Principles of Power Electronics

Second Edition

Substantially expanded and updated, the new edition of this classic textbook provides unrivaled coverage of the fundamentals of power electronics.

It includes:

- Comprehensive and up-to-date coverage of foundational concepts in circuits, magnetics, devices, dynamic models, and control, establishing a strong conceptual framework for further study.
- Extensive discussion of contemporary practical considerations, enhanced by realworld examples, preparing readers for any design scenario from low-power dc/dc converters to multi-megawatt ac machine drives.
- New topics including SiC and GaN wide-bandgap materials, superjunction MOSFET and IGBT devices, advanced magnetics design, multi-level and switched-capacitor converters, RF converter circuits, and EMI.
- Over 300 new and revised end-of-chapter problems, designed to enhance and expand understanding of the material, with solutions for instructors.

Unique in its breadth and depth, and providing a range of flexible teaching pathways for instructors at multiple levels, this is the definitive guide to power electronics for graduate and senior undergraduate students in electrical engineering, and practicing electrical engineers.

John G. Kassakian is Professor of Electrical Engineering Emeritus at the Massachusetts Institute of Technology. He is the founding President of the IEEE Power Electronics Society, a Fellow of the IEEE, a member of the US National Academy of Engineering, and has taught, conducted research, and consulted in power electronics for over 45 years.

David J. Perreault is Ford Professor of Engineering at the Massachusetts Institute of Technology, with over 25 years of experience in power electronics research and teaching. He is a Fellow of the IEEE, and a member of the US National Academy of Engineering.

George C. Verghese is Henry Ellis Warren Professor of Electrical and Biomedical Engineering at the Massachusetts Institute of Technology, with over 40 years of research and teaching experience. He is an MIT MacVicar Faculty Fellow for outstanding contributions to undergraduate education, and a Fellow of the IEEE.

Martin F. Schlecht is the founder of SynQor, a supplier of high-performance power conversion solutions, and prior to that was Professor of Electrical Engineering at the Massachusetts Institute of Technology for 15 years. He has over 40 years of research, teaching, and industrial practice in power electronics.

"*Principles of Power Electronics* was a landmark in power electronics pedagogy when it was first published more than three decades ago. It is thrilling to see how these distinguished authors have not only thoroughly brought the book's core contents up to date, but also expanded its coverage to include several new topics that are increasingly important for students to learn as they prepare to enter this exciting field. Bravo!"

Thomas Jahns, University Wisconsin – Madison

"The second edition of the *Principles of Power Electronics* makes this classic book even more valuable. The book teaches power electronics from the ground up, providing the formal framework to learn its fundamentals and many advanced topics. This highly accessible book is an excellent text for a foundational course in power electronics. A must-have for both beginners and experienced practitioners."

Khurram Afridi, Cornell University

"The new edition of *Principles of Power Electronics* is a must for anyone in the field of power electronics, from the student learner to a working professional. The coverage is comprehensive, with detailed explanations backed up by well-chosen worked examples and illustrative problems. The treatment of magnetics, analysis, and design is particularly strong and a welcome addition."

Gerard Hurley, University of Galway

Principles of Power Electronics

SECOND EDITION

John G. Kassakian Massachusetts Institute of Technology

David J. Perreault Massachusetts Institute of Technology

George C. Verghese Massachusetts Institute of Technology

Martin F. Schlecht SynQor Inc.

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia 314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India 103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467 Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge. We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence. www.cambridge.org Information on this title: www.cambridge.org/highereducation/isbn/9781316519516 DOI: 10.1017/9781009023894 Second edition © John G. Kassakian, David J. Perreault, George C. Verghese, and Martin F. Schlecht 2024 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment. First published by Pearson College Div. 1991 Second edition published by Cambridge University Press & Assessment 2024 Printed in the United Kingdom by TJ Books Limited, Padstow, Cornwall 2024 A catalogue record for this publication is available from the British Library. Library of Congress Cataloging-in-Publication Data Names: Kassakian, John G., author. | Perreault, David J., author. | Verghese, George C., author. | Schlecht, Martin F., author. Title: Principles of power electronics / John G. Kassakian, David J. Perreault, George C. Verghese, Martin F. Schlecht. Description: Second edition. | New York : Cambridge University Press, 2023. | Includes bibliographical references and index. Identifiers: LCCN 2023003028 (print) | LCCN 2023003029 (ebook) | ISBN 9781316519516 (hardback) | ISBN 9781009023894 (epub) Subjects: LCSH: Power electronics. Classification: LCC TK7881.15 .K37 2023 (print) | LCC TK7881.15 (ebook) | DDC 621.31/7-dc23/eng/20230126 LC record available at https://lccn.loc.gov/2023003028 LC ebook record available at https://lccn.loc.gov/2023003029 ISBN 978-1-316-51951-6 Hardback

Additional resources for this publication at www.cambridge.org/Kassakian_et_al

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press & Assessment 978-1-316-51951-6 — Principles of Power Electronics John G. Kassakian, David J. Perreault, George C. Verghese, Martin F. Schlecht Frontmatter <u>More Information</u>

> To our students, who have been our best teachers,

and to Daniel Perreault Nakajima, in memoriam.

Cambridge University Press & Assessment 978-1-316-51951-6 — Principles of Power Electronics John G. Kassakian, David J. Perreault, George C. Verghese, Martin F. Schlecht Frontmatter <u>More Information</u>

Contents

Preface Acknowledgments		<i>page</i> xv xviii	
1	Introduction		1
	1.1	Power Electronic Circuits	1
	1.2	Power Semiconductor Switches	2
	1.3	Transformers	5
	1.4	Nomenclature	7
	1.5	Bibliographies	8
	1.6	Problems	8
Ра	rt I	Form and Function	
2	Forn	n and Function: An Overview	11
	2.1	Functions of a Power Circuit	11
	2.2	AC/DC Converters	13
	2.3	DC/DC Converters	18
	2.4	AC/AC Converters	20
	2.5	Influence of Switch Implementation	22
	Prol	olems	24
3	Intro	oduction to Rectifiers	27
	3.1	Power in Electrical Networks	27
	3.2	Single-Phase Half-Wave Rectifier	29
	3.3	AC-Side Reactance and Current Commutation	35
	3.4	Measures and Effects of Distortion	38
	3.5	Bridge Rectifiers	44
	Notes and Bibliography		49
	Prol	olems	50
4	Phas	se-Controlled Converters	57
	4.1	Single-Phase Configurations	58
	4.2	Phase Control with AC-Side Reactance	64
	4.3	Inversion Limits	67
			vii

viii Contents

	Notes	and Bibliography	71
	Proble	ems	72
5	Pulse-Width-Modulated DC/DC Converters		
		The DC/DC Converter Topology	77
		The Canonical Switching Cell	82
		Direct Converter	82
		Indirect Converter	89
		Other PWM DC/DC Converters	92
	5.6	Choice of Capacitor and Inductor Values	95
	5.7	Semiconductor Device Stresses	103
	5.8	Three-Level Flying-Capacitor Converter	104
		Converter Operation with Discontinuous Conduction	106
	Notes	and Bibliography	108
	Proble	ems	109
6	Switched-Capacitor and Related Converters		
Ū	6.1	Switched-Capacitor DC/DC Converter	116 116
		Two-State Switched-Capacitor Converter	110
	6.3	Switch Implementation	121
		Other Switched-Capacitor DC/DC Converters	121
		Other Kinds of Switched-Capacitor Converters	131
		and Bibliography	132
	Proble		132
	11001		155
7	Isolate	ed Pulse-Width-Modulated DC/DC Converters	136
	7.1	Single-Ended Isolated Forward Converter	136
	7.2	Double-Ended Isolated Forward Converter	145
	7.3	Dual Active-Bridge Converter	150
	7.4	Flyback Converter	153
		Other PWM Isolated Converters	154
		Effects of Transformer Leakage Inductance	155
	7.7	Converters with Multiple Outputs	158
	Notes	and Bibliography	158
	Proble	ems	159
8	Single	-Phase Switched-Mode DC/AC Converters	167
	8.1	Basic Variable-Frequency Bridge Converter	167
	8.2	Harmonic Reduction	172
		Pulse-Width-Modulated DC/AC Converters	179
	8.4	Current Control of Inverters	187

Cambridge University Press & Assessment 978-1-316-51951-6 — Principles of Power Electronics John G. Kassakian, David J. Perreault, George C. Verghese, Martin F. Schlecht Frontmatter <u>More Information</u>

		Contents	іх
	8.5	Multi-level Converters	190
	8. <i>5</i> 8.6	Transformer-Isolated DC/AC Converters	190
	8.7	Other DC/AC Converter Topologies	192
	8.8	Power Balance in Single-Phase DC/AC Converters	194
	8.9	Switched-Mode Rectifiers and Power Factor Correction	197
	Notes	and Bibliography	202
	Probl	ems	203
9	Polvp	hase Sources and Converters	207
-	9.1	Polyphase Sources	207
	9.2	Three-Phase Sources	207
	9.3	Introduction to Polyphase Rectifier Circuits	213
	9.4	Phase-Controlled Three-Phase Converters	215
	9.5	Commutation in Polyphase Rectifiers	216
	9.6	Three-Phase Inverters	221
	9.7	Space-Vector Representation and Modulation for Three-Phase Systems	229
	9.8	Multi-Level Inverters	237
	Notes	and Bibliography	242
	Probl	ems	243
10	Resor	ant Converters	249
	10.1	Review of Second-Order System Behavior	250
	10.2	Quality Factor	254
	10.3	Resonant Converter Analysis	256
	10.4	Soft Switching of Resonant Converters	260
	10.5	Resonant DC/DC Converters	264
	10.6	Radio-Frequency Converters	271
	Notes	and Bibliography	284
	Probl	ems	285
11	AC/AC	Converters	289
	11.1	Introduction to AC/AC Converters	289
	11.2	Energy Storage Requirements in a DC-Link Converter	290
	11.3	The Naturally Commutated Cycloconverter	294
	11.4	An Isolated High-Frequency-Link Cycloconverter	299
	11.5	Solid-State Transformer	302
	11.6	Matrix Converter	305
	Notes	and Bibliography	306
	Problems		306

Cambridge University Press & Assessment 978-1-316-51951-6 — Principles of Power Electronics John G. Kassakian, David J. Perreault, George C. Verghese, Martin F. Schlecht Frontmatter <u>More Information</u>

x Contents

Part II Dynamic Models and Control

12	Dynan	nic Models and Control: An Overview	313		
	12.1	Dynamic Behavior of Power Converters	314		
	12.2	Dynamic Models	322		
	12.3	Averaged-Circuit Models	323		
	12.4	Linearized Models	329		
	12.5	Feedback Control	332		
	Notes	and Bibliography	342		
	Probl	ems	343		
13	Avera	ged-Circuit and State-Space Models	346		
	13.1	Averaged-Circuit Models	346		
	13.2	Generalizing Circuit Averaging to the Fundamental Component	350		
	13.3	Continuous-Time State-Space Models	354		
	13.4	Discrete-Time or Sampled-Data Models	365		
	13.5	Generalized State-Space Models	368		
	13.6	Models for Controllers and Interconnected Systems	372		
	Notes	and Bibliography	373		
	Probl	ems	374		
14	Linear	Models and Feedback Control	378		
	14.1	Linearization	378		
	14.2	Linearizing an Averaged-Circuit Model	379		
	14.3	Linearizing Continuous-Time State-Space Models	383		
	14.4	Analysis of Continuous-Time LTI Models	385		
	14.5	Piecewise LTI Models	394		
		Linearizing Discrete-Time Generalized State-Space Models	395		
		Analysis of Discrete-Time LTI Models	399		
		Feedback Control Design	405		
		Multi-Loop Control	414		
		State Feedback	422		
		Digital Control	425		
	Notes and Bibliography		428		
	Probl	ems	429		
Pa	Part III Components and Devices				

15 Components and Devices: An Overview		437
15.1	Practical Semiconductor Switches	438
15.2	Practical Energy Storage Elements	438
15.3	Semiconductor Devices	439

Cambridge University Press & Assessment 978-1-316-51951-6 — Principles of Power Electronics John G. Kassakian, David J. Perreault, George C. Verghese, Martin F. Schlecht Frontmatter <u>More Information</u>

			Contents	xi
		Capacitors		452
	15.5	Inductors and Transformers		455
	Probl	ems		457
16	Review	w of Semiconductor Devices		461
	16.1	Elementary Physics of Semiconductors		461
	16.2	Simple Analysis of a Diode		472
	16.3	Bipolar Junction Transistor		478
	16.4	MOSFET		483
	16.5	The Safe Operating Area		486
	Notes	and Bibliography		487
	Probl	ems		488
17	Power	Semiconductor Devices		494
	17.1	Bipolar Diode		494
	17.2	Switch Transitions in a pin Diode		504
	17.3	The Schottky Barrier Diode		507
	17.4	Power BJT		511
	17.5	Power MOSFET		517
	17.6	Superjunction MOSFET		523
	17.7	IGBT		524
	17.8	Silicon Carbide and Gallium Nitride Devices		528
	17.9	Thyristor		530
	17.10	Datasheet		538
		and Bibliography		541
	Probl	ems		542
18	Introd	uction to Magnetics		545
	18.1	Inductor		546
	18.2	Saturation, Hysteresis, and Residual Flux		555
	18.3	Losses In Magnetic Components		557
	18.4	Transformers		566
	18.5	Magnetic Material Properties		575
	Notes	and Bibliography		576
	Probl	ems		577
19	Magn	etic Component Modeling		582
	19.1	Mathematical Representation: Inductance Matrix		582
	19.2	Circuit Representations for Two-Port Transformers		584
	19.3	Determining Transformer Parameters		587
	19.4	Multi-Winding Model		588

xii

Contents

Cambridge University Press & Assessment 978-1-316-51951-6 — Principles of Power Electronics John G. Kassakian, David J. Perreault, George C. Verghese, Martin F. Schlecht Frontmatter <u>More Information</u>

19.5 Extending the Magnetic Circuit Model Concept

19.6	6 Physical Electric Circuit Models for Magnetic Systems	603
Not	es and Bibliography	607
Pro	blems	608
20 Intr	oduction to Magnetics Design	612
20.1	Filter Inductor Design and Core Factor	613
20.2	2 Thermal Constraints in Magnetics Design	618
20.3	3 Inductor Energy Storage Limits	621
	AC Magnetics Sizing and Core Area Product	624
	5 Performance Factor for Magnetic Materials	634
20.6	6 An Iterative Inductor Design Algorithm	636
Not	es and Bibliography	638
Pro	blems	640
21 Mag	gnetics Loss Analysis and Design	643
21.1	Magnetic Diffusion	643
21.2	2 Winding Loss Calculation	655
21.3	3 Core Loss	675
Not	es and Bibliography	684
Pro	blems	686
Part IV	/ Practical Considerations	
22 Prac	ctical Considerations: An Overview	693
22.1		693
22.2	2 Thyristor Commutation Circuits	695
22.3	F ,	697
22.4	4 Thermal Considerations	700
Pro	blems	701
23 Gat	e and Base Drives	704
23.1	MOSFET and IGBT Gate Drives	705
23.2	r · · · · · · · · · · · · · · · · · · ·	713
23.3	3 Thyristor Gate Drives	716
Not	es and Bibliography	719
Pro	blems	719
24 Snu	bber Circuits, Clamps, and Soft Switching	724
24.1	Turn-Off Snubber	725
24.2	2 Turn-On Snubber	730

Cambridge University Press & Assessment 978-1-316-51951-6 — Principles of Power Electronics John G. Kassakian, David J. Perreault, George C. Verghese, Martin F. Schlecht Frontmatter More Information

			Contents	xiii
	24.2	Combined Trans On Trans Off Smither		722
	24.3 24.4	Combined Turn-On/Turn-Off Snubber Alternative Placements of the Snubber Circuit		733 735
	24.4	Dissipation in Snubber Circuits		736
	24.6	Soft Switching		739
		and Bibliography		748
	Prob			750
25	Thern	nal Modeling and Heat Sinking		753
	25.1	Static Thermal Models		754
	25.2	Thermal Interfaces		758
	25.3	Transient Thermal Models		762
	Notes	and Bibliography		767
	Prob	lems		768
26	Elect	omagnetic Interference and Filtering		771
	26.1	EMI Specifications and Measurement		771
	26.2	Filter Design		773
	26.3	Common-Mode and Differential-Mode Variables		781
	26.4	Parasitics and Circuit Layout		787
	Notes	s and Bibliography		789
	Prob	lems		790
In	dex			793

Index

Preface

The field of power electronics has advanced substantially since the initial publication of *Principles of Power Electronics* in 1991. New semiconductor devices, magnetic materials, fabrication technologies, and new modeling and control techniques have all combined to create an increasingly diverse universe of applications in which power electronics is embedded. Many component advances and the demands of new applications have pushed power converter switching frequencies into the hundreds of megahertz, more than an order of magnitude higher than what was practical at the time of publication of the first edition. And, simultaneously, the number of power electronics courses being taught worldwide has experienced a manifold increase. At a time when the efficient and socially responsible generation and use of energy are increasingly critical concerns globally, the importance of power electronics cannot be overstated.

As with the first edition, this second edition of *Principles of Power Electronics* is not intended as a reference book. It is a textbook specifically designed to *teach* the discipline of power electronics. Although the coverage is broad, we develop topics in sufficient depth to expose the *fundamental* principles, concepts, techniques, methods, and circuits necessary to understand and design power electronic systems for applications as diverse as a 100 mW switching converter operating at 100 MHz, a 25 MW motor drive, or a 1 GW high-voltage dc transmission terminal. All power electronics shares a common base, and we have tried to make this fact clear.

Principles of Power Electronics is divided into four parts, and each part has undergone significant rethinking, revision, and updating for this edition, as outlined below. Each begins with an overview chapter that establishes context for the remaining chapters of the part. These overviews are substantial enough to stand independently, and are intended to do so for certain teaching purposes.

Part I, "Form and Function," is the book's backbone. There we present the relationship between the form, or topology, of a power circuit and the functions it performs. The common features of circuits that perform the basic electrical energy conversion functions – ac/dc, dc/dc, dc/ac, and ac/ac – are introduced in this part. The deeper purpose of Part I, however, is to present ways of thinking about power electronic circuits, visualizing their behavior, and understanding their relationships with one another, so as to enable extension to new situations, and serve as the basis for synthesis as well as analysis. There is new material in this part on dc/dc converter topologies, multi-level converters and the use of flying capacitors, switched-capacitor converters, polyphase sources and converters, the concept of space-vector modulation for three-phase inverters, resonant converters (including RF converter designs), and soft switching.

Part II, "Dynamic Models and Control," considers the unique problems of modeling and controlling power electronic systems. We present analytical approaches to modeling and understanding their dynamic behavior, and show how to use these in designing and evaluating practical

Cambridge University Press & Assessment 978-1-316-51951-6 — Principles of Power Electronics John G. Kassakian, David J. Perreault, George C. Verghese, Martin F. Schlecht Frontmatter <u>More Information</u>

xvi Preface

feedback control schemes. The emphasis is on fundamental formulations that apply across a range of power electronic systems, as illustrated by extensive examples in these chapters. The structuring of the material in this part is substantially revised relative to the first edition, for improved accessibility. The development of averaged models has also been extended considerably beyond dc/dc converters, with generalizations to track the dynamics of the fundamental (and harmonics) of converter waveforms. On the other hand, we have condensed the treatment of material that is now standard fare in undergraduate electrical engineering classes (and well supported by other textbooks), for example the analysis and feedback control of continuous-time, linear, time-invariant (LTI) systems described in the frequency domain or via LTI state-space models. Because of its role in stability evaluation of power electronic systems and its importance in the design of fully digital control systems, we retain our introduction to the topic of sampled-data modeling and control.

Part III, "Components," examines the behavior and characterization of the elements from which power electronic circuits are constructed. A review of semiconductor device physics precedes a discussion of specific device behaviors. The first edition's detailed development of the physics of specific devices has been replaced by a more phenomenological treatment. Also developed in this part is a discussion of the benefits and challenges of using the new wide-bandgap materials, SiC and GaN. The presentation of magnetic components has been expanded in this edition from a single chapter to four. This additional material addresses the challenge of designing magnetic components for the high switching frequencies now made possible by new MOSFET structures and GaN devices. We spend considerable time describing the behavior of magnetic materials, and the design and construction of inductors and transformers used at these high frequencies.

Part IV, "Practical Considerations," treats a variety of important additional topics that must be considered in the design of any practical system. Among these issues are gate and base drives, electromagnetic interference and filtering, snubbers, clamps and soft switching, and thermal modeling and heat sinking. New to this part is a discussion of circuit fabrication technologies necessary for very-high-frequency operation.

Unlike many power electronics texts which are designed for a single course, the scope of *Principles of Power Electronics* encompasses a *curriculum* of several sequential courses. A course in power electronics might use this book in one of several ways. Chapters 1 through 8, 9 (through Section 9.6), 10 (through Section 10.5), and the overview chapters in Parts II through IV would serve well as the basis for an advanced undergraduate or first graduate subject. Chapters 23 (Gate and Base Drives) and 18 (Introduction to Magnetics) might also be included. A more advanced graduate course might skim Part I and address Part II in detail. Other advanced courses may be tailored to need by selecting various chapters from Parts II through IV. Each chapter in Parts I, III, and IV is relatively self-contained. Selections from Part II can be made in at least two ways. Chapter 12 (Dynamic Models and Control: An Overview) and Chapter 13 (Averaged-Circuit and State-Space Models) may be used together in a course that emphasizes dynamic modeling of power electronic systems. An advanced graduate course that is particularly concerned with control could include Chapter 14 (Linear Models and Feedback Control), and if addressing machine control, could add Section 9.7 (Space-Vector Representation and Modulation for Three-Phase Systems).

Preface xvii

We use examples extensively in this book to illustrate concepts or techniques introduced in the text, and also to introduce ways of thinking about problems, methods of analysis, and the use of approximations. The examples also form the basis for many of the end-of-chapter problems, and the creative instructor can use them to generate additional exercises, problems, or examples. We designed the end-of-chapter problems to stimulate thinking about the material presented in the chapter. That is, they are not intended as routine exercises to drill students in the use of particular equations in the text. Often, we introduce new circuits, concepts, or ways of approaching problems by using previous discussions in the text as a basis for considering the new material. We also present practical variations of circuits discussed in the text.

The notes and bibliography at the end of each chapter point you to selected papers in the research literature, and to books that underlie, complement, or extend the chapter material. These bibliographies, however, are not exhaustive.

We hope that instructors find this book to be a valuable teaching resource, and that students find it provides a challenging but enlightening learning experience.

Acknowledgments

It is no exaggeration to say that this second edition of *Principles of Power Electronics* would not exist if it weren't for the commitment, energy, care, and good-humored responsiveness of Sandeep Kaler at Toronto Metropolitan (formerly Ryerson) University. Despite the demands of the final stages of a doctoral program, he single-handedly worked to generate almost all the figures in this edition – recreating them from the first edition as needed, and preparing many new ones, then adjusting them wherever and whenever necessary. He also provided helpful feedback on various sections of the text. We are immensely grateful.

We are similarly indebted to Mike Ranjram on the faculty at Arizona State University who helped develop some portions of the text, contributing especially to the newer material in Part II, and revisiting various elements in this part from the first edition – checking the analysis, running new simulations, generating associated figures. He also vetted most of the end-of-chapter problems in the book while preparing a solutions manual for instructors.

We have had the benefit of careful reading and feedback from many colleagues (among them, former students, and their former students!) with whom we shared various draft chapters as we developed this second edition. They include Khurram Afridi, Arijit Banerjee, Richard Blanchard, Jessica Boles, Vahe Caliskan, Minjie Chen, Jesus del Alamo, Malik Elbuluk, Alex Hanson, Gerard Hurley, Jeffrey Lang, John H. Lienhard II, David Otten, Mohammad Qasim, Colm O'Rourke, Seth Sanders, Kenji Sato, Aleksandar (Alex) Stanković, Charles Sullivan, Joseph Thottuvelil, Amirnaser Yazdani, Xin Zan, and Yuhao Zhang. (We regret any inadvertent omissions there might be in this listing.) This brief mention cannot do justice to their generous and expert efforts – and the book was notably improved by their involvement.

Generations of students and teaching assistants in our introductory and advanced power electronics classes have worked with the material here, using the first edition of the book, and then drafts of this edition. We have counted on their being critical, fearless, and constructive in their feedback, and have never been disappointed.

The LATEXwizardry of Amy Hendrickson, founder of TeXnology Inc, was invaluable throughout our work on this book. Her rapid and effective responses to our many requests helped shape the styling of the book and got us unstuck from typesetting quandaries countless times.

We are grateful to Montreal-based designer Rachel Paul for helping us reimagine EPSEL's "shazam" on its way to lighting up the cover of this book.

Nicola Chapman, Elizabeth Horne, Richard Hutchinson, Chloe Mcloughlin, Sarah Strange, and Hemalatha Subramanian of the editorial and production staff at Cambridge University Press have been most responsive and accommodating through the entire project, and we are very grateful.

Cambridge University Press & Assessment 978-1-316-51951-6 — Principles of Power Electronics John G. Kassakian, David J. Perreault, George C. Verghese, Martin F. Schlecht Frontmatter <u>More Information</u>

Acknowledgments xix

Emanuel (Manny) Landsman has consistently – and in many different ways – supported our endeavors and those of MIT's Laboratory for Electromagnetic and Electronic Systems. Funding from the Landsman Charitable Trust was especially helpful in launching our effort here.

Wilma Kassakian, Heidi Nakajima, and Ann Kailath – doubtless the better and wiser halves of John, David, and George – have been patient and encouraging with our involvement in this multi-year labor, and have helped us keep perspective. They will be almost as happy as us to see this book wrapped up and on its way.

All four of us have had the good fortune to be shaped in fundamental ways, as students and professors, by MIT's stellar and lively Department of Electrical Engineering and Computer Science. Being part of this community for a combined total of more than 15 decades has been such a privilege, and we have gained more there than we could ever repay. Perhaps with this book we can pay some portion of our debt forward.