Cambridge University Press 978-1-316-51913-4 — Counterexamples in Measure and Integration René L. Schilling , Franziska Kühn Table of Contents <u>More Information</u>

Contents

	Prefa	ce pa	ge xxiii
	User'	s Guide	XXV
	List of Topics and Phenomena		
1	A Pa	norama of Lebesgue Integration	1
	1.1	Modern Integration. 'Also zuerst: Was hat man unter	
		$\int_{a}^{b} f(x) dx$ zu verstehen?'	1
	1.2	The Idea Behind Lebesgue Integration	4
	1.3	Lebesgue Essentials – Measures and σ -Algebras	6
	1.4	Lebesgue Essentials – Integrals and Measurable Functions	10
	1.5	Spaces of Integrable Functions	13
	1.6	Convergence Theorems	17
	1.7	Product Measure, Fubini and Tonelli	21
	1.8	Transformation Theorems	24
	1.9	Extension of Set Functions and Measures	27
	1.10	Signed Measures and Radon–Nikodým	29
	1.11	A Historical Aperçu From the Beginnings Until 1854	31
	1.12	Appendix: H. Lebesgue's Seminal Paper	33
2	A Re	fresher of Topology and Ordinal Numbers	36
	2.1	A Modicum of Point-Set Topology	36
	2.2	The Axiom of Choice and Its Relatives	41
	2.3	Cardinal and Ordinal Numbers	43
	2.4	The Ordinal Space	46
	2.5	The Cantor Set: A Nowhere Dense, Perfect Set	47
	2.6	The Cantor Function and Its Inverse	49
3	Rien	nann Is Not Enough	55
	3.1	The Riemann–Darboux upper integral is not additive	57

vi

Cambridge University Press 978-1-316-51913-4 — Counterexamples in Measure and Integration René L. Schilling , Franziska Kühn Table of Contents <u>More Information</u>

	Contents	
3.2	Why one should define Riemann integrals on bounded intervals	58
3.3	There are no unbounded Riemann integrable functions	58
3.4	A function which is not Riemann integrable	59
3.5	Yet another function which is not Riemann integrable	59
3.6	A non-Riemann integrable function where a sequence of	
	Riemann sums is convergent	60
3.7	A Riemann integrable function without a primitive	61
3.8	A Riemann integrable function whose discontinuity	
	points are dense	62
3.9	Semicontinuity does not imply Riemann integrability	63
3.10	A function which has the intermediate value property but	
	is not Riemann integrable	64
3.11	A Lipschitz continuous function g and a Riemann integ-	
	rable function f such that $f \circ g$ is not Riemann integrable	65
3.12	The composition of Riemann integrable functions need	
	not be Riemann integrable	65
3.13	An increasing sequence of Riemann integrable functions	
	$0 \leq f_n \leq 1$ such that $\sup_n f_n$ is not Riemann integrable	65
3.14	A decreasing sequence of Riemann integrable functions	
	$0 \leq f_n \leq 1$ such that $\inf_n f_n$ is not Riemann integrable	65
3.15	Limit theorems for Riemann integrals are sub-optimal	66
3.16	The space of Riemann integrable functions is not complete	67
3.17	An example where integration by substitution goes wrong	68
3.18	A Riemann integrable function which is not Borel meas-	
0.10	urable	68
3.19	A non-Riemann integrable function f which coincides	(0
2 20	a.e. with a continuous function A Diamann integrable function on \mathbb{D}^2 whose iterated	69
5.20	integrals are not Diemann integrable	60
2 21	Integrals are not Kiemann integrable	09
5.21	Stielties integral	71
3 77	The Riemann-Stielties integral does not exist if integrand	/1
3.22	and integrator have a common discontinuity	72
_		72
Fam	ilies of Sets	73
4.1	A Dynkin system which is not a σ -algebra	76
4.2	A monotone class which is not a σ -algebra	11
4.3	A σ -algebra which contains all singletons but no non-	
		- 11

4

Cambridge University Press 978-1-316-51913-4 — Counterexamples in Measure and Integration René L. Schilling , Franziska Kühn Table of Contents <u>More Information</u>

	Contents	vii
4.4	There is no σ -algebra with $\# \mathscr{A} = \# \mathbb{N}$	78
4.5	A σ -algebra which has no non-empty atoms	78
4.6	An increasing family of σ -algebras whose union fails to be	
	a σ -algebra	79
4.7	The union of countably many strictly increasing	
	σ -algebras is never a σ -algebra	80
4.8	A countably generated σ -algebra containing a	
	sub- σ -algebra which is not countably generated	81
4.9	Two countably generated σ -algebras whose intersection is	
	not countably generated	82
4.1	0 A Borel σ -algebra which is not countably generated	83
4.1	1 $\sigma(\mathcal{G})$ can only separate points if \mathcal{G} does	84
4.1	2 A family \mathcal{G} of intervals whose endpoints form a dense	0.4
4.1	subset of \mathbb{R} but $\sigma(\mathfrak{F}) \cong \mathfrak{B}(\mathbb{R})$	84
4.1	3 Intersection and the σ -operation do not commute:	04
11	$\sigma(_{n \in \mathbb{N}} g_n) \neq _{n \in \mathbb{N}} \sigma(g_n)$	84
4.1	+ A metric space such that the 0-algebra generated by the	85
11	5 The σ_{-2} loop and σ_{-2} and σ_{-2} be larger	65
7.1	than the Borel σ -algebra (compact sets need not be Borel	
	sets)	85
4.1	6 The σ -algebra generated by the compact sets can be	05
	smaller than the Borel σ -algebra	86
4.1	7 A topology such that every non-empty Borel set has	
	uncountably many elements	87
4.1	8 A metrizable and a non-metrizable topology having the	
	same Borel sets	87
4.1	9 A σ -algebra which is not generated by any topology	89
4.2	0 A σ -algebra which is strictly between the Borel and the	
	Lebesgue sets	91
4.2	1 The Borel sets cannot be constructed by induction	91
4.2	2 The Borel sets can be constructed by transfinite induction	95
4.2	3 (Non-)equivalent characterizations of the Baire σ -algebra	96
4.2	4 The Baire σ -algebra can be strictly smaller than the Borel	
	σ -algebra	98
Set	Functions and Measures	100
5.1	A class of measures where the $\mu(\emptyset) = 0$ is not needed in	
	the definition	102
5.2	A set function which is additive but not σ -additive	102

5

viii	Contents				
	5.3 5.4	A finite set function which is additive but not σ -additive Another finite set function which is additive but not	103		
		σ -additive	104		
	5.5	A set function with infinitely many extensions	105		
	5.6	A measure that cannot be further extended	105		
	5.7	A measure defined on the open balls which cannot be extended to the Borel sets	106		
	5.8	A signed pre-measure on an algebra \mathscr{R} which cannot be extended to a signed measure on $\sigma(\mathscr{R})$	106		
	5.9	A measure defined on a non-measurable set	107		
	5.10	A measure which is not continuous from above	108		
	5.11	A σ -finite measure which is not σ -finite on a smaller			
		σ -algebra	108		
	5.12	A σ -finite measure μ on $\mathscr{B}(\mathbb{R})$ such that $\mu(I) = \infty$ for			
		every non-trivial interval	108		
	5.13	A σ -finite measure μ on $\mathscr{B}(\mathbb{R})$ which is not a Lebesgue–			
		Stieltjes measure	108		
	5.14	Infinite sums of finite measures need not be σ -finite	109		
	5.15	The image measure of a σ -finite measure is not necessarily	100		
	5 16	0-initial A locally finite measure need not be σ -finite	109		
	5.10	Two measures on $\sigma(\mathcal{C})$ such that $u _{\mathcal{C}} \leq v _{\mathcal{C}}$ but $u \leq v$ fails	109		
	5.17	Two measures on $\sigma(\mathcal{C})$ such that $\mu _{\mathcal{C}} = \nu _{\mathcal{C}}$ but $\mu \neq \nu$	110		
	5.19	Two measures $\mu \neq \gamma$ such that $\int n d\mu = \int n d\gamma$ for all	110		
	5.17	polynomials	111		
	5.20	Two finite measures $\mu \neq \nu$ whose Fourier transforms			
		coincide on an interval containing zero	113		
	5.21	(Non)Equivalent definitions of the convolution of measures	114		
	5.22	The convolution of σ -finite measures need not be σ -finite	115		
	5.23	$\mu * \nu = \mu$ does not imply $\nu = \delta_0$	116		
	5.24	The push forward 'disaster' (image measures behaving			
		badly)	117		
	5.25	The pull-back of a measure need not be a measure	118		
	5.26	A finite Borel measure which is not tight	119		
	5.27	A translation-invariant Borel measure which is not a	100		
	5.00	multiple of Lebesgue measure	120		
	5.28	i nere is no Lebesgue measure in infinite dimension	121		
6	Rang	ge and Support of a Measure	123		
	6.1	A measure where supp $\mu \neq \bigcap \{B; \mu(B^c) = 0\}$	124		

Cambridge University Press 978-1-316-51913-4 — Counterexamples in Measure and Integration René L. Schilling , Franziska Kühn Table of Contents <u>More Information</u>

	Contents	ix
6.2	A measure which has no minimal closed support	124
6.3	Measures may have very small support	125
6.4	A measure μ such that the support of $\mu _{\text{supp }\mu}$ is strictly	
	smaller than supp μ	125
6.5	A measure with supp $\mu = \{c\}$ but $\mu \neq \delta_c$	126
6.6	Measures such that supp μ + supp $\nu \subsetneq$ supp $\mu * \nu$	126
6.7	Measures such that supp $\mu * \nu \subsetneq \overline{\text{supp } \mu + \text{supp } \nu}$	127
6.8	A signed measure such that supp $\mu^+ = \operatorname{supp} \mu^-$	128
6.9	A two-valued measure which is not a point mass	128
6.10	A two-valued measure on a countably generated σ -algebra	
	must be a point mass	129
6.11	(Non-)equivalent characterizations of atoms of a measure	130
6.12	A purely atomic measure such that $\mu \neq \sum_{x} \mu(\{x\})\delta_x$	131
6.13	A measure such that every set with positive measure is an	
	atom	131
6.14	An infinite sum of atomic measures which is non-atomic	131
6.15	Any non-atomic finite σ -additive measure defined on	
	$\mathcal{P}(\mathbb{R})$ is identically zero	132
6.16	A measure on a discrete space which attains all values in	
<i>.</i> .	$[0,\infty]$	133
6.17	A measure whose range is not a closed set	133
6.18	A measure with countable range	134
6.19	A vector measure which is non-atomic but whose range is	124
(20	A non trivial macauna which agains macauna zona to all	134
6.20	A non-trivial measure which assigns measure zero to all	125
6 21	Δ signed measure μ : $d \rightarrow (-\infty, \infty)$ is uniformly	155
0.21	A signed measure $\mu: \mathcal{A} \to (-\infty, \infty)$ is uniformly hounded below	136
	bounded below	150
Mea	surable and Non-Measurable Sets	138
7.1	A dense open set in $(0, 1)$ with arbitrarily small Lebesgue	
	measure	139
7.2	A set of positive Lebesgue measure which does not contain	
	any interval	140
7.3	A Cantor-like set with arbitrary measure	140
7.4	An uncountable set of zero measure	141
7.5	A Lebesgue null set $A \subseteq \mathbb{K}$ such that for every $\delta \in [0, 1]$	1 4 1
	there exist $x, y \in A$ with $o = x - y $	141
7.6	A dense open set whose complement has positive measure	144

7

Х		Contents				
	7.7	A compact set whose boundary has positive Lebesgue				
		measure	144			
	7.8	A set of first category in [0, 1] with measure one	144			
	7.9	A set of second category with measure zero	145			
	7.10	An uncountable, dense set of measure zero such that the				
		complement is of first category	145			
	7.11	A null set which is not an F_{σ} -set	145			
	7.12	A Borel set which is neither F_{σ} nor G_{δ}	146			
	7.13	Each Borel set is the union of a null set and a set of first				
		category	147			
	7.14	A set $B \subseteq \mathbb{R}$ such that $B \cap F \neq \emptyset$ and $B^c \cap F \neq \emptyset$ for any				
		uncountable closed set F	147			
	7.15	A Borel set $B \subseteq \mathbb{R}$ such that $\lambda(B \cap I) > 0$ and $\lambda(B^c \cap I) > 0$				
		for all open intervals $I \neq \emptyset$	148			
	7.16	There is no Borel set B with $\lambda(B \cap I) = \frac{1}{2}\lambda(I)$ for all intervals I	148			
	7.17	A non-Borel set B such that $K \cap B$ is Borel for every				
		compact set K	149			
	7.18	A convex set which is not Borel	149			
	7.19	A Souslin set which is not Borel	150			
	7.20	A Lebesgue measurable set which is not Borel measurable	153			
	7.21	A Lebesgue measurable set which is not a Souslin set	153			
	7.22	A non-Lebesgue measurable set	153			
	7.23	Arbitrary unions of non-trivial closed balls need not be				
		Borel measurable	155			
	7.24	The image of a Borel set under a continuous mapping				
		need not be Borel	155			
	7.25	The image of a Lebesgue set under a continuous mapping				
	/	need not be Lebesgue measurable	157			
	7.26	The Minkowski sum $A + B$ of two Borel sets is not				
		necessarily Borel	158			
	7.27	A Lebesgue null set <i>B</i> such that $B + B = \mathbb{R}$	158			
	7.28	The difference of fat Cantor sets contains an interval	159			
	7.29	The difference of fet Contor sets is sometimes an interval	101			
	7.30	The Dimerence of fat Cantor sets is exactly $[-1, 1]$	161			
	/.31	The Banach–Tarski paradox	162			
8	Mea	surable Maps and Functions	164			
	8.1	A measurable space where every map is measurable	165			
	8.2	A measurable space where only constant functions are				
		measurable	165			

	Contents	xi
8.3	A non-measurable function whose modulus <i>f</i> is meas- urable	165
84	A non-measurable function whose level sets	100
0.1	$\{\mathbf{r}: f(\mathbf{r}) = \alpha\}$ are measurable	165
85	A measurable function which is not u -a e constant on	105
0.5	any atom	165
8.6	A function $f(x, y)$ which is Borel measurable in each	100
0.0	variable, but fails to be jointly measurable	166
8.7	Another function $f(x, y)$ which is Borel measurable in	100
017	each variable, but fails to be jointly measurable	167
8.8	A function $f = (f_1, f_2)$ which is not measurable but	107
0.0	whose components are measurable	168
8.9	The set of continuity points of any function f is Borel	100
017	measurable	168
8.10	A set D for which there exists no function having D as its	100
0.10	discontinuity set	170
8.11	A bijective measurable function f such that f^{-1} is not	170
0.11	measurable	171
8.12	A continuous bijective function $f: [0, 1] \rightarrow [0, 1]$ which	
0.12	is not Lebesgue measurable	171
8.13	A Lebesgue measurable bijective map $f: \mathbb{R} \to \mathbb{R}$ whose	
0.10	inverse is not Lebesgue measurable	172
8.14	Borel measurable bijective maps have Borel measurable	
0.1	inverses	173
8.15	Sums and products of measurable functions need not be	110
0.10	measurable	173
8.16	The limit of a sequence of measurable functions need not	110
	be measurable	174
8.17	A sequence of measurable functions such that the set	
0.17	$\{x: \lim_{n \to \infty} f_n(x) \text{ exists}\}$ is not measurable	175
8.18	The supremum of measurable functions need to be meas-	
0.20	urable	175
8.19	Measurability is not preserved under convolutions	176
8.20	The factorization lemma fails for general measurable	
	spaces	177
8.21	A Lebesgue measurable function $f : \mathbb{R} \to \mathbb{R}$ for which	
	there is no Borel measurable function $g: \mathbb{R} \to \mathbb{R}$ such	
	that $f \leq g$	178
8.22	A positive Borel measurable function which cannot be	
	approximated a.e. from below by step functions	179

xii	Contents				
	8.23	$\mathbb{1}_{\mathbb{R}\setminus\mathbb{Q}}$ cannot be the pointwise limit of continuous functions	180		
9	Inne	er and Outer Measure	182		
	9.1	An explicit construction of a non-measurable set	185		
	9.2	A set which is not Lebesgue measurable with strictly			
		positive outer and zero inner measure	186		
	9.3	A decreasing sequence $A_n \downarrow \emptyset$ such that $\lambda^*(A_n) = 1$	186		
	9.4	A set such that $\lambda_*(E) = 0$ and $\lambda^*(E \cap B) = \lambda(B) = \lambda^*(B \setminus E)$			
		for all $B \in \mathscr{B}(\mathbb{R})$	187		
	9.5	Lebesgue measure beyond the Lebesgue sets	188		
	9.6	The Carathéodory extension λ^* of $\lambda _{[0,1)}$ is not continuous			
		from above	189		
	9.7	An outer measure which is not continuous from below	189		
	9.8	A measure μ such that its outer measure μ^* is not additive	190		
	9.9	A measure space such that $(X, \mathcal{A}^*, \mu^* _{\mathcal{A}^*})$ is not the			
		completion of (X, \mathcal{A}, μ)	190		
	9.10	A measure space where $\mu_*(E) = \mu^*(E)$ does not imply			
		measurability of E	190		
	9.11	A non-Lebesgue measurable set with identical inner and			
	0.10	outer measure	191		
	9.12	A measure such that every set is μ^* measurable	191		
	9.13	A measure μ relative to 8 such that every non-empty set	102		
	0.14	In δ fails to be μ^{μ} measurable	192		
	9.14	An additive set function μ on a semi-ring such that μ^{-1} is	102		
	0.15	for all extension of μ	195		
	9.15	All outer lifedsure constructed on the intervals $[u, b]$ such that not all Borol sots are measurable	102		
	0 16	There exist non- u^* measurable sets if and only if u^* is	195		
	9.10	not additive on $\mathcal{P}(X)$	194		
	917	An outer regular measure which is not inner compact	174		
	7.17	regular	195		
	9.18	An inner compact regular measure which is neither inner	170		
		nor outer regular	195		
	9.19	A measure which is neither inner nor outer regular	196		
	9.20	A measure which is inner regular but not inner compact			
		regular	197		
	9.21	The regularity of a measure depends on the topology	197		
	9.22	A regular Borel measure whose restriction to a Borel set is			
		not regular	198		

		Contents	xiii
10	Integ	rable Functions	202
	10.1	An integrable function which is unbounded in every interval	203
	10.2	A continuous integrable function such that	
		$\lim_{ x \to\infty} f(x) \neq 0$	204
	10.3	A continuous function vanishing at infinity which is not	
		in L^p for any $p > 0$	205
	10.4	A non-integrable function such that	
		$\lim_{r \to \infty} r\mu(\{ f > r\}) = 0$	205
	10.5	Characterizing integrability in terms of series	206
	10.6	A non-integrable function such that $f(x - 1/n)$ is integ-	
		rable for all $n \in \mathbb{N}$	207
	10.7	An integrable function such that $f(x - 1/n)$ fails to be	
		integrable for all $n \in \mathbb{N}$	208
	10.8	An improperly Riemann integrable function which is not	
		Lebesgue integrable	208
	10.9	A function such that $\lim_{n\to\infty} \int_0^n f d\lambda$ exists and is finite	
		but $\int_0^\infty f d\lambda$ does not exist	209
	10.10	A function which is nowhere locally integrable	210
	10.11	Integrable functions f, g such that $f \cdot g$ is not integrable	210
	10.12	A function such that $f \notin L^p$ for all $p \in [1, \infty)$ but $fg \in L^1$	
		for all $g \in L^q$, $q \ge 1$	210
	10.13	$f \in L^p$ for all $p < q$ does not imply $f \in L^q$	211
	10.14	A function such that $f \in L^p$ for all $p < \infty$ but $f \notin L^\infty$	211
	10.15	A function such that $f \in L^{\infty}$ but $f \notin L^{p}$ for all $p < \infty$	212
	10.16	A function which is in exactly one space L^p	212
	10.17	Convolution is not associative	213
	10.18	An example where integration by substitution goes wrong	214
	10.19	There is no non-constant function such that	
		$\int_{\mathbb{R}^d \setminus \{0\}} \int_{\mathbb{R}^d} f(x+y) - f(x) y ^{-d-1} dx dy < \infty$	215
	10.20	A measure space which has no strictly positive function	
		$f \in L^1$	217
	10.21	In infinite measure spaces there is no function $f > 0$ with	
		$f \in L^1$ and $1/f \in L^1$	217
	10.22	There is no continuous function $f \ge 0$ with $\int f^n d\lambda = 1$	
	10.00	tor all $n \in \mathbb{N}$	218
	10.23	A measure space where $\int_A f d\mu = \int_A g d\mu$ (for all A) does	
	10.0	not entail $f = g$ a.e.	219
	10.24	A vector function which is weakly but not strongly integrable	220

xiv		Contents	
11	Mod	es of Convergence	221
	11.1	Classical counterexamples to a.e. convergence vs. conver-	
		gence in probability	222
	11.2	Pointwise convergence does not imply convergence in	
		measure	223
	11.3	L^p -convergence does not imply L^r -convergence for $r \neq p$	224
	11.4	Classical counterexamples related to weak convergence in	
		L^p	224
	11.5	The convergence tables	225
	11.6	The limit in probability is not necessarily unique	225
	11.7	A sequence converging in probability without having an	
		a.e. converging subsequence	227
	11.8	A sequence converging in probability without having any	
		subsequence converging in measure	228
	11.9	A sequence such that $\int f_n(x) dx \to 0$ but $(f_n)_{n \in \mathbb{N}}$ has no	220
	11 10	A sequence and in massure but not almost	229
	11.10	A sequence converging a.e. and in measure but not almost	220
	11 11	unioniny Egoropy's theorem foils for infinite measures	229
	11.11	Egorov's theorem does not hold for note	229
	11.12	Egolov's theorem does not hold for hets A uniformly convergent sequence of L^1 -functions which	229
	11.15	is not convergent in I^1	231
	11 14	Convergence in measure is not stable under products	231
	11.14	A measure space where convergence in measure and	231
	11.15	uniform convergence coincide	232
	11.16	A measure space where strong and weak convergence of	202
		sequences in L^1 coincide	233
	11.17	Convergence a.e. is not metrizable	233
12	Cont	zarganga Thaarama	225
12	12.1	Classical counterevamples to dominated convergence	235
	12.1	Eatou's lemma may fail for non-positive integrands	230
	12.2	Fatou's lemma may lead to a strict inequality	230
	12.5	The monotone convergence theorem needs a lower integ-	231
	12.4	rable bound	237
	12.5	A series of functions such that integration and summation	
		do not interchange	238
	12.6	Riesz's convergence theorem fails for $p = \infty$	239
	12.7	A sequence such that $f_n \to 0$ pointwise but	
		$\int_I f_n d\lambda \to \lambda(I) \text{ for all intervals}$	239

		Contents	XV
	12.8	$\int_I f_n d\lambda \rightarrow \int_I f d\lambda$ for all intervals I does not imply	
		$\int_B f_n d\lambda \to \int_B f d\lambda$ for all Borel sets B	240
	12.9	The classical convergence theorems fail for nets	242
	12.10	The continuity lemma 'only' proves sequential continuity	243
	12.11	A sequence f_n converging to 0 in L^1 without integrable	
		envelope – the 'sliding hump'	244
	12.12	A sequence $(f_n)_{n \in \mathbb{N}}$ which is uniformly integrable but	244
	10.10	$\sup_n J_n $ is not integrable	244
	12.13	A sequence which is not uniformly integrable but $f_n \to 0$	245
	1214	and $\int \int_n u\lambda \to 0$ An L^1 -bounded sequence which is not uniformly integrable	245
	12.14	A uniformly integrable sequence which is not uniformly integrable	243
	12.15	in L^1	245
	12.16	An L^1 -bounded sequence which fails to be uniformly	2.0
		integrable on any set of positive measure	246
13	Cont	inuity and a e Continuity	247
10	13.1	An a.e. continuous function which does not coincide a.e.	2.7
	10.1	with any continuous function	248
	13.2	A nowhere continuous function which equals a.e. a	
		continuous function	248
	13.3	A function f such that every g with $f = g$ a.e. is nowhere	
		continuous	248
	13.4	A function which is everywhere sequentially continuous	
		but nowhere continuous	249
	13.5	An a.e. continuous function whose discontinuity points	
	10.6	are dense	249
	13.6	An a.e. discontinuous function whose continuity points	240
	127	The composition of two e.e. continuous functions which	249
	15.7	is nowhere continuous	250
	13.8	An a e continuous function which is not Borel measurable	250
	13.9	A bounded Borel measurable function such that	231
	1017	$f(x + 1/n) \rightarrow f(x)$ fails to hold on a set of positive measure	251
	13.10	A nowhere constant function which is a.e. continuous	
		and has countable range	252
	13.11	A continuous function such that $f(x) \in \mathbb{Q}$ a.e. and f is	
		not constant on any interval	252
	13.12	A continuous function which is strictly positive on ${\mathbb Q}$ but	
		fails to be strictly positive almost everywhere	253

3	cvi		Contents	
		13.13	A measurable function which is zero almost everywhere but whose graph is dense	254
		13.14	A continuous function $f: [0,1] \rightarrow \mathbb{R}^2$ whose image has positive Lebesgue measure	255
		13.15	The image of a Lebesgue null set under a continuous	257
		13.16	Lusin's theorem fails for non-regular measures	257
		13.17	The convolution of two integrable functions may be	
			discontinuous	258
1	14	Integ	gration and Differentiation	261
		14.1	A non-Riemann integrable function f which has a primitive	262
		14.2	A function f which is differentiable, but f' is not integrable	263
		14.3	Volterra's version of Example 14.2	264
		14.4	A continuous function such that f' exists almost every-	
			where and is integrable but the fundamental theorem of	265
		14 5	A continuous strictly increasing function with $f' = 0$	203
		14.5	Lebesgue almost everywhere	266
		14.6	A continuous function f such that $f' > 1$ a.e. but f is not	
			increasing on any interval	266
		14.7	A function which is Lebesgue almost everywhere dif-	
			ferentiable but f' does not exist on a dense subset of	
			R	268
		14.8	$f_n \to f$ and $f'_n \to g$ pointwise does not imply $f' = g$ a.e.	268
		14.9	A function $f(t, x)$ for which $\partial_t \int f(t, x) dx$ and $\int \partial_t f(t, x) dx$	271
		14 10	exist but are not equal A function such that $\frac{\partial}{\partial t} \int f(t, x) dx$ exists but $\int \frac{\partial}{\partial t} f(t, x) dx$	271
		14.10	does not	271
		14.11	A function such that $\int \partial_t f(t, x) dx$ exists but $\partial_t \int f(t, x) dx$	
			does not	272
		14.12	A bounded function such that $t \mapsto f(t, x)$ is continuous	
			but $t \mapsto \int f(t, x) \mu(dx)$ is not continuous	272
		14.13	An increasing continuous function ϕ and a continuous	
			function f such that $\int_0^1 f(x) d\alpha(x) \neq \int_0^1 f(x) \alpha'(x) dx$	272
		14.14	A nowhere continuous function whose Lebesgue points	~-~
		1415	A discontinuous function such that such that	273
		14.15	A discontinuous function such that every point is a Lebesgue point	272
				415

	Contents		xvii
	14.16	An integrable function f such that $x \mapsto \int_0^x f(t) dt$ is	
		differentiable at $x = x_0$ but x_0 is not a Lebesgue point of f	274
	14.17	Lebesgue points of f need not be Lebesgue points of f^2	275
	14.18	Functions $f \in L^p$, $0 , without Lebesgue points$	275
	14.19	Lebesgue's differentiation theorem fails for sets which are not shrinking nicely	276
	14.20	A measure for which Lebesgue's differentiation theorem	278
15	Маа	nuns	270
15	15 1	A function which is David measurable but not Laboration	280
	15.1	A function which is Borel measurable but not Lebesgue	281
	15.2	The product of complete σ_{-2} latebras need not be complete	201
	15.2	$\mathcal{L}(\mathbb{R}) \otimes \mathcal{L}(\mathbb{R}) \subset \mathcal{L}(\mathbb{R}^2)$	201
	15.5	Sigma algebras $\mathcal{A} = \sigma(\mathcal{C})$ and $\mathcal{B} = \sigma(\mathcal{H})$ such that	202
	10.1	$\sigma(\mathcal{G} \times \mathcal{H})$ is strictly smaller than $\mathcal{A} \otimes \mathcal{B}$	282
	15.5	An example where $\mathcal{P}(X) \otimes \mathcal{P}(X) \neq \mathcal{P}(X \times X)$	283
	15.6	The product of Borel σ -algebras is not always the Borel	
		σ -algebra of the product	284
	15.7	Topological spaces X, Y such that $\mathscr{B}(X) = \mathscr{B}(Y)$ but	
		$\mathscr{B}(X \times X) \neq \mathscr{B}(Y \times Y)$	285
	15.8	$\mathscr{B}(X)^{\otimes I}$ is strictly smaller than $\mathscr{B}(X^{I})$ for uncountable <i>I</i>	286
	15.9	The diagonal $\Delta = \{(x, x); x \in X\}$ need not be measurable	288
	15.10	A metric which is not jointly measurable	289
	15.11	A non-measurable set whose projections are measurable	289
	15.12	A measurable set whose projection is not measurable	289
	15.13	A non-measurable set whose slices are measurable	290
	15.14	A measurable function with a non-measurable graph	291
	15.15	A non-measurable function with a measurable graph	291
	15.16	A function $f(x, y)$ which is measurable in each variable	
		but fails to be jointly measurable	291
	15.17	A function $f(x, y)$ which is separately continuous in each	202
	1 - 10	variable but fails to be Borel measurable	292
	15.18	An $\mathcal{A} \otimes \mathcal{B}$ measurable function $f \ge 0$ which cannot be	
		approximated from below by simple functions of product	202
			293
16	Prod	uct Measures	295
	16.1	Non-uniqueness of product measures	298
	16.2	A measure on a product space which is not a product	200
		measure	299

xviii		Contents	
	16.3	The product of complete measure spaces need not be complete	299
	16.4	A Lebesgue null set in $[0, 1]^2$ which intersects any set $A \times B$ whose Lebesgue measure is positive	299
	16.5	A set $A \subseteq \mathbb{R}^2$ of positive Lebesgue measure which does not contain any rectangle	300
	16.6	A set $A \subseteq \mathbb{R}^2$ of positive Lebesgue measure such that the intersection of every non-degenerate rectangle with A^c has positive measure	300
	16.7	A set $A \subseteq \mathbb{R}^2$ of positive Lebesgue measure which is not a countable union of rectangles	302
	16.8	A jointly measurable function such that $x \mapsto \int f(x, y) \mu(dy)$ is not measurable	302
	16.9	A function $f(x, y)$ such that $f(\cdot, y)$ is \mathcal{A} measurable but $\int f(\cdot, y) dy$ is not \mathcal{A} measurable	302
	16.10 16.11	Tonelli's theorem fails for non-positive integrands A positive function with $f(x, y) = f(y, x)$ such that the	304
	16.12	iterated integrals do not coincide A positive function $f(x, y)$ whose iterated integrals do not	305
	16.13	coincide A finite measure μ and a Borel set <i>B</i> such that	305
	16.14	$\iint \mathbb{1}_B(x+y)\mu(dx)\lambda(dy) \neq \iint \mathbb{1}_B(x+y)\lambda(dy)\mu(dx)$ A non-measurable function $f(x,y)$ such that the iterated	306
	16.15	integral $\iint f(x, y) dx dy$ exists and is finite A function $f(x, y)$ whose iterated integrals exist but do	307
	16.16	not coincide A function $f(x, y)$ which is not integrable but whose	308
	16.17	iterated integrals exist and coincide Yet another example where the iterated integrals exist, but	309
	16.18	the double integral doesn't An a.e. continuous function $f(x, y)$ where only one	310
	16.19	iterated integral exists Classical integration by parts fails for Lebesgue–Stieltjes	311
	16.20	integrals A function which is $K(x, dy)$ -integrable but fails to be	311
	16.21	$\mu K(dy)$ -integrable A consistent family of marginals which does not admit a	313
		projective limit	315

		Contents	xix
17	Rado	on–Nikodým and Related Results	317
	17.1	An absolutely continuous measure without a density	317
	17.2	Another absolutely continuous measure without density	318
	17.3	Yet another absolutely continuous measure without density	318
	17.4	A not-absolutely continuous measure given by a density	319
	17.5	A measure $\mu \ll \lambda$ such that $\lambda(A_n) \to 0$ does not imply	
		$\mu(A_n) \to 0$	320
	17.6	A measure μ which is absolutely continuous w.r.t.	
		Lebesgue measure and $\mu(a, b) = \infty$ for any $(a, b) \neq \emptyset$	320
	17.7	A continuous measure which is not absolutely continuous	321
	17.8	An absolutely continuous function whose inverse is not	
		absolutely continuous	321
	17.9	A continuous measure with atoms	321
	17.10	The Radon–Nikodým density $f = d\nu/d\mu$ does not	
		necessarily satisfy $f(x) = \lim_{r\downarrow 0} \nu(B_r(x)) / \mu(B_r(x))$	322
	17.11	Lebesgue's decomposition theorem fails without σ -finiteness	322
	17.12	Two mutually singular measures which have the same	
		support	322
	17.13	A probability measure μ with full support such that μ and	
		$\mu(c \cdot)$ are mutually singular for $c \neq 1$	322
	17.14	The convolution of two singular measures may be abso-	
		lutely continuous	324
	17.15	Singular measures with full support – the case of Bernoulli	
		convolutions	325
	17.16	The maximum of two measures need not be the maximum	
		of its values	329
18	Func	tion Spaces	330
	18.1	Relations between L^r, L^s, L^t if $r < s < t$	332
	18.2	One may have $\ell^p(\mu) \subseteq \ell^q(\mu)$, or $\ell^p(\mu) \supseteq \ell^q(\mu)$, or no	
		inclusion at all	334
	18.3	A measure space where $L^p = \{0\}$ for all $0 \le p < \infty$	336
	18.4	A measure space where all spaces L^p , $1 \leq p \leq \infty$ coincide	336
	18.5	A measure space where $L^1 \subsetneq L^{\infty}$	337
	18.6	$L^{1}(\mu) = L^{\infty}(\mu)$ if, and only if, $1 \leq \dim(L^{1}(\mu)) < \infty$	337
	18.7	A function where $\sup_{x \in U} f(x) \neq f _{L^{\infty}(U)}$ for any open	
		set U	340
	18.8	One cannot compare L^p -norms on $C[0,1]$	341
	18.9	The spaces L^p with $0 are only quasi-normed spaces$	341
	18.10	The spaces L^p with $0 are not locally convex$	343

Cambridge University Press 978-1-316-51913-4 — Counterexamples in Measure and Integration René L. Schilling , Franziska Kühn Table of Contents <u>More Information</u>

> Contents XX 18.11 The dual of $L^p(\lambda)$ with 0 is trivial344 18.12 Functions $f \in L^p$, 0 , need not be locally integrable345 18.13 The spaces L^q with q < 0 are not linear spaces 346 18.14 A measure space where L^p is not separable 346 18.15 Separability of the space L^{∞} 347 18.16 $C_h(X)$ need not be dense in $L^p(\mu)$ 349 18.17 A subset of L^p which is dense in L^r , r < p, but not dense in L^p 350 18.18 L^p is not an inner product space unless p = 2 or dim $(L^p) \leq 1$ 351 18.19 The condition $\sup_{\|g\|_{I} \leq 1} \int |fg| d\mu < \infty$ need not imply that $f \in L^p(\mu)$ 352 18.20 Identifying the dual of L^p with L^q is a tricky business 354 18.21 The dual of L^1 can be larger than L^{∞} 355 18.22 The dual of L^1 can be isometrically isomorphic to a space which is strictly smaller than L^{∞} 357 18.23 A measure space such that the dual of L^1 is L^1 358 18.24 The dual of L^{∞} can be larger than L^1 358 18.25 A measure space where the dual of L^{∞} is L^1 359 18.26 Non-uniqueness in the Riesz representation theorem 360 18.27 Non-uniqueness in the Riesz representation theorem II 360 18.28 A measure space where L^{∞} is not weakly sequentially complete 361 18.29 Uniform boundedness does not imply weak compactness in L^1 363 18.30 The algebra $L^1(\lambda^d)$ does not have a unit element 364 18.31 The algebra $L^1(\lambda^d)$ contains non-trivial divisors of zero 364 18.32 Uniform convexity/rotundity of L^p 365 18.33 An absolutely continuous measure such that the translation operator is not continuous in L^1 366 18.34 There is no Bochner integral in spaces which are not locally convex 367 19 **Convergence of Measures** 370 19.1 Classical counterexamples related to vague and weak convergence 373 19.2 Vague convergence does not preserve mass 375 19.3 Vague convergence of positive measures $\mu_n \rightarrow \mu$ does not imply $|\mu_n - \mu| \to 0$ 375 19.4 Vague convergence $\mu_n \rightarrow 0$ does not entail vague convergence $|\mu_n| \to 0$ 375

Contents	xxi
19.5 Vague convergence does not imply $\mu_n(B) \rightarrow \mu(B)$ for	all
Borel sets	376
19.6 A sequence of absolutely continuous measures whic	h
converges weakly to λ on $[0,1]$ but $\mu_n(B) \rightarrow \lambda(B)$ fail	s for
some Borel set $B \subseteq [0, 1]$	376
19.7 A sequence of measures μ_n such that $\lim_{n\to\infty} \int f d\mu$	l _n
exists, but is not of the form $\int f d\mu$	376
19.8 Weakly convergent sequences need not be tight	377
19.9 Signed measures μ_n such that $\int f d\mu_n \to \int f d\mu$ for	all
$f \in C(\mathbb{R})$ but $\mu_n(B) \to \mu(B)$ fails for sets with $\mu(\partial B)$	= 0 377
19.10 Signed measures μ_n such that $\int f d\mu_n \to \int f d\mu$ for	all
bounded uniformly continuous functions f but μ_n defined as the second secon	oes
not converge weakly to μ	378
19.11 A sequence of measures which does not converge we	akly
but whose Fourier transforms converge pointwise	378
19.12 Lévy's continuity theorem fails for nets	379
19.13 A sequence of non-atomic measures converging weak	ly to
a purely atomic measure	380
19.14 A sequence of purely atomic measures converging we	akly
to a non-atomic measure	380
19.15 A net of Dirac measures converging weakly to a non-I	Dirac
measure	381
19.16 $f_n \mu \to f \mu$ weakly does not imply $f_n \to f$ in probabi	lity 381
19.17 $f_n \mu \rightarrow f \mu$ weakly does not imply $f_n \rightarrow f$ weakly in h	$L^{1}(\mu)$ 382
19.18 $f_n \rightarrow f$ weakly in $L^p(\mu)$ for $p > 1$ does not imply	7
$f_n \mu \to f \mu$ weakly	383
References	
Index	