

Ship-Shaped Offshore Installations

Second Edition

Extensively updated for the second edition, this handy guide covers the safety engineering of ship-shaped offshore installations at every stage of design, construction, operation, lifetime healthcare and decommissioning. New sections cover additional types of offshore structures, including offshore power plants, as well as cutting-edge technologies and all the latest advances in the field. The text focuses on minimising accidents and the effects of extreme conditions, with new chapters covering earthquakes, hurricanes and terrorist attacks, as well as traditional types of accidental events such as hull girder collapse, collisions, fires and explosions. This is an invaluable resource for students who will be approaching the subject for the first time as well as practising engineers and researchers.

Jeom Kee Paik is Professor of Marine Technology in the Department of Mechanical Engineering at University College London, and Director of the International Centre for Advanced Safety Studies (Lloyd's Register Foundation Research Centre of Excellence, www.icass.center).

Cambridge Ocean Technology Series

- 1. O. Faltinsen: Sea Loads on Ships and Offshore Structures
- 2. Roy Burcher and Louis J. Rydill: Concepts in Submarine Design
- 3. John P. Breslin and Poul Anderson: Hydrodynamics of Ship Propellers
- 4. R. A. Shenoi and J. F. Wellicome (eds): *Composite Materials in Maritime Structures Vol I*
- 5. R. A. Shenoi and J. F. Wellicome (eds): *Composite Materials in Maritime Structures Vol II*
- 6. Michel K. Ochi: Ocean Waves: The Stochastic Approach
- 7. Dong-Sheng Jeng: Mechanics of Wave-Seabed-Structure Interactions: Modelling, Processes and Applications
- 8. Johannes Falnes and Adi Kurniawan: Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-Energy Extraction
- 9. Jeom Kee Paik: Ship-Shaped Offshore Installations: Design, Construction, Operation, Healthcare and Decommissioning

Ship-Shaped Offshore Installations

Design, Construction, Operation, Healthcare and Decommissioning

Second Edition

JEOM KEE PAIK

University College London
The International Centre for Advanced Safety Studies (Lloyd's Register Foundation
Research Centre of Excellence)

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781316519608

DOI: 10.1017/9781009024471

First edition © Jeom Kee Paik and Anil Kumar Thayamballi 2007 Second edition © Jeom Kee Paik 2022

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2007 First paperback edition 2011 Second edition 2022

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Paik, Jeom Kee, author.

Title: Ship-shaped offshore installations: design, construction, operation, healthcare, and decommissioning / Jeom Kee Paik.

Description: Second edition. | Cambridge, United Kingdom; New York, NY, USA: Cambridge University Press, 2022. | Series: Cambridge ocean technology series | Includes bibliographical references and index.

Identifiers: LCCN 2021045502 (print) | LCCN 2021045503 (ebook) | ISBN 9781316519608 (hardback) | ISBN 9781009024471 (epub)

Subjects: LCSH: Drilling platforms. \mid Offshore structures–Design and construction. \mid

BISAC: TECHNOLOGY & ENGINEERING / Mechanical

Classification: LCC TN871.3 .P35 2022 (print) | LCC TN871.3 (ebook) | DDC 622/.33819-dc23

LC record available at https://lccn.loc.gov/2021045502

LC ebook record available at https://lccn.loc.gov/2021045503

ISBN 978-1-316-51960-8 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Pref	ace to t	he Second Edition	page xv
	Pref	ace to t	he First Edition	xvii
1	Intro	duction	to Ship-Shaped Offshore Installations	1
	1.1		of Ship-Shaped Offshore Installations	1
		1.1.1	• •	1
		1.1.2	Liquefied Gas Storage and Regasification	4
		1.1.3	Oil Terminals	4
		1.1.4	Wave Energy Harvesting	5
		1.1.5	Liquefied Natural Gas-Fuelled Power Plants	6
		1.1.6	Nuclear Power Plants	6
		1.1.7	Deep-Sea Mineral Mining	7
	1.2	Tradin	g Tankers versus Ship-Shaped Offshore Installations	7
	1.3	New E	Builds versus Tanker Conversions	10
	1.4	Tanke	r Conversions	11
		1.4.1	Selection of a Suitable Tanker for Conversion	11
		1.4.2	Inspection of an Aged Tanker's Hull Prior to Conversion	15
		1.4.3	Repair of an Aged Tanker's Hull Prior to Conversion	16
		1.4.4	Reuse of Existing Machinery and Equipment during	
			Tanker Conversion	17
		1.4.5	New Component Addition in a Tanker Conversion	17
		1.4.6	Appraisal of the Conversion Yard	19
	1.5	Front-	End Engineering and Design for New Builds	19
		1.5.1	Initial Planning and Contracting Strategies	21
		1.5.2	Detailed Engineering	22
		1.5.3	Principal Factors That Affect Project Costs	23
		1.5.4	Selection of Storage, Production and Offloading Capabilities	23
		1.5.5	Site-Specific Metocean Data	24
		1.5.6	Process Facility Design Parameters	25
		1.5.7	Limit State Design and Engineering	25
		1.5.8	Quantitative Risk Assessment and Management	26
		1.5.9	Project Management	27
		1.5.10	Post-Bid Scheduling and Management	27

vi **Contents**

	1.6	Characteristics of As-Built Ship-Shaped Offshore Installations	28
	1.0	1.6.1 Layout of Facilities in an FPSO Installation	29
		1.6.2 Principal Dimensions of As-Built FPSO Installations	30
		1.6.3 Double-Bottom and Double-Side Arrangements	30
		1.6.4 Tank Arrangement	33
		1.6.5 Longitudinal Strength Characteristics of FPSO Hulls	35
		1.6.6 Export Facilities	36
	1.7	Hypothetical Designs of Ship-Shaped Offshore Installations	38
		1.7.1 An FPSO Hull	38
		1.7.2 A Nuclear Power Plant Hull	39
	Refer	rences	46
2	Struc	tural Steel Selection and Construction	49
_	2.1	Steel Selection for Hull Structures	49
	2.2	Chemical and Mechanical Properties of Structural Steels	50
	2.3	Relationship between Stress and Strain of Materials	51
	2.4	Elastic–Perfectly Plastic Material Model	54
	2.5	Effect of Elevated Temperatures	54
	2.6	Effect of Sub-zero Temperatures and Cryogenic Conditions	55
	2.7	Effect of Impact Loading	57
		2.7.1 Strain Rate	57
		2.7.2 Dynamic Yield Stress	59
		2.7.3 Dynamic Fracture Strain	59
	2.8	Effect of Corrosion	62
	2.9	Welding Procedures and Techniques	62
	2.10	Welding-Induced Initial Imperfections	63
		2.10.1 Welding-Induced Residual Stresses	64
		2.10.2 Welding-Induced Initial Deformations	66
	2.11	Prevention of Welding-Induced Deformations	68
	2.12	Construction of Topside Modules	71
		2.12.1 Types of Topside Supports	71
		2.12.1.1 Multi-point Support Columns	72
		2.12.1.2 Flexible Support Stools	72
		2.12.1.3 Transverse Web-Girder Supports	73
		2.12.2 Types of Topside Flooring	74
		2.12.3 Types of Topside Construction	74
		2.12.3.1 Built-In Grillage Deck	74
		2.12.3.2 Pre-assembled Units	75
	2.13	Interface between the Hull and Topside Module	76
	Refer	rences	78
3	Ocea	n Environmental Conditions	81
	3.1	Types of Ocean Environmental Conditions	81
	3.2	Return Period of Ocean Environmental Conditions	83

		Contents	VII
	3.3	Wind	84
	3.4	Waves	88
		3.4.1 UK Offshore Operators Association Guidance Notes	93
		3.4.2 American Petroleum Institute Recommended Practices	95
		3.4.3 DNV Recommended Practices	95
		3.4.4 Wave Energy Spectra	96
		3.4.4.1 The Generalised Pierson–Moskowitz Spectrum	97
		3.4.4.2 The JONSWAP Spectrum	97
		3.4.4.3 Directional Wave Spectrum	98
	3.5	Current	99
	3.6	Non-collinear Combination of Waves, Wind, Current and Swell	99
	3.7	Tide	100
	3.8	Sea Surface Temperature	100
	3.9	Snow and Icing	101
	3.10	Marine Growth	102
	3.11	Seafloor Earthquakes and Tsunami	102
	3.12	Tank Sloshing	104
	3.13	Slamming	106
	3.14	Green Water	106
	Kelei	rences	108
4		Specific Wave-Induced Hull Girder Loads	111
	4.1	Principles of Hull Girder Load Prediction	111
	4.2	Parameters That Affect Hull Girder Loads	112
	4.3	Site-Specific Wave Data at Nautical Zones	114
	4.4	Site-Specific Wave Database of Six Seas	114
	4.5	Probability Density Functions of the Wave Parameters in Six Seas	114
	4.6	Probabilistic Selection of Benign Wave Scenarios in Six Seas	128
	4.7	Analysis of Motions and Wave-Induced Hull Girder Loads	130
	4.8	Probability of Exceedance Diagrams	144
	4.9	Survival Conditions	151
	4.10	Tow Conditions	156
	Refer	rences	160
5	Servi	ceability Limit States	162
	5.1	Principles of Serviceability Limit States Engineering	162
	5.2	Structural Idealisations	163
	5.3	Elastic Deflection Limits under Quasi-static Actions	167
		5.3.1 Support Members	167
		5.3.2 Plating between Support Members	169
	5.4	Elastic Plate Buckling Limits	170
	5.5	Elastic Flange Buckling Limits	171
	5.6	Permanently Set Plate-Deflection Limits under Impact	
		Pressure Actions	172

viii Contents

	5.7	Stability of Ship-Shaped Offshore Installations	174
		Weathervaning and Heading Control of Ship-Shaped	1/4
	5.0	Offshore Installations	176
	5.9	Excessive Motion of Ship-Shaped Offshore Installations	177
		Vibration and Noise	179
		Vortex-Induced Vibrations	181
		rences	181
6	Fatiç	jue Limit States	183
	6.1	Principles of Fatigue Limit States Engineering	183
	6.2	Approaches for Fatigue Limit States Engineering	185
	6.3	Types of Critical Structural Details	186
	6.4	Safety Factors for Fatigue Limit States	186
	6.5	Types of Stresses at Structural Details	188
	6.6	Cyclic Stress Ranges	190
	6.7	S–N Curves	192
	6.8	Criteria for Fatigue Limit States	195
	6.9	High Cycle Fatigue versus Low Cycle Fatigue	196
	6.10	Fatigue Limit States Assessment of Ship-Shaped	
		Offshore Installations	197
		6.10.1 Analysis of Hull Motions	199
		6.10.2 Global and Local Finite-Element Analyses	201
		6.10.3 Stress-Range Transfer Functions	204
		6.10.4 Selection of S–N Curves	205
		6.10.5 Fatigue Damage Calculations	206
	6.11	Crack Growth Models	211
	Refe	rences	213
7	Ultin	nate Limit States	215
	7.1	Principles of Ultimate Limit States Engineering	215
	7.2	Ultimate Strength of Plates	216
		7.2.1 Ultimate Plate Strength under Combined Loads	217
		7.2.2 Effective Plate Width and Ultimate Compressive	
		Strength Formulation	220
		7.2.3 Effective Shear Modulus and Ultimate Shear	
		Strength Formulation	222
		7.2.4 Ultimate Plate Strength Formulation under Combined Loads	223
		7.2.5 The Average Stress–Average Strain Relation before and	
		after the Ultimate Strength	224
		7.2.6 The Incremental Galerkin Method	225
	7.3	Ultimate Strength of Stiffened Panels	226
		7.3.1 Six Possible Collapse Modes	226
		7.3.2 Ultimate Panel Strength Formulations under Axial	
		Compressive Loads	228

8

Cambridge University Press & Assessment 978-1-316-51960-8 — Ship-Shaped Offshore Installations 2nd Edition Jeom Kee Paik Frontmatter More Information

	Content	ts ix
	7.3.2.1 The Paik–Thayamballi Empirical Formulation	229
	7.3.2.2 The Johnson–Ostenfeld Formulation	230
	7.3.2.3 The Perry–Robertson Formulation	230
	7.3.3 Ultimate Panel Strength Formulation under Lateral	
	Pressure Loads	231
	7.3.4 The Incremental Galerkin Method	232
7.4	Ultimate Strength of Hull Girders	233
	7.4.1 Geometric Properties of Hull Cross-Sections	233
	7.4.2 The Modified Paik–Mansour Method	234
	7.4.3 The Intelligent Supersize Finite-Element Method	237
	7.4.3.1 Dow's Frigate Test Hull	238
	7.4.3.2 A Hypothetical Floating Production, Storage and	
	Offloading Installation Hull	240
	7.4.4 Ultimate Hull Girder Strength Interaction Relations under	
	Combined Loads	241
7.5	Structural Collapse Triggered by Fracture	244
	7.5.1 Fracture Criteria	247
	7.5.2 The Relationship between Stress and Strain	248
7.6	Structural Collapse in Fires	249
	7.6.1 Computational Fluid Dynamics Simulations of Fires	251
	7.6.2 Heat Transfer Analysis	252
	7.6.3 Fire Progressive Collapse Analysis	253
7.7	Ultimate Strength under Cyclic Loading	254
7.8	Ultimate Strength of Aged Structures	255
7.9	Dynamic Ultimate Strength of Plates under Impact Axial	
	Compressive Loads	256
Refe	erences	259
Acci	idental Limit States	262
8.1	Principles of Accidental Limit States Engineering	262
8.2	Accidental Flooding	264
8.3	Collisions with Ships	265
	8.3.1 Selection of a Collision Scenario	265
	8.3.2 Extent of Structural Crashworthiness Analysis	266
	8.3.3 Types of Finite Elements	266
	8.3.4 Size of Finite Elements	267
	8.3.5 Material Property Modelling	268
	8.3.6 Other Considerations in Finite-Element Modelling	268
	8.3.7 Assessment of the Collision Energy Absorption Capability	
	8.3.8 Side-by-Side Collision between a Floating Production,	
	Storage and Offloading Hull and a Shuttle Tanker:	
	Case Study	270
	8.3.9 Collision of a Supply Vessel with a Floating Production,	270
	Storage and Offloading Hull: Case Study	273
		2.3

x Contents

	8.4 Collisions with Icebergs	277
	8.5 Dropped-Object Impacts	279
	8.6 Fires	280
	8.7 Explosions	282
	References	286
9	Mooring System Engineering	288
	9.1 Principles of Mooring System Engineering	288
	9.2 Types of Mooring Systems	289
	9.2.1 Spread Mooring Systems	289
	9.2.2 Single-Point Mooring Systems	290
	9.2.3 Turret Mooring Systems	293
	9.3 Selection of the Mooring System	295
	9.4 Safety Engineering of Disconnectable Mooring Systems	297
	9.4.1 Life-Cycle Cost Model	297
	9.4.2 Probability of Failure	299
	9.4.3 Life-Cycle Cost-Based Optimisation	300
	References	301
10	Sloshing Impact Engineering	303
	10.1 Principles of Sloshing Impact Engineering	303
	10.2 Procedure for Sloshing Load Analysis	307
	10.3 Probabilistic Selection of Sloshing Scenarios	310
	10.4 Computational Fluid Dynamics Simulations for Wind and	
	Current Forces	312
	10.5 Computational Fluid Dynamics Simulations for Hull Motions	
	in Waves, Wind and Current	312
	10.6 Decomposition of the Hull Motion Components of a Ship-Shaped	
	Offshore Installation	316
	10.7 Computational Fluid Dynamics Simulations for Tank Sloshing	316
	10.8 Determination of Design Sloshing Pressure Loads	321
	10.9 Procedure for Sloshing Response Analysis	321
	References	325
11	Seismic Impact Engineering	327
	11.1 Principles of Seismic Impact Engineering	327
	11.2 Computational Modelling for Seismic Response Analysis	329
	11.3 Procedure for Nonlinear Seismic Response Analysis	331
	11.4 Modelling of Site-Specific Seismic Load Profiles	332
	11.5 Finite-Element Modelling	334
	11.5.1 Modelling of the Hull	334
	11.5.2 Modelling of the Seabed	336
	11.5.3 Modelling of Seawater	337
		551

	Contents	xi
	11.5.4 Modelling of Doundam, and Contact Conditions	337
	11.5.4 Modelling of Boundary and Contact Conditions11.5.5 Modelling of the Seismic Load Application	339
	11.6 Seismic Responses of a Ship-Shaped Nuclear Power Plant Hull	339
	References	345
12	Aircraft Impact Engineering	347
	12.1 Principles of Aircraft Impact Engineering	347
	12.2 Procedures for Aircraft Impact Engineering	349
	12.3 Modelling of the Striking Body	350
	12.3.1 A Single-Engine Model of a Hypothetical Boeing	
	777 Aeroplane	350
	12.3.2 The Entire Fuselage Model of a Hypothetical Boeing	
	777 Aeroplane	351
	12.4 Modelling of Ballasting Materials	353
	12.5 Modelling of the Struck Body	354
	12.5.1 Extent of the Analysis	354
	12.5.2 Material Modelling	356
	12.5.2.1 Fuselage Structures of a Hypothetical Boeing	
	777 Aeroplane	357
	12.5.2.2 Jet Engines	357
	12.5.2.3 Hull Structures of a Hypothetical Floating Nuclear	250
	Power Plant	358
	12.6 Analysis of Computational Results	360
	12.6.1 Model of a Single Engine Striking a Partial Hull Structure	360
	12.6.2 Model of an Entire Fuselage Striking a Rigid Wall	365
	12.6.3 Model of an Entire Fuselage Striking an Entire Hull Structure	371
	References	371
	References	312
13	Quantitative Risk Assessment and Management	374
	13.1 Principles of Risk-Based Safety Engineering	374
	13.2 Probabilistic Selection of Event Scenarios	376
	13.3 Analyses of Frequency and Consequences	377
	13.4 Probability of Exceedance Diagrams	377
	13.5 Fire Risk on Topsides	378
	13.5.1 Fire Hazard Identification and Scenario Selection	378
	13.5.2 Analyses of Fire Frequency and Consequences	379
	13.5.3 Fire Risk Management	380
	13.6 Fire Risk on Helicopter Decks	380
	13.6.1 Fire Hazard Identification and Scenario Selection	381
	13.6.2 Analyses of Fire Frequency and Consequences	384
	13.6.3 Fire Probability of Exceedance Diagrams	386
	13.6.4 Fire Risk Management	389

xii Contents

	13.7 Explosion Risk on Topsides	389
	13.7.1 Explosion Hazard Identification and Scenario Selection	389
	13.7.2 Analyses of Explosion Frequency and Consequences	390
	13.7.3 Explosion Risk Management	391
	13.8 Collision Risk with Vessels	391
	13.8.1 Collision Hazard Identification and Scenario	
	Selection	391
	13.8.2 Analyses of Frequency and Consequences	392
	13.8.3 Collision Risk Management	395
	References	397
14	Life-Cycle Corrosion Assessment and Management	400
	14.1 Principles of Life-Cycle Corrosion Engineering	400
	14.2 Phenomenological Actions Causing Corrosion	402
	14.3 Types of Corrosion in Ship-Shaped Offshore Installations	403
	14.3.1 General Corrosion	404
	14.3.2 Pitting Corrosion	404
	14.3.3 Grooving Corrosion	406
	14.3.4 Weld Metal Corrosion	407
	14.4 Operational Factors Affecting Corrosion	407
	14.5 Life-Cycle Behaviour of Corrosion	410
	14.6 Prediction of Life-Cycle Corrosion Behaviour	412
	14.6.1 Procedure for Developing an Empirical Corrosion	
	Prediction Formulation	413
	14.6.2 Applied Example of the Procedure for Developing an	
	Empirical Corrosion Prediction Formulation	414
	14.7 Residual Strength of Corroded Structures	417
	14.7.1 Residual Strength Behaviour of Corroded Plates	419
	14.7.2 Residual Strength Formulation of Pitted Plates under	
	Compression or Tension	421
	14.7.3 Residual Strength Formulation of Pitted Plates under	
	Edge Shear	430
	14.8 Options for Life-Cycle Corrosion Management	433
	14.8.1 Addition of Corrosion Margins	433
	14.8.2 Coating	433
	14.8.2.1 Types of Coating	433
	14.8.2.2 Surface Preparation prior to Coating	
	Application	436
	14.8.2.3 Selection Criteria for Coating Materials	437
	14.8.2.4 Prediction of Coating Life	437
	14.8.3 Cathodic Protection	439
	14.8.4 Ballast Water Deoxygenation	440
	14.8.5 Chemical Inhibitors	441
	References	441

	Contents	xiii
15	Lifetime Healthcare and Safe Decommissioning	445
	15.1 Principles of Lifetime Healthcare	445
	15.2 Types of In-Service Damage	447
	15.3 Methods for Damage Detection	448 449
	15.3.1 Corrosion Wastage	449
	15.3.2 Cracking Damage15.3.3 Mechanical Damage	450
	15.3.4 Probability of Detection	452
	15.5.4 Hobability of Detection 15.4 Health Condition Monitoring	452
	15.4.1 International Standards and Codes	456
	15.4.2 Enhanced Survey Programme	457
	15.4.3 Ship Inspection Report Programme	458
	15.4.4 Risk-Based Inspection	460
	15.4.4.1 RBI Team Setup	461
	15.4.4.2 Component Grouping and Baselining	461
	15.4.4.3 Risk-Based Prioritisation	462
	15.4.4.4 Inspection Plan Development	462
	15.4.4.5 Inspection Strategy	462
	15.4.4.6 Scope of Inspection	462
	15.4.4.7 Frequency of Inspection	463
	15.4.4.8 Inspection Execution	463
	15.4.4.9 Analysis of Inspection Results	463
	15.4.4.10 RBI Programme Updating	464
	15.5 Health Condition Assessment	464
	15.5.1 Residual Strengths of Cracked Plates under Tension	165
	or Compression	465
	15.5.2 Residual Strengths of Dented Plates under Compression	466
	15.5.3 Emergency Response Services 15.6 Remedial Actions	470
		470
	15.7 Likely Future Health Condition Assessment and Management: Case Study	473
	15.7.1 Sea States and Operational Conditions	473
	15.7.2 Time-Variant Corrosion Wastage	473
	15.7.3 Time-Variant Fatigue Cracking	474
	15.7.4 Time-Variant Mechanical Damage	475
	15.7.5 Time-Variant Ultimate Hull Strength	475
	15.8 Regulatory Framework for Safe Decommissioning	477
	15.9 Challenges for Safe Decommissioning	478
	15.9.1 Technical Challenges	478
	15.9.2 Personnel Health and Safety	480
	15.9.3 Environmental Safety	480
	15.10 Decommissioning Practices	480
	15.10.1 Well Plugging and Abandonment	481
	15.10.2 Pipeline, Umbilical, Flowline and Riser Removal	482

xiv Contents

15.10	0.3 Mooring System Removal	483
15.10	0.4 Site Clearance and Verification	483
15.11 Deco	mmissioning Cost Estimation	483
15.12 Digit	al Twins for Lifetime Healthcare	484
References		485
Appendix 1	Glossary of Maritime Engineering Terms	488
Appendix 2	Scale Definitions of Wind, Waves and Swells	503
A2.1	Beaufort Wind Scale	503
A2.2	Wave Scale	503
A2.3	Swell Scale	504
Appendix 3	Sea State Data in Various Ocean Regions	505
A3.1	Sea States in the North Atlantic Ocean	505
A3.2	Annual Sea States in the North Atlantic Ocean	507
A3.3	Annual Sea States in the North Pacific Ocean	507
A3.4	Characteristics of 100-Year Return Period Storms in Various	
	Ocean Regions	508
A3.5	Extremes of Environmental Conditions in Various	
	Ocean Regions	508
Appendix 4	Inverse First-Order Reliability Method for Drawing Extreme	
	Wave Contours	509
Appendix 5	Source Listing of the FORTRAN Computer Program USAS-L	514
Appendix 6	Source Listing of the FORTRAN Computer Program USAS-S	530
A6.1	Source Listing	530
A6.2	Definition of Input Data Variables	539
A6.3	Sample Input Data	540
Index		544

Preface to the Second Edition

Advances in human civilisation have led the development of various types of engineered structures. The ship-shaped offshore installation is a type of engineered structure that uses the space and resources of the ocean to develop energy. Ship-shaped offshore installations are exemplified by floating storage and offloading (FSO) units; floating production, storage and offloading (FPSO) units (for the development of offshore oil or gas); floating power plants (fuelled by liquefied natural gas or nuclear reactors) and floating storage and regasification units (FSRUs).

In the offshore oil and gas industry, fixed offshore platforms have been used in relatively shallow waters but are unsuitable for use in developing oil and gas fields in deep and ultra-deep areas (depth >1,000 m). Instead, floating offshore installations such as FPSO units are preferred for developments in remote and/or deep and ultra-deep areas, where they perform multiple functions in the production, storage and offloading of oil or gas. These installations enable these energy resources to be transported to shore via shuttle tankers, thus obviating the need for pipeline infrastructure and facilitating fast-track functionality. FPSOs are also preferred for use in marginal fields, where the reservoirs are not necessarily abundant.

Floating power plants fuelled by liquefied natural gas or nuclear reactors are used to generate electrical power at sea. Uniquely, these plants can provide electricity and heat to remote, relatively inaccessible sites. FSRUs are floating offshore installations that are used as near-shore liquefied natural gas terminals, with functions such as storage and regasification. FSO units are also utilised near onshore oil terminals.

Ship-shaped offshore installations have been used since the late 1970s, and their complexity and size have been gradually increasing. Many engineering challenges associated with structural safety and tolerance to extreme conditions and accidents, and with economics and financial expenditures in design, construction and operation, remain to be solved. Safer end-of-life decommissioning is essential to ensure the health and safety of the environment, as aged installations have substantial accumulations of structural damage resulting from natural deterioration or accidents.

Ship-shaped offshore installations are similar to trading tankers in terms of structural geometry, but differ in terms of their design, construction, operation, lifetime care and decommissioning. For example, the different design loads require substantially different structural design concepts. Trading tankers can avoid rough weather or alter their heading while in operation, whereas ship-shaped offshore installations have fixed locations and thus are continuously exposed to site-specific environmental

χvi

Cambridge University Press & Assessment 978-1-316-51960-8 — Ship-Shaped Offshore Installations 2nd Edition Jeom Kee Paik Frontmatter More Information

Preface to the Second Edition

conditions. In addition, unlike trading tankers, ship-shaped offshore installations typically cannot be periodically dry-docked for inspection and maintenance, meaning that the designs must enable greater long-term durability and reliability. Furthermore, ship-shaped offshore installations are likely to be subjected to significant environmental actions during loading and offloading, whereas trading tankers are typically loaded and unloaded under still-water harbour conditions. Finally, for historical reasons, the design return period of a ship-shaped offshore installation is typically 100 years, while that of a trading tanker is considered to be 25 years.

Despite significant efforts, accidents invariably occur at every stage of the design, construction, operation, lifetime care and decommissioning of a ship-shaped offshore installation, and these may have catastrophic effects on personnel, assets and the environment. Thus, there is an obvious need for a textbook on the safety engineering of ship-shaped offshore installation structures that provides an exposition of the emerging technologies and industry practices. This book is therefore intended as a comprehensive text and handy guide to the first principles, current practices, recent advances and cutting-edge trends in safety engineering for ship-shaped offshore installations, with a focus on extreme conditions and accidents. This edition represents an extensive update of the first edition (published in 2007 with Dr A. K. Thayamballi), as it covers the latest advances in the field and comprehensively examines new approaches to structural safety intended to minimise accidents and the effects of extreme conditions.

I hope that this book will be useful for practising engineers and will increase their awareness and use of advanced and sophisticated technologies, in addition to existing industrial practices, in the safety engineering of ship-shaped offshore installations. Because of its coverage of the fundamentals and principles of individual technologies, this book will also be useful for university students at all levels of study. Readers are also recommended to refer to my sister textbooks, *Ultimate Limit State Analysis and Design of Plated Structures*, second edition (John Wiley & Sons, 2018) and *Advanced Structural Safety Studies with Extreme Conditions and Accidents* (Springer, 2020), as the first describes the fundamentals and detailed derivations of theories, and the second presents industrial practices and applications.

I gratefully acknowledge all of those who have helped to make this book possible. Most of all, I am grateful to Dr A. K. Thayamballi (formerly a senior technical advisor at Chevron Shipping Company), who was the co-author of the first edition, and Dr G. Wang (formerly a principal surveyor at the American Bureau of Shipping) and Dr I. Lotsberg (a specialist engineer at DNV), who provided valuable and comprehensive comments that greatly improved this book. Finally, I thank my wife, Yunhee Kim (a sculptor), my son, Myunghoon Paik, Esq. (an international lawyer) and my daughter, Yunjung Paik (a product designer), for their unfailing patience and support.

Preface to the First Edition

Today, the need for development of offshore oil and gas resources in increasingly deeper waters is becoming more important because of many reasons associated with the world economy and the related energy resource development constraints and strategies.

Fixed-type offshore platforms, which have been useful for oil and gas developments in relatively shallow waters, are now much less feasible as we move further in developing oil and gas fields in deep- and ultradeep-water areas, now reaching more than 1,000 m water depth. Floating-type offshore structures have to be increasingly considered to develop these deep-water areas. In addition to ship-shaped offshore units, at least three other types of floating production systems – semisubmersibles, spars, and tension leg platforms (TLP) – are also available today for that purpose. All of these types of floating systems require storage, pipeline infrastructure, and other associated field structures and systems to transport produced oil and gas to the facilities on shore, but perhaps to varying degrees.

That the use of ship-shaped offshore units remains a very attractive alternative in many cases of field development is attributable to its ability to successfully serve multiple functions, such as production, storage, and offloading, and the capability for oil or gas to be transported to shore via shuttle tankers. Ship-shaped offshore units reduce need for pipeline infrastructure and are functional on a fast-track basis.

Ship-shaped offshore units are now recognized as perhaps one of the most economical of all systems for potential developments of offshore oil and gas and are often the preferred choice in marginal fields. These systems are becoming more attractive for developing oil and gas fields in deep- and ultradeep-water areas and locations remote from the existing pipeline infrastructures. Recently, the ship-shaped offshore units have also begun to be applied to near-shore oil and gas terminals.

Although the use of ship-shaped offshore units has been in existence since the late 1970s, the complexity and size of the units have been gradually increasing, and there are still many issues related to design, building, and operation to be resolved for achieving high integrity in terms of safety, health, environment, and economics/financial expenditures.

Although ship-shaped offshore units are similar to trading tankers in structural geometry, they are different in a variety of ways. Environmental conditions are unique in each case, and structural design concepts must be tailored to a specific location. Trading tankers may avoid rough weather or alter their heading in operation, but

xviii Preface to the First Edition

ship-shaped offshore units must be continuously located in the same area with site-specific environments and do not have the ability to periodically dry-dock for the necessary inspection and maintenance. This is an aspect that must be reflected in some fashion in the design and long-term durability and reliability of the units concerned.

To continue further on the subject of differences from trading tankers, one should note that ship-shaped offshore units are likely to be subjected to significant environmental actions even during loading and unloading; however, trading tankers are typically loaded and unloaded at still-water condition in harbor. And, for historical reasons, the design return period of ship-shaped offshore units is typically taken as 100 years, and that of trading tankers is considered to be 20–25 years or so.

The application of existing procedures, criteria, and standards to the structural design of ship-shaped offshore units also requires additional thought and discussion. This can be particularly important for the many interface areas between the hull and topsides. Even for the hull part, the shipbuilding industry standards may need to be selectively upgraded to ensure the long life and onsite reliability needed. Similarly, for the topsides part, it is often not straightforward to apply the relatively more economical shipbuilding industry standards, in part perhaps because of differences in the background, experience, and culture of the operating personnel involved. In any event, the complexities of the design are enormous, and there are many interface issues (e.g., those related to the interaction between hull and topsides facilities and related consistency in design information) that need to be identified up front and addressed and managed on a continuous basis.

In such a situation, direct analyses from first principles, advanced engineering, and practices are increasingly desired so that practicing engineers and academic researchers can resolve the issues that remain, reconcile differences in standards and practices, and improve structural and other design procedures and criteria. In the never-ending quest for safe, reliable, yet economical structures and systems effectively designed and constructed, there are often demanding schedules and other constraints and challenges.

Also, many diverse international organizations in the maritime industry such as the International Maritime Organization (IMO), International Organization for Standardization (ISO), International Association of Classification Societies (IACS), and the industry in general are now increasingly applying the limit-state design approach for both trading ships and ship-shaped offshore installations, making related knowledge and training even more relevant. Another emerging and increasingly more important technology consists of risk-based approaches to design, operation, and human and environmental safety, with much of the same accompanying knowledge, training, and familiarization needs.

The intention behind writing this book is to develop a textbook and handy resource that sufficiently addresses current practices, recent advances, and emerging trends on core technologies for designing, building, and operating ship-shaped offshore units, within certain inevitable space (and time) requirements. This book covers a wide range of topics, from the initial contracting strategy to the decommissioning and even the removal of the units concerned, but not always to a depth some might have wished

Preface to the First Edition

XİX

for. Although a large number of research papers and references and industry standards useful for specific topics in the areas do exist, we did our best to high-light selected and useful ones among them in the various chapters and appendices.

We have also tried our utmost to always refer to relevant past work, with proper acknowledgments. It is respectfully requested that any unintentional oversights in this regard be brought to our attention for correction in future editions.

We believe and hope that this book will be very useful for practicing engineers and engineers-in-training and will contribute to their increased awareness and potentially greater use of advanced and sophisticated technologies as well as existing and emerging practices. Because of its coverage of the fundamentals and principles of the individual technologies, this book will also be useful for university students who are approaching both the initial and more intensive studies of advanced engineering for ship-shaped offshore installations. With regard to the scope, emphasis, and other relevant aspects of this book, we encourage all related and pertinent feedback and suggestions for the future; these will be gratefully received.

Professor Jeom Kee Paik, Pusan National University, Korea and Dr. Anil Kumar Thayamballi, San Ramon, CA, USA