.13), as soon as the decomposition W = U ∔Y is fixed. This makes it pos-

sible to transfer all the standard “dynamic” notions for i/s/o systems that can be defined

in terms of the behavior of trajectories into corresponding notions for state/signal systems.

This includes notions related to stability, stabilizability and detectability, controllability

and observability, minimality, compressions and dilation, and various transformations and

interconnections. Depending on the particular i/s/o notion, the corresponding state/signal

notion falls into one of the following two categories:

(i) In some cases, if one of the i/s/o representations of a s/s system � has a particular i/s/o

property, then every i/s/o representation of � has the same property, in which case

we say that the corresponding state/signal system has the analogous s/s property. For

example, the property that the system operator S in (1.1.12) is closed is of this type, i.e.,

if V has at least one representation as the graph of a closed system operator, then V is

closed, and every other system operator in a graph representation of V is also closed.

Thanks to our slightly nonstandard definition of the notion of a trajectory, also the

notions of controllability, observability, minimality, stabilizability, and detectability

are of the same type. There even exist some weak existence and uniqueness properties

(where the input and the output are treated in a symmetrical way), which belong to the

same class. We call this class of i/s/o properties i/o invariant.
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10 Introduction and Overview

(ii) If it is instead true that the s/s system has a particular s/s property as soon as at least

one of its i/s/o representations has the analogous i/s/o property (but the s/s system may

also have i/s/o representations that do not have this property), then we say that this

i/s/o property is i/o dependent.

Thus, in order to show that a particular i/s/o representation has a property of the type (i),

it suffices to show that some other i/s/o representation has the same property, and in order

to show that a state/signal system has a property of type (ii), it suffices to show that it

has at least one i/s/o representation that has the corresponding i/s/o property. For example,

the i/s/o notions of boundedness, semi-boundedness, well-posedness, and stability are i/o

dependent, i.e., every bounded, or semi-bounded, or well-posed, or stable s/s system has

at least one bounded, or semi-bounded, or well-posed, or stable i/s/o representation, but it

may also have i/s/o representations that do not have these properties. This will be explained

in more detail in Section 1.2.

1.1.10 Frequency Domain Systems

In the existing literature, nonlinear and time-dependent systems are primarily discussed in

the time domain (as we have done above). Linear time-invariant i/o and i/s/o systems also

have a rich frequency domain theory that complements the time domain theory. In this

monograph, we develop an analogous frequency domain theory for state/signal systems,

and in addition, we expand the frequency domain theory for i/s/o systems by introducing

the notion of a frequency domain trajectory of an i/s/o system. A time domain trajectory

is a vector-valued function of a time variable, whereas a frequency domain trajectory is an

analytic vector-valued function of a frequency variable. In the i/s/o setting, both the time

domain and frequency domain trajectories have an initial state, a “final” state, an input,

and an output, and in our state/signal setting, both the time domain and frequency domain

trajectories have an initial state, a “final” state, and an interaction signal. Under additional

regularity assumptions, frequency domain trajectories can be interpreted as Laplace trans-

forms of time domain trajectories in the case where the time variable is continuous, or as

Z-transforms of time domain trajectories when the time variable is discrete. A time do-

main trajectory is defined in some time interval (finite or infinite), whereas a frequency

domain trajectory is defined in an open subset of the complex plane. The choice of which

particular frequency domain to use depends on the situation at hand. For example, for

a passive discrete time system, the natural frequency domain is either the outside or the

inside of the unit disk, depending on whether we are looking for the evolution in the for-

ward or backward time direction, and for a passive continuous time system, the natural

frequency domain is either the right or the left half-plane, again depending on the direction

of time.

Basically, all the standard frequency domain i/s/o notions have state/signal counterparts,

although these counterparts often appear in a different form. For example, the standard

i/o “transfer function” or “characteristic function,” which is an analytic operator-valued

function, is replaced by an analytic vector bundle that we call the characteristic signal
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