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Data assimilation is a hugely important mathematical technique, relevant in fields as

diverse as geophysics, data science, and neuroscience. This modern book provides an

authoritative treatment of the field as it relates to several scientific disciplines, with a par-

ticular emphasis on recent developments from machine learning and its relation to data

assimilation. Underlying theory from statistical physics, such as path integrals and Monte

Carlo methods, is developed in the text as a basis for data assimilation, and the author

then explores examples from current multidisciplinary research such as the modeling of

shallow water systems, ocean dynamics, and neuronal dynamics in the avian brain. The

theory of data assimilation and machine learning is introduced in an accessible and unified

manner, and the book is suitable for undergraduate and graduate students from science and

engineering without specialized experience of statistical physics.
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Preface

This book explores methods for performing the tasks in Data Assimilation, a

critical practical step in the transfer of information from observed data collected

during measurements of a physical or biological dynamical system to a nonlinear

dynamical model proposed for the that system.

The name Data Assimilation emerged over the years in the context of Numeri-

cal Weather Prediction in meteorology, but has found the same challenge in many

fields of study: including in numerical weather prediction and quantitative aspects

of neurobiology, as examples, and many other areas of science and technology

where one must address this transfer of information as well.

Further, as we proceed through this book we show that the same questions

and associated tools for answering them appear in the equivalent problem of

Supervised Machine Learning.

These seemingly quite different formulations of questions and tools for address-

ing them all appear in the framework of Statistical Physics. If you have not had

experience with Statistical Physics, this volume will introduce you to much of its

strength without any undue suffering on your part–that’s the plan anyway!

In our discussions these problems are placed into a common path integral for-

mulation (Zinn-Justin (2002); Hochberg et al. (1999); Abarbanel (2013)) which

provides a unification of critical questions and a framework in which to view

methods developed in various disparate fields as they apply to many others.

What does it mean to transfer information in data to a model of the dynamical

system generating those data?

In these problem areas we have dynamical equations (the model) having state

variables {voltages, V (t), density or concentrations of chemical constituents, ρ(x,

y, x, t), velocities, v(x, y, z, t), and so forth} as well as time independent param-

eters such as {viscosities, conductivities, and so forth}, any of which may be

unobserved or unobservable in the collection of the data.

ix
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x Preface

Figure 0.1 Monsieur Proust’s Collection of Books: “Remembrance of Things
Past”

Over some observation window in time [t0, t f inal] we collect information on the

observable variables, then use data assimilation tools to estimate the unobservable

state variables and time independent parameters. With estimates of the full set of

state variables at t f inal and all the parameters, we can use these as initial conditions

at t f inal to predict forward t > t f inal as a test or validation or generalization of the

model.

This volume is intended for data scientists, physical scientists, and life scien-

tists who wish to utilize machine learning methods (Goodfellow et al. (2016);

Abarbanel et al. (2018)), to simplify or accelerate calculations within their

inquiries (Pathak et al. (2018); Ott (2019)).

It is intended for scientists and engineers with experience in methods of sta-

tistical physics, typically covered in beginning graduate courses in Physics and

Chemistry, for transferring information in observed data to models of the observed

processes with the goal of estimating unknown fixed parameters in the models as

well as unobserved state variables in the models.

This transfer process is called by various names in different fields of study.

We adopt the designation data assimilation following the terminology used in
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Preface xi

numerical weather prediction (Ghil and Malanotte-Rizzoli (1991); Pires et al.

(1996); Kalnay (2003); Lorenc and Payne (2007); Evensen (2009); Reich and

Cotter (2015)) over many decades. It is also widely referred to as state and param-

eter estimation in many engineering applications. These are just a few: Dochain

(2003); Horváth and Manini (2008); Lei et al. (2017).

Collecting the data takes quite skilled personnel.

● The data is always noisy and typically sparse in the sense that only a (usually

quite small) subset of the dynamical variables in the system producing the data

are observable.
● Formulating a model for the dynamics of that system is not algorithmic. It

takes experience and insight into the physical or biological or other mechanisms

identified to be operating within the observed system.
● Transferring the information residing in the data to critical aspects of the selected

model also takes skill.

This book is primarily about the last of these items, especially when the data are

noisy and the model has errors.

An overview of these steps is this:

In some time interval [t0, t f inal ] (or many such time intervals) we meas-
ure L quantities y(τk) = {y1(τk), y2(τk), . . . , yL(τk)} at times τk : {t0 ≤

τk ≤ t f inal} of physical, biophysical, geophysical, or other subject of
interest.
After some contemplation of the forces acting on the system producing
these measurements and some consideration of the environment in which
the observed nonlinear dynamical system resides, one proposes some D-
dimensional (D ≥ L) dynamical equations for the state variables x(t) =

{x1(t), x2(t), . . . , xD(t)} in the form of nonlinear ordinary differential
equations.

dxa(t)

dt
= Fa(x(t), u(t), θ); a = 1, 2, . . . , D, (0.1)

where θ is a collection of Np time independent parameters, u(t) are some
time varying quantities, perhaps under the control of the observer, and
F(x(t), u(t), θ) is called the vector field of the dynamics. u(t) is a set of
“time dependent” parameters for which no dynamical equation is usually
given. It is specified outside the observed system, and it can be treated
as a sequence of parameters at each time tn = t0 + n�t where the state
variables x(tn) are desired.
How can we estimate the parameters θ we do not know, as well as the
D − L state variables we do not (or cannot) observe, and the ‘external’
or environmental forces we may not know using the potentially sparse
(D ≫ L) and certainly noisy measurements we have acquired?
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xii Preface

If we were able to accomplish the required estimations, we would be in a good

position to ask and answer the additional, critical question:

With estimates of all state variables at the end t f inal of the obser-
vation window [t0, t f inal ] x(t f inal), all parameters θ , and all forces
u(t ≥ t f inal), can we predict x(t > t f inal) by solving the initial value
problem, Eq. (0.1), with initial conditions now given at t f inal?

As we have L observed state variables, we can check the consistency of the

model output with those observations in and beyond [t0, t f inal]. In the prediction

phase of data assimilation, t ≥ t f inal , we must have accurate estimations of the

unobserved state variables. In this step, called ‘generalization’ in machine learning,

we are testing both our selection of the model Eq. (0.1) and the workings of our

data assimilation, information transfer, protocols.

Let’s address just a few technical tidbits before proceeding:

1. If the model of the dynamics producing the data is in the form of partial

differential equations, then one has an infinite number of degrees-of-freedom

(D → ∞)! So one puts the fields on a x(r, t); r = (x, y, z) spatial grid (or

equivalent) with N = Nx × Ny × Nz grid points, resulting in ND ordinary

differential equations of the form Eq. (0.1), which brings us back to the same

discussion.

2. The ‘external’ quantity u(t) may be known, for example, if the forces driving

the observed system are known. If they are not known, then in a variational

treatment of the overall data assimilation problem, as discussed in Gelfand

and Fomin (1963); Kirk (1970), there are equations determining u(t) from

knowledge of the y(τk).

3. We discuss one observation window in time [t0, t f inal]; however, if the dynam-

ics is chaotic, there may be a need for a sequence of observation windows. The

reason is that we are numerically able to estimate parameters and states to var-

ious levels of accuracy; however, such unavoidable errors are amplified by the

chaotic dynamics, and one needs to observe again to put the evolving trajectory

into the correct region of state space.

4. The number of measurements, called L here, made at each observation time

may vary as observations are made.

5. The time �t separating steps in the utilization of the dynamics need not be

uniform across all time windows.

Who wants to do this sort of thing anyway?

The simplest answer is everyone working in science and technology. Many have

data, many have models describing how those data emerged from observations of
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some dynamical system, and all need tools to transfer the information in those data

to the model. Since there are unknown parameters and surely unobserved state

variables, the data alone may be insufficient to provide confidence in the ability of

the model to predict beyond t f inal .

To this quite general discussion, it might be of value to discuss an example

briefly. You are tasked with making measurements on a neuron isolated from its

working environment and placed, in vitro, in a dish with the goal of developing

some model dynamical equations that allow you to know (predict) with accuracy

how this neuron, or its equivalent back in the working biophysical neural circuit,

will respond to currents in its environment and coming through to it via synaptic

or other connections to other neurons.

An Illustrative Example – Dynamical Equations for a Neuron

The biophysical equations describing the dynamics of neurons were established by

work done mostly in Cambridge, UK before and after World War II. Hodgkin and

Huxley (1952); Johnston and Wu (1995); Sterratt et al. (2011) were some of the

researchers whose names are prominent in understanding that equations impos-

ing current conservation on the ions flowing into and departing from the neuron

body (soma) and equations capturing the voltage dependent permeability of the cell

membrane to these ions would provide a quantitative framework for the biophysical

description of the neural processes.

In the experiments they performed they considered two ion channels for Na and

K ions flowing through proteins penetrating the cell membrane. They also intro-

duced a ‘leak’ channel describing other aspects of neuron behavior. The nonlinear

equations they proposed, and tested, have the form

Cm

dV (t)

dt
= gNam(t)3h(t)[ENa − V (t)] + gK n(t)4[EK − V (t)]

+ gL [EL − V (t)] + IDC + Iapp(t). (0.2)

The three voltage dependent ‘gating’ variables a(t) = {m(t), h(t), n(t)}; 0 ≤

a(t) ≤ 1 are taken to satisfy the first order kinetics

da(t)

dt
=

a0(V (t)) − a(t)

τa(V (t))
. (0.3)

The parameters {g j } in the voltage equation Eq. (0.2) variables are constants while

the gating variables are state variables that are voltage dependent. a0(V ) and τa(V )

are voltage dependent functions. The first is dimensionless and sets the scale for

the gating variables, and the second is a voltage dependent time scale for the gating

variables.

This is a D = 4 dimensional dynamical system. It has rich behavior (Hodgkin

and Huxley (1952); Johnston and Wu (1995); Sterratt et al. (2011)). In laboratory
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Figure 0.2 An illustrative example of the data assimilation challenge discussed
in this book. This figure shows data from Daniel Margoliash of the University of
Chicago and Daniel Meliza of the University of Virginia. An interneuron within
the nucleus HVC of the avian brain was isolated in a glass dish in the laboratory
– an in vitro experiment. An electrode was inserted into the body of the neuron
and the applied current Iapp(t) shown in the bottom panel was injected into the
neuron. The resulting membrane potential response, shown in the top panel of the
display, was measured using the same electrode. From these data, one is asked to
estimate all the parameters, here Np = 20, and the three (unmeasured) gating
variables a(t) in the HH equation, Eq. (0.2).

experiments one can directly measure the cross membrane voltage V (t), but no

instruments are available (as of July 2020) to observe the gating variables. In the

general language used here, L = 1, and three state variables are unobserved.

An experiment consists of selecting a current Iapp(t) (the analog of u(t) dis-

cussed above), and it is typically known. With only V (t) observed, the challenge

is to estimate all the fixed parameters in Eq. (0.2) as well as to estimate all of

the a(t) and all of the parameters in the a0(V ) and τa(V ) appearing in, Eq. (0.3),

over [t0, t f inal]. Validation (or not) of the model associated with the observations

comes from solving Eq. (0.2) for t ≥ tfinal, using V (tfinal) and the a(tfinal) as initial

conditions and the estimated θ to complete the HH equations.

If you are a ‘data scientist,’ there is often a directive to find a ‘domain expert’

with whom to work on the problem just posed. I personally encourage each reader

to become a domain expert and a data scientist at the same time and not artificially
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divide one’s self into two or more parts. The problems you wish to solve usually

require both of these parts of you, and your appreciation of the data and the model-

ing will be increased by this strategy. If you collaborate with other domain experts

and/or other data scientists to address the issues in your problem, that brings even

more experience to the table.

In the instance of neurobiology, for example, I recommend the domain expert’s

‘manual’ by Daniel Durstewitz (2017). It addresses what you need to know about

neurons and then provides an easy entry into computational modeling of neurons

and networks thereof. The textbook by Sterratt et al. (2011) covers less neuro-

data analysis than Durstewitz (2017) but focuses more in modeling networks of

neurons.

The other topic we often use as examples in this book arises in geophysics, and

your road to domain expertise could be via Pedlosky (1986); Vallis (2017).

Why should we expect this will work? Because the dynamical model is non-

linear in the state variables, the state variables are generically coupled together

through the nonlinear model. Information is passed through the observable V (t)

and determines the unobserved a(t) and the parameters θ , consistent with the data.

The functions a0(V ) and τa(V ) for the neurobiological problem may be esti-

mated by looking at experimental data (Senselab-Yale (2020)) for simulations of

each ion channel: Na, K, Ca, . . .

This sets the challenge. We’ll see how it all works, in detail, as we proceed.

A Bit More Just Before We Start Out

This book is primarily about how one effects this information transfer when the

data are noisy (always) and the model has errors (also always). There are many

methods for this that have been developed in various fields; and while we will note

those developments, our focus here will be on the path integral formulation of the

critical questions.

Why path integrals? They sound quite exotic; however, as we will see in the

chapters ahead, they are formulated in a natural manner, and they are integral

representations of the solutions to equations such as Eq. (0.1) when errors in the

model and errors in the data are present. Such representations give us insight into

global properties of the dynamical systems we will be analyzing, while the differ-

ential equations, such as Eq. (0.1), are focused on local time evolution of those

equations.

We will discuss variational methods for both continuous time and discrete time.

We will discuss Monte Carlo methods. We will discuss both of these using an

annealing method that turns on the magnitude of the model precision, and thus the

nonlinearity in an adiabatic fashion.
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I will also discuss supervised Machine Learning because, as it turns out, this

is mathematically equivalent to DA. So everything we say about data assimilation

applies.

This is not something (yet) discussed in other books, and I hope by drawing

attention to this equivalence the methods from DA will be utilized in ML, and,

hopefully, vice versa.

Another topic I will emphasize, again not widely addressed elsewhere, is the

question: How many L measurements does one require to accurately estimate the

state variables x(t) as well as the parameters θ? As estimating each of these costs

bits of information (Rissanen (1989)), accuracy must depend on how much inde-

pendent data is available. Furthermore, we’ll see that the answer depends on the

vector field F(x, θ , u), and the DA efficacy depends on the instabilities of the non-

linear communication protocol connecting the data, y(t), to the model (Kostuk

(2012)).

We will select examples from geosciences and neurobiology as we proceed. As

noted, the material here is often encountered by students of Physics, Chemistry,

and Geophysics. It is not at all common to see it in a Neurobiology curriculum.

I hope this book and the papers presenting research that precede it will become

common practice in computational neuroscience as well; we’ll see.

Many Thanks Are Owed

The results in this monograph cannot be claimed by me to be mine alone. My many

productive interactions with former and present Physics PhD students at UCSD

contributed to every word and paragraph. These women and men include Dan-

iel Creveling, Brian Toth, Mark Kostuk, Chris Knowlton, Will Whartenby, Jack

Quinn, Uriel Morone, Michael Eldridge, Jason An, Xingxin Ye, Daniel Rey, Nirag

Kadakia, Sasha Shirman, and Paul Rozdeba, and I recommend their PhD disserta-

tions to the reader. Those may be found in the University of California’s archive

escholarship.org:

Creveling (2008); Toth (2011); Kostuk (2012); Shirman (2018);
Kadakia (2017); Ye (2016); Quinn (2010); An (2019); Rey (2017);
Rozdeba (2017); Knowlton (2014); Eldridge (2016); Morone (2016);
Whartenby (2012).

Equally important have been my productive interactions over many years with

Daniel Margoliash at the University of Chicago and Ulli Parlitz in Göttingen. This

includes as well their postdoctoral fellows Daniel Meliza (now at the University

of Virginia) and Arij Daou (now at the American University of Beiruit) and many

PhD students, especially Jöchen Bröcker, now at the University of Reading (UK).
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To this list I am pleased to add Alain Nogaret at the University of Bath

(UK), Eve Armstrong (NYIT), George Michael Fuller (UCSD, Physics) and Philip

Gill, Melvin Leok, Michael Holst, and Randy Bank (UCSD, Mathematics), Gert

Cauwenberghs, Gabriel Silva (UCSD, Bioengineering) and Tim Gentner (UCSD,

Psychology and Neurobiology), Michael Long (NYU, Neuroscience), Bruce Cour-

nelle and Art Miller (UCSD, Scripps Institution of Oceanography), and Alexandre

Chorin (UCB, Mathematics).

Finally, I am indebted to my old and reliable friends Robert Sugar (University

of California Santa Barbara, Physics) and Jerry Marsden (UC Berkeley and Cal-

tech) who have tolerated and often dissipated my confusion about many topics in

statistical Physics for many years. Marsden’s youthful death did not impede the

importance of his contributions to the ideas we discuss here.

My wife has always encouraged my efforts by noting my results are “obvious”

and looking forward to even more.
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