Cambridge University Press 978-1-316-51930-1 — Notes on the Brown-Douglas-Fillmore Theorem Sameer Chavan , Gadadhar Misra Table of Contents <u>More Information</u>

Contents

Preface	ix
Overview	3
1 Spectral Theory for Hilbert Space Operators	7
1.1 Partial Isometries and Polar Decomposition	7
1.2 Compact and Fredholm Operators	9
1.3 Fredholm Index and Abstract Index	19
1.4 Schatten Classes	34
1.5 Isometries and von Neumann–Wold Decomposition	37
1.6 Toeplitz Operators with Continuous Symbols	43
1.7 Notes and Exercises	47
2 Ext(<i>X</i>) as a Semigroup with Identity	57
2.1 Essentially Normal Operators	57
2.2 Weyl-von Neumann-Berg-Sikonia Theorem	60
2.3 Extensions and Essentially Unitary Operators	66
2.4 Absorption Lemma	70
2.5 Weakly and Strongly Equivalent Extensions	73
2.6 Existence and Uniqueness of Trivial Class	76
2.7 Identity Element for $Ext(X)$	82
2.8 Notes and Exercises	86
3 Splitting and the Mayer–Vietoris Sequence	91
3.1 Splitting	91
3.2 Disjoint Sum of Extensions	94
3.3 First Splitting Lemma	97
3.4 Surjectivity of $(i_{A,X})_*$	100
3.5 $\operatorname{Ext}(A) \to \operatorname{Ext}(X) \to \operatorname{Ext}(X/A)$ is Exact	108
3.6 Mayer–Vietoris Sequence	112
3.7 Notes and Exercises	114

viii	Content
4 Determination of Ext(<i>X</i>) as a Group for Planar Sets	117
4.1 Second Splitting Lemma	117
4.2 Projective Limits and Iterated Splitting Lemma	124
4.3 $Ext(X)$ is a Group	13
4.4 γ_X is Injective	13
4.5 BDF Theorem and Its Consequences	14
4.6 Notes and Exercises	144
5 Applications to Operator Theory	14'
5.1 Bergman Operators and Surjectivity of γ_X	14
5.2 Hyponormal Operators and <i>m</i> -Isometries	15
5.3 Essentially Normal Circular Operators	15
5.4 Essentially Homogeneous Operators	15
5.5 Essentially Reductive Quotient and Submodules	16
5.6 Notes and Exercises	17.
Epilogue	17
• Other Proofs	17
• Properties of $Ext(X)$	18
• The short exact sequence	18
• Arveson's proof of "Ext(<i>X</i>) is a group"	18
Related Developments	18
• $\operatorname{Ext}(A, B)$	182
• Homotopy invariance	18
• <i>K</i> -theory	18
Open Problems	18
• Essentially normal tuples	18
• Essentially homogeneous tuples	18
 Arveson–Douglas conjecture 	19
Appendix A Point Set Topology	19
Appendix B Linear Analysis	20
Appendix C The Spectral Theorem	21
References	23
Subject Index	24
Index of Symbols	24: