COUNTEREXAMPLES IN MEASURE AND INTEGRATION

Often it is more instructive to know ‘what can go wrong’ and to understand ‘why a result fails’ than to plod through yet another piece of theory. In this text, the authors gather more than 300 counterexamples – some of them both surprising and amusing – showing the limitations, hidden traps and pitfalls of measure and integration. Many examples are put into context, explaining the relevant parts of the theory, and pointing out further reading.

The text starts with a self-contained, non-technical overview on the fundamentals of measure and integration. A companion to the successful undergraduate textbook *Measures, Integrals and Martingales*, it is accessible to advanced undergraduate students, requiring only modest prerequisites. More specialized concepts are briefly summarized at the beginning of each chapter, allowing for self-study as well as supplementary reading for any course covering measures and integrals. For researchers, the text provides ample examples and warnings as to the limitations of general measure theory.

RENÉ L. SCHILLING is Professor of Probability Theory at Technische Universität Dresden. His research focuses on stochastic analysis and the theory of stochastic processes.

FRANZISKA KÜHN is Research Assistant at Technische Universität Dresden, where she finished her Ph.D. in 2016. She is interested in the interplay of probability theory and analysis, with a focus on jump processes and non-local operators.
COUNTEREXAMPLES IN MEASURE AND INTEGRATION

RENÉ L. SCHILLING
Technische Universität Dresden

FRANZISKA KÜHN
Technische Universität Dresden
Contents

Preface.xxiii
User's Guide.xxv
List of Topics and Phenomena.xxviii

1 A Panorama of Lebesgue Integration.1
1.1 Modern Integration. ‘Also zuerst: Was hat man unter $\int_a^b f(x) \,dx$ zu verstehen?’1
1.2 The Idea Behind Lebesgue Integration.4
1.3 Lebesgue Essentials – Measures and σ-Algebras.6
1.4 Lebesgue Essentials – Integrals and Measurable Functions.10
1.5 Spaces of Integrable Functions.13
1.6 Convergence Theorems.17
1.7 Product Measure, Fubini and Tonelli.21
1.8 Transformation Theorems.24
1.9 Extension of Set Functions and Measures.27
1.10 Signed Measures and Radon–Nikodým.29
1.11 A Historical Aperçu From the Beginnings Until 1854.31
1.12 Appendix: H. Lebesgue’s Seminal Paper.33

2 A Refresher of Topology and Ordinal Numbers.36
2.1 A Modicum of Point-Set Topology.36
2.2 The Axiom of Choice and Its Relatives.41
2.3 Cardinal and Ordinal Numbers.43
2.4 The Ordinal Space.46
2.5 The Cantor Set: A Nowhere Dense, Perfect Set.47
2.6 The Cantor Function and Its Inverse.49

3 Riemann Is Not Enough.55
3.1 The Riemann–Darboux upper integral is not additive.57
Contents

3.2 Why one should define Riemann integrals on bounded intervals 58
3.3 There are no unbounded Riemann integrable functions 58
3.4 A function which is not Riemann integrable 59
3.5 Yet another function which is not Riemann integrable 59
3.6 A non-Riemann integrable function where a sequence of Riemann sums is convergent 60
3.7 A Riemann integrable function without a primitive 61
3.8 A Riemann integrable function whose discontinuity points are dense 62
3.9 Semicontinuity does not imply Riemann integrability 63
3.10 A function which has the intermediate value property but is not Riemann integrable 64
3.11 A Lipschitz continuous function \(g \) and a Riemann integrable function \(f \) such that \(f \circ g \) is not Riemann integrable 65
3.12 The composition of Riemann integrable functions need not be Riemann integrable 65
3.13 An increasing sequence of Riemann integrable functions \(0 \leq f_n \leq 1 \) such that \(\sup_n f_n \) is not Riemann integrable 65
3.14 A decreasing sequence of Riemann integrable functions \(0 \leq f_n \leq 1 \) such that \(\inf_n f_n \) is not Riemann integrable 65
3.15 Limit theorems for Riemann integrals are sub-optimal 66
3.16 The space of Riemann integrable functions is not complete 67
3.17 An example where integration by substitution goes wrong 68
3.18 A Riemann integrable function which is not Borel measurable 68
3.19 A non-Riemann integrable function \(f \) which coincides a.e. with a continuous function 69
3.20 A Riemann integrable function on \(\mathbb{R}^2 \) whose iterated integrals are not Riemann integrable 69
3.21 Upper and lower integrals do not work for the Riemann–Stieltjes integral 71
3.22 The Riemann–Stieltjes integral does not exist if integrand and integrator have a common discontinuity 72

4 Families of Sets 73
4.1 A Dynkin system which is not a \(\sigma \)-algebra 76
4.2 A monotone class which is not a \(\sigma \)-algebra 77
4.3 A \(\sigma \)-algebra which contains all singletons but no non-trivial interval 77
4.4 There is no \(\sigma \)-algebra with \(\# \mathcal{A} = \# \mathbb{N} \) 78
4.5 A \(\sigma \)-algebra which has no non-empty atoms 78
4.6 An increasing family of \(\sigma \)-algebras whose union fails to be a \(\sigma \)-algebra 79
4.7 The union of countably many strictly increasing \(\sigma \)-algebras is never a \(\sigma \)-algebra 80
4.8 A countably generated \(\sigma \)-algebra containing a sub-\(\sigma \)-algebra which is not countably generated 81
4.9 Two countably generated \(\sigma \)-algebras whose intersection is not countably generated 82
4.10 A Borel \(\sigma \)-algebra which is not countably generated 83
4.11 \(\sigma(\mathcal{G}) \) can only separate points if \(\mathcal{G} \) does 84
4.12 A family \(\mathcal{G} \) of intervals whose endpoints form a dense subset of \(\mathbb{R} \) but \(\sigma(\mathcal{G}) \nsubseteq \mathcal{B}(\mathbb{R}) \) 84
4.13 Intersection and the \(\sigma \)-operation do not commute: \(\sigma(\bigcap_{n \in \mathbb{N}} \mathcal{G}_n) \nsubseteq \bigcap_{n \in \mathbb{N}} \sigma(\mathcal{G}_n) \) 84
4.14 A metric space such that the \(\sigma \)-algebra generated by the open balls is smaller than the Borel \(\sigma \)-algebra 85
4.15 The \(\sigma \)-algebra generated by the compact sets can be larger than the Borel \(\sigma \)-algebra (compact sets need not be Borel sets) 85
4.16 The \(\sigma \)-algebra generated by the compact sets can be smaller than the Borel \(\sigma \)-algebra 86
4.17 A topology such that every non-empty Borel set has uncountably many elements 87
4.18 A metrizable and a non-metrizable topology having the same Borel sets 87
4.19 A \(\sigma \)-algebra which is not generated by any topology 89
4.20 A \(\sigma \)-algebra which is strictly between the Borel and the Lebesgue sets 91
4.21 The Borel sets cannot be constructed by induction 91
4.22 The Borel sets can be constructed by transfinite induction 95
4.23 (Non-)equivalent characterizations of the Baire \(\sigma \)-algebra 96
4.24 The Baire \(\sigma \)-algebra can be strictly smaller than the Borel \(\sigma \)-algebra 98

5 Set Functions and Measures 100
5.1 A class of measures where the \(\mu(\emptyset) = 0 \) is not needed in the definition 102
5.2 A set function which is additive but not \(\sigma \)-additive 102
###Contents

5.3 A finite set function which is additive but not \(\sigma \)-additive 103
5.4 Another finite set function which is additive but not \(\sigma \)-additive 104
5.5 A set function with infinitely many extensions 105
5.6 A measure that cannot be further extended 105
5.7 A measure defined on the open balls which cannot be extended to the Borel sets 106
5.8 A signed pre-measure on an algebra \(\mathcal{R} \) which cannot be extended to a signed measure on \(\sigma(\mathcal{R}) \) 106
5.9 A measure defined on a non-measurable set 107
5.10 A measure which is not continuous from above 108
5.11 A \(\sigma \)-finite measure which is not \(\sigma \)-finite on a smaller \(\sigma \)-algebra 108
5.12 A \(\sigma \)-finite measure \(\mu \) on \(\mathcal{B}(\mathbb{R}) \) such that \(\mu(I) = \infty \) for every non-trivial interval 108
5.13 A \(\sigma \)-finite measure \(\mu \) on \(\mathcal{B}(\mathbb{R}) \) which is not a Lebesgue–Stieltjes measure 108
5.14 Infinite sums of finite measures need not be \(\sigma \)-finite 109
5.15 The image measure of a \(\sigma \)-finite measure is not necessarily \(\sigma \)-finite 109
5.16 A locally finite measure need not be \(\sigma \)-finite 109
5.17 Two measures on \(\sigma(\mathcal{G}) \) such that \(\mu|_{\mathcal{G}} \leq \nu|_{\mathcal{G}} \) but \(\mu \leq \nu \) fails 110
5.18 Two measures on \(\sigma(\mathcal{G}) \) such that \(\mu|_{\mathcal{G}} = \nu|_{\mathcal{G}} \) but \(\mu \neq \nu \) 110
5.19 Two measures \(\mu \neq \nu \) such that \(\int f p \, d\mu = \int f p \, d\nu \) for all polynomials 111
5.20 Two finite measures \(\mu \neq \nu \) whose Fourier transforms coincide on an interval containing zero 113
5.21 (Non)Equivalent definitions of the convolution of measures 114
5.22 The convolution of \(\sigma \)-finite measures need not be \(\sigma \)-finite 115
5.23 \(\mu * \nu = \mu \) does not imply \(\nu = \delta_0 \) 116
5.24 The push forward ‘disaster’ (image measures behaving badly) 117
5.25 The pull-back of a measure need not be a measure 118
5.26 A finite Borel measure which is not tight 119
5.27 A translation-invariant Borel measure which is not a multiple of Lebesgue measure 120
5.28 There is no Lebesgue measure in infinite dimension 121

6 Range and Support of a Measure 123
6.1 A measure where \(\text{supp} \mu \neq \cap \{ B : \mu(B^c) = 0 \} \) 124
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>A measure which has no minimal closed support</td>
</tr>
<tr>
<td>6.3</td>
<td>Measures may have very small support</td>
</tr>
<tr>
<td>6.4</td>
<td>A measure μ such that the support of $\mu</td>
</tr>
<tr>
<td>6.5</td>
<td>A measure with $\text{supp} \mu = {c}$ but $\mu \neq \delta_c$</td>
</tr>
<tr>
<td>6.6</td>
<td>Measures such that $\text{supp} \mu + \text{supp} \nu \subseteq \text{supp} \mu \ast \nu$</td>
</tr>
<tr>
<td>6.7</td>
<td>Measures such that $\text{supp} \mu \ast \nu \subseteq \text{supp} \mu + \text{supp} \nu$</td>
</tr>
<tr>
<td>6.8</td>
<td>A signed measure such that $\text{supp} \mu^+ = \text{supp} \mu^-$</td>
</tr>
<tr>
<td>6.9</td>
<td>A two-valued measure which is not a point mass</td>
</tr>
<tr>
<td>6.10</td>
<td>A two-valued measure on a countably generated σ-algebra must be a point mass</td>
</tr>
<tr>
<td>6.11</td>
<td>(Non-)equivalent characterizations of atoms of a measure</td>
</tr>
<tr>
<td>6.12</td>
<td>A purely atomic measure such that $\mu \neq \sum_x \mu({x}) \delta_x$</td>
</tr>
<tr>
<td>6.13</td>
<td>A measure such that every set with positive measure is an atom</td>
</tr>
<tr>
<td>6.14</td>
<td>An infinite sum of atomic measures which is non-atomic</td>
</tr>
<tr>
<td>6.15</td>
<td>Any non-atomic finite σ-additive measure defined on $\mathcal{P}(\mathbb{R})$ is identically zero</td>
</tr>
<tr>
<td>6.16</td>
<td>A measure on a discrete space which attains all values in $[0, \infty]$</td>
</tr>
<tr>
<td>6.17</td>
<td>A measure whose range is not a closed set</td>
</tr>
<tr>
<td>6.18</td>
<td>A measure with countable range</td>
</tr>
<tr>
<td>6.19</td>
<td>A vector measure which is non-atomic but whose range is not convex</td>
</tr>
<tr>
<td>6.20</td>
<td>A non-trivial measure which assigns measure zero to all open balls</td>
</tr>
<tr>
<td>6.21</td>
<td>A signed measure $\mu : \mathcal{A} \to (-\infty, \infty]$ is uniformly bounded below</td>
</tr>
</tbody>
</table>

7 Measurable and Non-Measurable Sets

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>A dense open set in $(0, 1)$ with arbitrarily small Lebesgue measure</td>
</tr>
<tr>
<td>7.2</td>
<td>A set of positive Lebesgue measure which does not contain any interval</td>
</tr>
<tr>
<td>7.3</td>
<td>A Cantor-like set with arbitrary measure</td>
</tr>
<tr>
<td>7.4</td>
<td>An uncountable set of zero measure</td>
</tr>
<tr>
<td>7.5</td>
<td>A Lebesgue null set $A \subseteq \mathbb{R}$ such that for every $\delta \in [0, 1]$ there exist $x, y \in A$ with $\delta =</td>
</tr>
<tr>
<td>7.6</td>
<td>A dense open set whose complement has positive measure</td>
</tr>
</tbody>
</table>
7.7 A compact set whose boundary has positive Lebesgue measure 144
7.8 A set of first category in \([0,1]\) with measure one 144
7.9 A set of second category with measure zero 145
7.10 An uncountable, dense set of measure zero such that the complement is of first category 145
7.11 A null set which is not an \(F_\sigma\)-set 145
7.12 A Borel set which is neither \(F_\sigma\) nor \(G_\delta\) 146
7.13 Each Borel set is the union of a null set and a set of first category 147
7.14 A set \(B \subseteq \mathbb{R}\) such that \(B \cap F \neq \emptyset\) and \(B^c \cap F \neq \emptyset\) for any uncountable closed set \(F\) 147
7.15 A Borel set \(B \subseteq \mathbb{R}\) such that \(\lambda(B \cap I) > 0\) and \(\lambda(B^c \cap I) > 0\) for all open intervals \(I \neq \emptyset\) 148
7.16 There is no Borel set \(B\) with \(\lambda(B \cap I) = \frac{1}{2}\lambda(I)\) for all intervals \(I\) 148
7.17 A non-Borel set \(B\) such that \(K \cap B\) is Borel for every compact set \(K\) 149
7.18 A convex set which is not Borel 149
7.19 A Souslin set which is not Borel 150
7.20 A Lebesgue measurable set which is not Borel measurable 153
7.21 A Lebesgue measurable set which is not a Souslin set 153
7.22 A non-Lebesgue measurable set 153
7.23 Arbitrary unions of non-trivial closed balls need not be Borel measurable 155
7.24 The image of a Borel set under a continuous mapping need not be Borel 155
7.25 The image of a Lebesgue set under a continuous mapping need not be Lebesgue measurable 157
7.26 The Minkowski sum \(A + B\) of two Borel sets is not necessarily Borel 158
7.27 A Lebesgue null set \(B\) such that \(B + B = \mathbb{R}\) 158
7.28 The difference of fat Cantor sets contains an interval 159
7.29 The sum of scaled Cantor sets is sometimes an interval 161
7.30 The difference of fat Cantor sets is exactly \([-1,1]\) 161
7.31 The Banach–Tarski paradox 162

8 Measurable Maps and Functions 164
8.1 A measurable space where every map is measurable 165
8.2 A measurable space where only constant functions are measurable 165
Contents

8.3 A non-measurable function whose modulus $|f|$ is measurable 165
8.4 A non-measurable function whose level sets $\{x : f(x) = \alpha\}$ are measurable 165
8.5 A measurable function which is not μ-a.e. constant on any atom 165
8.6 A function $f(x,y)$ which is Borel measurable in each variable, but fails to be jointly measurable 166
8.7 Another function $f(x,y)$ which is Borel measurable in each variable, but fails to be jointly measurable 167
8.8 A function $f = (f_1, f_2)$ which is not measurable but whose components are measurable 168
8.9 The set of continuity points of any function f is Borel measurable 168
8.10 A set D for which there exists no function having D as its discontinuity set 170
8.11 A bijective measurable function f such that f^{-1} is not measurable 171
8.12 A continuous bijective function $f : [0,1] \to [0,1]$ which is not Lebesgue measurable 171
8.13 A Lebesgue measurable bijective map $f : \mathbb{R} \to \mathbb{R}$ whose inverse is not Lebesgue measurable 172
8.14 Borel measurable bijective maps have Borel measurable inverses 173
8.15 Sums and products of measurable functions need not be measurable 173
8.16 The limit of a sequence of measurable functions need not be measurable 174
8.17 A sequence of measurable functions such that the set $\{x : \lim_{n \to \infty} f_n(x) \text{ exists}\}$ is not measurable 175
8.18 The supremum of measurable functions need to be measurable 175
8.19 Measurability is not preserved under convolutions 176
8.20 The factorization lemma fails for general measurable spaces 177
8.21 A Lebesgue measurable function $f : \mathbb{R} \to \mathbb{R}$ for which there is no Borel measurable function $g : \mathbb{R} \to \mathbb{R}$ such that $f \leq g$ 178
8.22 A positive Borel measurable function which cannot be approximated a.e. from below by step functions 179
8.23 \(1_{\mathbb{R}\setminus\mathbb{Q}}\) cannot be the pointwise limit of continuous functions 180

9 Inner and Outer Measure 182

9.1 An explicit construction of a non-measurable set 185

9.2 A set which is not Lebesgue measurable with strictly positive outer and zero inner measure 186

9.3 A decreasing sequence \(A_n \downarrow \emptyset\) such that \(\lambda^*(A_n) = 1\) 186

9.4 A set such that \(\lambda_\star(E) = 0\) and \(\lambda^*(E \cap B) = \lambda(B) = \lambda^*(B \setminus E)\) for all \(B \in \mathcal{B}(\mathbb{R})\) 187

9.5 Lebesgue measure beyond the Lebesgue sets 188

9.6 The Carathéodory extension \(\lambda^*\) of \(\lambda|_{[0,1)}\) is not continuous from above 189

9.7 An outer measure which is not continuous from below 189

9.8 A measure \(\mu\) such that its outer measure \(\mu^*\) is not additive 190

9.9 A measure space such that \((X, \mathcal{A}^*, \mathcal{A}^*|_{\mathcal{A}^*})\) is not the completion of \((X, \mathcal{A}, \mu)\) 190

9.10 A measure space where \(\mu_n(E) = \mu^*(E)\) does not imply measurability of \(E\) 190

9.11 A non-Lebesgue measurable set with identical inner and outer measure 191

9.12 A measure such that every set is \(\mu^*\) measurable 191

9.13 A measure \(\mu\) relative to \(\mathcal{S}\) such that every non-empty set in \(\mathcal{S}\) fails to be \(\mu^*\) measurable 192

9.14 An additive set function \(\mu\) on a semi-ring such that \(\mu^*\) is not an extension of \(\mu\) 193

9.15 An outer measure constructed on the intervals \([a, b)\) such that not all Borel sets are measurable 193

9.16 There exist non-\(\mu^*\) measurable sets if, and only if, \(\mu^*\) is not additive on \(\mathcal{P}(X)\) 194

9.17 An outer regular measure which is not inner compact regular 195

9.18 An inner compact regular measure which is neither inner nor outer regular 195

9.19 A measure which is neither inner nor outer regular 196

9.20 A measure which is inner regular but not inner compact regular 197

9.21 The regularity of a measure depends on the topology 197

9.22 A regular Borel measure whose restriction to a Borel set is not regular 198
10 **Integrable Functions**

10.1 An integrable function which is unbounded in every interval 203

10.2 A continuous integrable function such that
\[\lim_{|x| \to \infty} f(x) \neq 0 \]

10.3 A continuous function vanishing at infinity which is not in \(L^p \) for any \(p > 0 \)

10.4 A non-integrable function such that
\[\lim_{r \to \infty} r \mu (\{|f| > r\}) = 0 \]

10.5 Characterizing integrability in terms of series

10.6 A non-integrable function such that \(f(x - 1/n) \) is integrable for all \(n \in \mathbb{N} \)

10.7 An integrable function such that \(f(x - 1/n) \) fails to be integrable for all \(n \in \mathbb{N} \)

10.8 An improperly Riemann integrable function which is not Lebesgue integrable

10.9 A function such that \(\lim_{n \to \infty} \int_0^n f \, d\lambda \) exists and is finite but \(\int_0^\infty f \, d\lambda \) does not exist

10.10 A function which is nowhere locally integrable

10.11 Integrable functions \(f, g \) such that \(f \cdot g \) is not integrable

10.12 A function such that \(f \not\in L^p \) for all \(p \in [1, \infty) \) but \(f g \in L^1 \)

10.13 \(f \in L^p \) for all \(p < q \) does not imply \(f \in L^q \)

10.14 A function such that \(f \in L^p \) for all \(p < \infty \) but \(f \not\in L^\infty \)

10.15 A function such that \(f \in L^\infty \) but \(f \not\in L^p \) for all \(p < \infty \)

10.16 A function which is in exactly one space \(L^p \)

10.17 Convolution is not associative

10.18 An example where integration by substitution goes wrong

10.19 There is no non-constant function such that
\[\int_{R^d \setminus \{0\}} \int_{R^d} (f(x+y) - f(x))|y|^{-d-1} \, dx \, dy < \infty \]

10.20 A measure space which has no strictly positive function \(f \in L^1 \)

10.21 In infinite measure spaces there is no function \(f > 0 \) with \(f \in L^1 \) and \(1/f \in L^1 \)

10.22 There is no continuous function \(f \geq 0 \) with \(\int f^n \, d\lambda = 1 \)

10.23 A measure space where \(\int \lambda f \, d\mu = \int \mu \, g \, d\mu \) (for all \(A \)) does not entail \(f = g \) a.e.

10.24 A vector function which is weakly but not strongly integrable
Contents

11 Modes of Convergence 221

11.1 Classical counterexamples to a.e. convergence vs. convergence in probability 222
11.2 Pointwise convergence does not imply convergence in measure 223
11.3 L^p-convergence does not imply L^r-convergence for $r \neq p$ 224
11.4 Classical counterexamples related to weak convergence in L^p 224
11.5 The convergence tables 225
11.6 The limit in probability is not necessarily unique 225
11.7 A sequence converging in probability without having an a.e. converging subsequence 227
11.8 A sequence converging in probability without having any subsequence converging in measure 228
11.9 A sequence such that $\int f_n(x) \, dx \to 0$ but $(f_n)_{n \in \mathbb{N}}$ has no convergent subsequence 229
11.10 A sequence converging a.e. and in measure but not almost uniformly 229
11.11 Egorov’s theorem fails for infinite measures 229
11.12 Egorov’s theorem does not hold for nets 229
11.13 A uniformly convergent sequence of L^1-functions which is not convergent in L^1 231
11.14 Convergence in measure is not stable under products 231
11.15 A measure space where convergence in measure and uniform convergence coincide 232
11.16 A measure space where strong and weak convergence of sequences in L^1 coincide 233
11.17 Convergence a.e. is not metrizable 233

12 Convergence Theorems 235

12.1 Classical counterexamples to dominated convergence 236
12.2 Fatou’s lemma may fail for non-positive integrands 236
12.3 Fatou’s lemma may lead to a strict inequality 237
12.4 The monotone convergence theorem needs a lower integrable bound 237
12.5 A series of functions such that integration and summation do not interchange 238
12.6 Riesz’s convergence theorem fails for $p = \infty$ 239
12.7 A sequence such that $f_n \to 0$ pointwise but $\int f_n \, d\lambda \to \lambda(I)$ for all intervals 239
12.8 \(f_n f_n d\lambda \to f f d\lambda \) for all intervals does not imply \(f_B f_n d\lambda \to f_B f d\lambda \) for all Borel sets \(B \)

12.9 The classical convergence theorems fail for nets

12.10 The continuity lemma ‘only’ proves sequential continuity

12.11 A sequence \(f_n \) converging to 0 in \(L^1 \) without integrable envelope – the ‘sliding hump’

12.12 A sequence \((f_n)_{n\in\mathbb{N}}\) which is uniformly integrable but \(\sup_n |f_n| \) is not integrable

12.13 A sequence which is not uniformly integrable but \(f_n \to 0 \) and \(f f_n d\lambda \to 0 \)

12.14 An \(L^1 \)-bounded sequence which is not uniformly integrable

12.15 A uniformly integrable sequence which does not converge in \(L^1 \)

12.16 An \(L^1 \)-bounded sequence which fails to be uniformly integrable on any set of positive measure

13 Continuity and a.e. Continuity

13.1 An a.e. continuous function which does not coincide a.e. with any continuous function

13.2 A nowhere continuous function which equals a.e. a continuous function

13.3 A function \(f \) such that every \(g \) with \(f = g \) a.e. is nowhere continuous

13.4 A function which is everywhere sequentially continuous but nowhere continuous

13.5 An a.e. continuous function whose discontinuity points are dense

13.6 An a.e. discontinuous function whose continuity points are dense

13.7 The composition of two a.e. continuous functions which is nowhere continuous

13.8 An a.e. continuous function which is not Borel measurable

13.9 A bounded Borel measurable function such that \(f(x + 1/n) \to f(x) \) fails to hold on a set of positive measure

13.10 A nowhere constant function which is a.e. continuous and has countable range

13.11 A continuous function such that \(f(x) \in Q \) a.e. and \(f \) is not constant on any interval

13.12 A continuous function which is strictly positive on \(Q \) but fails to be strictly positive almost everywhere
 Contents
13.13 A measurable function which is zero almost everywhere but whose graph is dense 254
13.14 A continuous function $f : [0, 1] \to \mathbb{R}^2$ whose image has positive Lebesgue measure 255
13.15 The image of a Lebesgue null set under a continuous bijective mapping need not have Lebesgue measure zero 257
13.16 Lusin’s theorem fails for non-regular measures 257
13.17 The convolution of two integrable functions may be discontinuous 258

14 Integration and Differentiation 261
14.1 A non-Riemann integrable function f which has a primitive 262
14.2 A function f which is differentiable, but f' is not integrable 263
14.3 Volterra’s version of Example 14.2 264
14.4 A continuous function such that f' exists almost everywhere and is integrable but the fundamental theorem of calculus fails 265
14.5 A continuous strictly increasing function with $f' = 0$ Lebesgue almost everywhere 266
14.6 A continuous function f such that $f' > 1$ a.e. but f is not increasing on any interval 266
14.7 A function which is Lebesgue almost everywhere differentiable but f' does not exist on a dense subset of \mathbb{R} 268
14.8 $f_n \to f$ and $f'_n \to g$ pointwise does not imply $f' = g$ a.e. 268
14.9 A function $f(t, x)$ for which $\partial_t f(t, x) dx$ and $\partial \partial_t f(t, x) dx$ exist but are not equal 271
14.10 A function such that $\partial_t f(t, x) dx$ exists but $\partial \partial_t f(t, x) dx$ does not 271
14.11 A function such that $\partial_t f(t, x) dx$ exists but $\partial \partial f(t, x) dx$ does not 272
14.12 A bounded function such that $t \mapsto f(t, x)$ is continuous but $t \mapsto \int f(t, x) \mu(dx)$ is not continuous 272
14.13 An increasing continuous function ϕ and a continuous function f such that $\int_0^1 f(x) d\phi(x) \neq \int_0^1 f(x) \phi'(x) dx$ 272
14.14 A nowhere continuous function whose Lebesgue points are dense 273
14.15 A discontinuous function such that every point is a Lebesgue point 273
14.16 An integrable function f such that $x \mapsto \int_0^x f(t) \, dt$ is differentiable at $x = x_0$ but x_0 is not a Lebesgue point of f

14.17 Lebesgue points of f need not be Lebesgue points of f^2

14.18 Functions $f \in L^p$, $0 < p < 1$, without Lebesgue points

14.19 Lebesgue’s differentiation theorem fails for sets which are not shrinking nicely

14.20 A measure for which Lebesgue’s differentiation theorem fails

15 Measurability on Product Spaces

15.1 A function which is Borel measurable but not Lebesgue measurable

15.2 The product of complete σ-algebras need not be complete

15.3 $\mathcal{L}(\mathbb{R}) \otimes \mathcal{L}(\mathbb{R}) \nsubseteq \mathcal{L}(\mathbb{R}^2)$

15.4 Sigma algebras $\mathcal{A} = \sigma(\mathcal{G})$ and $\mathcal{B} = \sigma(\mathcal{H})$ such that $\sigma(\mathcal{G} \times \mathcal{H})$ is strictly smaller than $\mathcal{A} \otimes \mathcal{B}$

15.5 An example where $\mathcal{P}(X) \otimes \mathcal{P}(X) \neq \mathcal{P}(X \times X)$

15.6 The product of Borel σ-algebras is not always the Borel σ-algebra of the product

15.7 Topological spaces X, Y such that $\mathcal{B}(X) = \mathcal{B}(Y)$ but $\mathcal{B}(X \times X) \neq \mathcal{B}(Y \times Y)$

15.8 $\mathcal{B}(X) \otimes I$ is strictly smaller than $\mathcal{B}(X^I)$ for uncountable I

15.9 The diagonal $\Delta = \{(x, x) \; ; \; x \in X\}$ need not be measurable

15.10 A metric which is not jointly measurable

15.11 A non-measurable set whose projections are measurable

15.12 A measurable set whose projection is not measurable

15.13 A non-measurable set whose slices are measurable

15.14 A measurable function with a non-measurable graph

15.15 A non-measurable function with a measurable graph

15.16 A function $f(x, y)$ which is measurable in each variable but fails to be jointly measurable

15.17 A function $f(x, y)$ which is separately continuous in each variable but fails to be Borel measurable

15.18 An $\mathcal{A} \otimes \mathcal{B}$ measurable function $f \geq 0$ which cannot be approximated from below by simple functions of product form

16 Product Measures

16.1 Non-uniqueness of product measures

16.2 A measure on a product space which is not a product measure
16.3 The product of complete measure spaces need not be complete 299
16.4 A Lebesgue null set in \([0,1]^2\) which intersects any set \(A \times B\) whose Lebesgue measure is positive 299
16.5 A set \(A \subseteq \mathbb{R}^2\) of positive Lebesgue measure which does not contain any rectangle 300
16.6 A set \(A \subseteq \mathbb{R}^2\) of positive Lebesgue measure such that the intersection of every non-degenerate rectangle with \(A^c\) has positive measure 300
16.7 A set \(A \subseteq \mathbb{R}^2\) of positive Lebesgue measure which is not a countable union of rectangles 302
16.8 A jointly measurable function such that \(x \mapsto \int f(x,y) \mu(dy)\) is not measurable 302
16.9 A function \(f(x,y)\) such that \(f(\cdot,y)\) is \(\mathcal{A}\) measurable but \(f(f(\cdot,y) dy)\) is not \(\mathcal{A}\) measurable 302
16.10 Tonelli’s theorem fails for non-positive integrands 304
16.11 A positive function with \(f(x,y) = f(y,x)\) such that the iterated integrals do not coincide 305
16.12 A positive function \(f(x,y)\) whose iterated integrals do not coincide 305
16.13 A finite measure \(\mu\) and a Borel set \(B\) such that \(\iint 1_B(x+y) \mu(dx) \lambda(dy) \neq \iint 1_B(x+y) \lambda(dy) \mu(dx)\) 306
16.14 A non-measurable function \(f(x,y)\) such that the iterated integral \(\iint f(x,y) dx dy\) exists and is finite 307
16.15 A function \(f(x,y)\) whose iterated integrals exist but do not coincide 308
16.16 A function \(f(x,y)\) which is not integrable but whose iterated integrals exist and coincide 309
16.17 Yet another example where the iterated integrals exist, but the double integral doesn’t 310
16.18 An a.e. continuous function \(f(x,y)\) where only one iterated integral exists 311
16.19 Classical integration by parts fails for Lebesgue–Stieltjes integrals 311
16.20 A function which is \(K(x,dy)\)-integrable but fails to be \(\mu K(dy)\)-integrable 313
16.21 A consistent family of marginals which does not admit a projective limit 315
17 Radon–Nikodým and Related Results
17.1 An absolutely continuous measure without a density 317
17.2 Another absolutely continuous measure without density 318
17.3 Yet another absolutely continuous measure without density 318
17.4 A not-absolutely continuous measure given by a density 319
17.5 A measure $\mu \ll \lambda$ such that $\lambda(A_n) \to 0$ does not imply $\mu(A_n) \to 0$ 320
17.6 A measure μ which is absolutely continuous w.r.t. Lebesgue measure and $\mu(a,b) = \infty$ for any $(a,b) \neq \emptyset$ 320
17.7 A continuous measure which is not absolutely continuous 321
17.8 An absolutely continuous function whose inverse is not absolutely continuous 321
17.9 A continuous measure with atoms 321
17.10 The Radon–Nikodým density $\lambda = \frac{\mu}{\lambda}$ does not necessarily satisfy $\lambda(\lambda) = \lim_{\lambda \downarrow 0} \lambda(\lambda) / \lambda(\lambda)$ 322
17.11 Lebesgue’s decomposition theorem fails without σ-finiteness 322
17.12 Two mutually singular measures which have the same support 322
17.13 A probability measure μ with full support such that μ and $\mu(c \cdot)$ are mutually singular for $c \neq 1$ 322
17.14 The convolution of two singular measures may be absolutely continuous 324
17.15 Singular measures with full support – the case of Bernoulli convolutions 325
17.16 The maximum of two measures need not be the maximum of its values 329
18 Function Spaces
18.1 Relations between L^r, L^p, L^i if $r < s < t$ 330
18.2 One may have $\ell_p(\mu) \subsetneq \ell^q(\mu)$, or $\ell_p(\mu) \supsetneq \ell^q(\mu)$, or no inclusion at all 332
18.3 A measure space where $L^p = \{0\}$ for all $0 \leq p < \infty$ 336
18.4 A measure space where all spaces $L^p, 1 \leq p \leq \infty$ coincide 336
18.5 A measure space where $L^1 \subsetneq L^\infty$ 337
18.6 $L^1(\mu) = L^\infty(\mu)$ if, and only if, $1 \leq \dim(L^1(\mu)) < \infty$ 337
18.7 A function where $\sup_{x \in U} |f(x)| \neq \|f\|_{L^\infty(U)}$ for any open set U 340
18.8 One cannot compare L^p-norms on $C[0,1]$ 341
18.9 The spaces L^p with $0 < p < 1$ are only quasi-normed spaces 341
18.10 The spaces L^p with $0 < p < 1$ are not locally convex 343
Contents

18.11 The dual of $L^p(\lambda)$ with $0 < p < 1$ is trivial 344
18.12 Functions $f \in L^p$, $0 < p < 1$, need not be locally integrable 345
18.13 The spaces L^q with $q < 0$ are not linear spaces 346
18.14 A measure space where L^p is not separable 346
18.15 Separability of the space L^∞ 347
18.16 $C_b(X)$ need not be dense in $L^p(\mu)$ 349
18.17 A subset of L^p which is dense in L^r, $r < p$, but not dense in L^p 350
18.18 L^p is not an inner product space unless $p = 2$ or $\dim(L^p) \leq 1$ 351
18.19 The condition $\sup_{\|g\|_q \leq 1} \int |fg| \, d\mu < \infty$ need not imply that $f \in L^p(\mu)$ 352
18.20 Identifying the dual of L^p with L^q is a tricky business 354
18.21 The dual of L^1 can be larger than L^∞ 355
18.22 The dual of L^1 can be isometrically isomorphic to a space which is strictly smaller than L^∞ 357
18.23 A measure space such that the dual of L^1 is L^1 358
18.24 The dual of L^∞ can be larger than L^1 358
18.25 A measure space where the dual of L^∞ is L^1 359
18.26 Non-uniqueness in the Riesz representation theorem 360
18.27 Non-uniqueness in the Riesz representation theorem II 360
18.28 A measure space where L^∞ is not weakly sequentially complete 361
18.29 Uniform boundedness does not imply weak compactness in L^1 363
18.30 The algebra $L^1(\lambda^d)$ does not have a unit element 364
18.31 The algebra $L^1(\lambda^d)$ contains non-trivial divisors of zero 364
18.32 Uniform convexity/rotundity of L^p 365
18.33 An absolutely continuous measure such that the translation operator is not continuous in L^1 366
18.34 There is no Bochner integral in spaces which are not locally convex 367

19 Convergence of Measures 370
19.1 Classical counterexamples related to vague and weak convergence 373
19.2 Vague convergence does not preserve mass 375
19.3 Vague convergence of positive measures $\mu_n \to \mu$ does not imply $|\mu_n - \mu| \to 0$ 375
19.4 Vague convergence $\mu_n \to 0$ does not entail vague convergence $|\mu_n| \to 0$ 375
Contents

19.5 Vague convergence does not imply $\mu_n(B) \to \mu(B)$ for all Borel sets 376
19.6 A sequence of absolutely continuous measures which converges weakly to λ on $[0,1]$ but $\mu_n(B) \to \lambda(B)$ fails for some Borel set $B \subseteq [0,1]$ 376
19.7 A sequence of measures μ_n such that lim$_{n \to \infty} \int f d\mu_n$ exists, but is not of the form $\int f d\mu$ 376
19.8 Weakly convergent sequences need not be tight 377
19.9 Signed measures μ_n such that $\int f d\mu_n \to \int f d\mu$ for all $f \in C(\mathbb{R})$ but $\mu_n(B) \to \mu(B)$ fails for sets with $\mu(\partial B) = 0$ 377
19.10 Signed measures μ_n such that $\int f d\mu_n \to \int f d\mu$ for all bounded uniformly continuous functions f but μ_n does not converge weakly to μ 378
19.11 A sequence of measures which does not converge weakly but whose Fourier transforms converge pointwise 378
19.12 Lévy’s continuity theorem fails for nets 379
19.13 A sequence of non-atomic measures converging weakly to a purely atomic measure 380
19.14 A sequence of purely atomic measures converging weakly to a non-atomic measure 380
19.15 A net of Dirac measures converging weakly to a non-Dirac measure 381
19.16 $f_n \mu \to f \mu$ weakly does not imply $f_n \to f$ in probability 381
19.17 $f_n \mu \to f \mu$ weakly does not imply $f_n \to f$ weakly in $L^1(\mu)$ 382
19.18 $f_n \mu \to f$ weakly in $L^p(\mu)$ for $p > 1$ does not imply $f_n \mu \to f \mu$ weakly 383

References 385
Index 394
Preface

A counterexample /ˈkaʊntərɪmpl/ is an example that opposes or contradicts an idea or theory.¹ It is fair to say that the word ‘counterexample’ is not too common in everyday language, but rather a concept from philosophy and, of course, mathematics. In mathematics, there are proofs and examples, and while an example, say, of some $x \in A$ satisfying $x \in B$ does not prove $A \subseteq B$, the counterexample of some $x_0 \in B$ such that $x_0 \notin A$ disproves $A \subseteq B$; in other words, it proves that $A \not\subseteq B$ does not hold. This observation shows that there is no sharp distinction between example and counterexample, and we do not give a definition of what a counterexample should or could be (you may want to consult Lakatos [94] instead), but assume the more pragmatic point of view of a working mathematician. If we want to solve a problem, we look at the same time for a proof and for counterexamples which help us to capture and delineate the subject matter.

The same is also true for the student of mathematics, who will gain a better understanding of a theorem or theory if he knows its limitations – which may be expressed in the form of counterexamples. The present collection of (counter-)examples grew out of our own experience, in the classroom and on stackexchange.com, where we are often asked after the ‘how’ and ‘why’ of many a result. This explains the wide range of examples, from the fairly obvious to rather intricate constructions. The choice of the examples reflects, naturally, our own taste. We decided to include only those counterexamples which could be dealt with in a couple of pages (or less) and which are not too pathological – one can, indeed, destroy almost anything by the choice of the underlying topology. We intend the present volume as a companion to our textbook Measures, Integrals and Martingales [MIMS], which means that most examples are from elementary measure and integration, not touching on integration on

Preface

groups (Haar measure) or on really deep axiomatic issues (e.g. as in descriptive set theory, see Kechris [89], and the advanced constructive theory of functions, see Kharazishvili [91, 92]).

This book is intended as supplementary reading for a course in measure and integration theory, or for seminars and reading courses where students can explore certain aspects of the theory by themselves. Where appropriate, we have added comments putting the example into context and pointing the reader to further literature. We think that this book will also be useful for lecturers and tutors in teaching measure and integration, and for researchers who may discover new and sometimes unexpected phenomena. Readers are assumed to have basic knowledge of functional analysis, point-set topology and, of course, measure and integration theory. For novices, there is a panorama of measure and integration which gives a non-technical overview on the subject and can serve, to some extent, as a first introduction. The overall presentation is as self-contained as possible; in order to make the text easy to access, we use only a few standard references – Schilling [MIMS] and Bogachev [19] for measure and integration, Rudin [151] and Yosida [202] for functional analysis, and Willard [200] and Engelking [53] for topology.

Some of the counterexamples are famous, many are more or less well known, and a few are of our own making. When we could trace the origin of an example, we have given references and attached names, but most entries are ‘standard’ examples which seem to have been in the public domain for ages; having said this, we acknowledge a huge debt to many anonymous authors and we do apologize if we have failed to give proper credit. The three classic counterexample books by Gelbaum & Olmsted [65], Steen & Seebach [172], and Stoyanov [180] were both inspiration and encouragement. We hope that this book lives up to their high standards.

It is a pleasure to acknowledge the interest and skill of our editor, Roger Astley, in the preparation of this book and Cambridge University Press for the excellent book design. Many colleagues have contributed to this text with comments and suggestions, in particular M. Auer, R. Baumgarth, G. Berschneider, N.H. Bingham – for the famous full red-ink treatment, C.-S. Deng, D.E. Edmunds and C. Goldie – for most helpful discussions, Y. Ishikawa, N. Jacob – for access to his legendary library, Y. Mishura and N. Sandrić. We thank our colleagues and friends who suffered for quite a while from our destructive search for counterexamples (Do you know an example of a measure which fails to . . .?), strange functions and many outer-worldly excursions – and our families who have us back in real life.
User’s Guide

This book is not intended for linear reading – although this might well be possible – but invites the reader to browse, to read selectively and to look things up. We have, therefore, organized the material in self-contained chapters which treat different aspects of measure and integration theory. We assume that the reader has a basic knowledge of abstract measure and integration; the outline given in the ‘panorama’ (Chapter 1) is intended to refresh the reader’s memory, to fix notation and to give a first non-technical introduction to the subject.

The cross-reference $\lfloor \text{Example } n.m \rfloor$ appearing in the margin points towards essential counterexamples to the (positive) result at hand. Some supplementary material which is not always part of the mathematical curriculum is collected in Chapter 2; look it up once you need it.

Cross-referencing. Throughout the text, $\lfloor \text{Example } n.m \rfloor$ and Example $n.m$ refers to counterexample m in Chapter n. Theorem $n.m$, Definition $n.m$, etc. point to the respective theorem, definition, etc. in the ‘panorama’ (Chapter 1) or the ‘refresher’ (Chapter 2). Equation m in Chapter n is denoted by $(n.m)$. At the beginning of each chapter, we recall more specialized results and definitions which are particular to that chapter; these are numbered locally as 5A, 5B, 5C, ... (for Chapter 5, say) and they are mostly used within that chapter. Theorems, lemmas and corollaries may also appear in a counterexample; if needed, we use again local numbering 1, 2, 3,

Finding stuff. Following Gelbaum & Olmsted [65] we have organized the examples by theme and all counterexamples are listed in the list of contents by (hopefully) meaningful names. We begin with examples on Riemann integration (Chapter 3) and move on to various aspects of the (abstract) Lebesgue integral (Chapters 4–19). The chapters on Lebesgue integration follow ‘The way
of integration’ (alluding to Fig. 1.3 in Chapter 1), i.e. beginning with measurable sets and \(\sigma\)-algebras to set functions, measurable functions, to integrals and theorems on integration. The subject index helps to find definitions, theorems and concepts, but it does not refer to specific counterexamples.

Notation. We tried to avoid specialized notation and we use commonly accepted standard notation, e.g. as in [MIMS]. The following list is intended to aid cross-referencing, so notation that is specific to a single section is generally not listed; numbers following entries are page numbers.

Unless otherwise stated, binary operations between functions such as \(f \pm g\), \(f \cdot g\), \(f \land g\), \(f \lor g\), comparisons \(f \leq g\), \(f < g\) or limiting relations \(f_n \underset{n \to \infty}{\rightarrow} f\), \(\lim_n f_n\), \(\liminf_n f_n\), \(\limsup_n f_n\), \(\sup_n\), \(\inf_n\) or \(\inf_i f_i\) or \(\sup_i f_i\) are always understood point-wise.

General notation

- **positive** always in the sense \(\geq 0\)
- **negative** always in the sense \(\leq 0\)
- **increasing** \(x \leq y \Rightarrow f(x) \leq f(y)\)
- **decreasing** \(x \leq y \Rightarrow f(x) \geq f(y)\)
- **countable** finite or countably infinite
- **\(\mathbb{N}\)** natural numbers: 1, 2, 3, ...
- **\(\mathbb{N}_0\)** positive integers: 0, 1, 2, ...
- **\(\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}\)** integer, rational, real, complex numbers
- **\(\mathbb{R}\)** \([-\infty, +\infty]\) (two-point compactification), 11, 38
- \(\inf \emptyset, \sup \emptyset\)
- \(a \lor b, a \land b\)
- **gcd(\(\cdot, \cdot\)** greatest common divisor
- **\(\aleph_0\)** cardinality of \(\mathbb{N}\), 44
- **\(\aleph\)** cardinality of \(\mathbb{R}\), 44
- **\(\omega_0\)** first infinite ordinal,
- **\(\omega_1\)** first uncountable ordinal, 45, 46
- \(\Omega = [0, \omega_1]\) ordinal space, 45, 46
- \(\Omega_0 = [0, \omega_1)\) countable ordinals, 45, 46

Sets and set operations

- \(A \cup B\) union of disjoint sets
- \(A \Delta B\) \((A \setminus B) \cup (B \setminus A)\)
- \(A^c\) complement of \(A\)
- \(\overline{A}\) closure of \(A\), 37
- \(A^o\) open interior of \(A\), 37
- \(A_n \uparrow A\) \(A_n \subseteq A_{n+1}, A = \bigcup_n A_n\)
- \(A_n \downarrow A\) \(A_n \supseteq A_{n+1}, A = \bigcap_n A_n\)
- \(#A\) cardinality of \(A\)
- \(B_r(x)\) open (metric) ball \(\{y : d(x,y) < r\}\)

Families of sets

\(\mathcal{A}, \mathcal{B}, \mathcal{C}\) generic families of sets
\(\mathcal{A}^*\) \(\mu^*\) measurable sets, 28
\(\mathcal{A} \otimes \mathcal{B}\) completion, 9
\(\mathcal{B}(X)\) product \(\sigma\)-algebra, 10, 21
\(\mathcal{B}(X)\) Borel sets in \(X\), 9
\(\mathcal{L}(X)\) Lebesgue sets in \(X\), 10
\(\mathcal{O}(X)\) open sets in \(X\), 36
\(\mathcal{P}(X)\) all subsets of \(X\)
\(\sigma(\mathcal{F})\) \(\sigma\)-algebra generated by \(\mathcal{F}\), 9
\(\sigma(\phi), \#(\mathcal{F})\) \(\sigma\)-algebra generated by the map(s) \(\phi\), resp. \(\phi\), 9

Measures and integrals

\(\mu, \nu\) generic (positive) measures
\(\mu^+, \mu^*\) inner and outer measure, 182, 100
\(\delta_{\delta}\) Dirac measure in \(x\), 8
\(\lambda, \lambda^d\) Lebesgue measure, 9
\(\zeta, \zeta_{\infty}, \#(\cdot)\) counting measure on \(X\), 8
\(\mu \circ f^{-1}, f_\#\mu\) image or push-forward measure, 8, 24
User's Guide

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu \times \nu$</td>
<td>product of measures, 10, 21</td>
</tr>
<tr>
<td>$\mu * \nu$</td>
<td>convolution, 26</td>
</tr>
<tr>
<td>$\mu \ll \nu$</td>
<td>absolute continuity, 29</td>
</tr>
<tr>
<td>$\mu \perp \nu$</td>
<td>singular measures, 29</td>
</tr>
<tr>
<td>$\frac{d\nu}{d\mu}$</td>
<td>Radon–Nikodým derivative, 29</td>
</tr>
<tr>
<td>$\text{supp} \mu$</td>
<td>support of a measure, 123</td>
</tr>
<tr>
<td>f^*, f'</td>
<td>upper, lower R-integral, 2</td>
</tr>
</tbody>
</table>

Functions and spaces

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1_A</td>
<td>$1_A(x) = \begin{cases} 1, & x \in A, \ 0, & x \not\in A, \end{cases}$</td>
</tr>
<tr>
<td>$\text{sgn}(x)$</td>
<td>$\text{sgn}(x) = 1_{(0,\infty)}(x) - 1_{(-\infty,0)}(x)$</td>
</tr>
</tbody>
</table>
List of Topics and Phenomena

<table>
<thead>
<tr>
<th>Topic</th>
<th>Possible consequence</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu) is not finite</td>
<td>(\mu) not continuous from above</td>
<td>[5.10]</td>
</tr>
<tr>
<td></td>
<td>range of (\mu) not closed</td>
<td>[6.17]</td>
</tr>
<tr>
<td></td>
<td>Jensen's inequality does not hold</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(p < q \Rightarrow L^q \not\subseteq L^p)</td>
<td>[18.1]</td>
</tr>
<tr>
<td></td>
<td>no series test for integrability</td>
<td>[10.5]</td>
</tr>
<tr>
<td></td>
<td>Egorov's theorem fails</td>
<td>[11.11]</td>
</tr>
<tr>
<td></td>
<td>convergence in probability (\neq) convergence in measure</td>
<td>[11.5]</td>
</tr>
<tr>
<td></td>
<td>(\int f , d\mu = \int g , d\mu) \text{ for all } \mu \Rightarrow f = g \text{ a.e.}</td>
<td>[10.23]</td>
</tr>
<tr>
<td>(\mu) is not (\sigma)-finite</td>
<td>no unique product measure</td>
<td>[16.1]</td>
</tr>
<tr>
<td></td>
<td>Fubini's and Tonelli's theorem fail</td>
<td>[16.8–16.18]</td>
</tr>
<tr>
<td></td>
<td>Radon–Nikodým's theorem fails</td>
<td>[17.1–17.3]</td>
</tr>
<tr>
<td></td>
<td>Lebesgue's decomposition theorem fails</td>
<td>[17.11]</td>
</tr>
<tr>
<td></td>
<td>there is no positive integrable function</td>
<td>[10.20]</td>
</tr>
<tr>
<td></td>
<td>limits in probability not unique</td>
<td>[11.6]</td>
</tr>
<tr>
<td></td>
<td>(f_n \rightarrow f) in probability (\neq) (f_n \rightarrow f) a.e.</td>
<td>[11.7]</td>
</tr>
<tr>
<td></td>
<td>(L^p, 1 \leq p < \infty), not separable</td>
<td>[18.14]</td>
</tr>
<tr>
<td></td>
<td>((X, \mathcal{A}^, \mu^</td>
<td>_{\mathcal{A}^*}) \neq \text{ completion of } (X, \mathcal{A}, \mu))</td>
</tr>
<tr>
<td></td>
<td>trace of a regular measure not regular</td>
<td>[9.22]</td>
</tr>
<tr>
<td>(\mu) does not have the finite subset property</td>
<td>(f_A f , d\mu = f_A g , d\mu) for all (A \Rightarrow f = g) a.e.</td>
<td>[10.23]</td>
</tr>
<tr>
<td></td>
<td>(\exists f \in L^\infty) s.t. (\Lambda_f (g) = \int f , g , d\mu, g \in L^1), satisfies (|A_f| <</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(f { { f } g \leq C |g|_{L^\infty} \Rightarrow f \in L^p)</td>
<td>[18.19]</td>
</tr>
<tr>
<td>(\mu) is not locally finite</td>
<td>(C_c(X) \cap L^p(\mu)) not dense in (L^p(\mu), 1 \leq p < \infty)</td>
<td>[18.16]</td>
</tr>
<tr>
<td>(\mu) is not regular</td>
<td>Lusin's theorem fails</td>
<td>[13.16]</td>
</tr>
<tr>
<td></td>
<td>(C_c(X) \cap L^p(\mu)) not dense in (L^p(\mu), 1 \leq p < \infty)</td>
<td>[18.16]</td>
</tr>
<tr>
<td></td>
<td>there exists (\nu \neq \mu) s.t. (f , d\mu = f , d\nu) for all (f \in C_c(X))</td>
<td>[18.26, 18.27]</td>
</tr>
<tr>
<td>Topic</td>
<td>Possible consequence</td>
<td>Example</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>X is not separable</td>
<td>▶ $\mathcal{B}(X)$ not generated by open balls</td>
<td>[ar 4.14]</td>
</tr>
<tr>
<td></td>
<td>▶ $\mathcal{B}(X)$ not countably generated</td>
<td>[ar 4.10]</td>
</tr>
<tr>
<td></td>
<td>▶ $\text{supp} \mu \neq \text{small set } F$ such that $\mu(X \setminus F) = 0$</td>
<td>[ar 6.2]</td>
</tr>
<tr>
<td></td>
<td>▶ $\mu(X) \neq \mu(\text{supp} \mu)$</td>
<td>[ar 6.3]</td>
</tr>
<tr>
<td></td>
<td>▶ finite measures not tight</td>
<td>[ar 5.26]</td>
</tr>
<tr>
<td>X is not a metric space</td>
<td>▶ compact sets not Borel</td>
<td>[ar 4.15]</td>
</tr>
<tr>
<td></td>
<td>▶ fewer Baire sets than Borel sets</td>
<td>[ar 4.24]</td>
</tr>
<tr>
<td></td>
<td>▶ pointwise limits of measurable functions not measurable</td>
<td>[ar 8.16]</td>
</tr>
<tr>
<td></td>
<td>▶ finite measures not outer regular</td>
<td>[ar 9.18]</td>
</tr>
<tr>
<td></td>
<td>▶ inner compact regular $\not\Rightarrow$ inner regular</td>
<td>[ar 9.18]</td>
</tr>
<tr>
<td>X is not σ-compact</td>
<td>▶ locally finite $\not\Rightarrow$ σ-finite</td>
<td>[ar 5.16]</td>
</tr>
<tr>
<td></td>
<td>▶ inner regular $\not\Rightarrow$ inner compact regular</td>
<td>[ar 9.20]</td>
</tr>
<tr>
<td>X is not locally convex</td>
<td>▶ only trivial dual space</td>
<td>[ar 18.11]</td>
</tr>
<tr>
<td></td>
<td>▶ no Bochner integral</td>
<td>[ar 18.34]</td>
</tr>
<tr>
<td>X has cardinality $> \aleph$</td>
<td>▶ the diagonal is not in $P(X) \otimes P(X)$</td>
<td>[ar 15.9]</td>
</tr>
<tr>
<td></td>
<td>▶ $\mathcal{B}(X) \otimes \mathcal{B}(X) \neq \mathcal{B}(X \times X)$</td>
<td>[ar 15.6]</td>
</tr>
<tr>
<td></td>
<td>▶ metric not jointly measurable with respect to $\mathcal{B}(X) \otimes \mathcal{B}(X)$</td>
<td>[ar 15.10]</td>
</tr>
<tr>
<td>\mathcal{M} is too small, e.g. discrete</td>
<td>▶ ‘few’ measurable functions $f : X \to \mathbb{R}$</td>
<td>[ar 8.2]</td>
</tr>
<tr>
<td></td>
<td>▶ factorization lemma fails</td>
<td>[ar 8.20]</td>
</tr>
<tr>
<td>\mathcal{M} is too big, e.g. discrete</td>
<td>▶ ‘many’ measurable functions $f : X \to \mathbb{R}$</td>
<td>[ar 8.1]</td>
</tr>
<tr>
<td></td>
<td>▶ ‘few’ non-atomic measures</td>
<td>[ar 6.15]</td>
</tr>
<tr>
<td>\mathcal{M} not countably generated</td>
<td>▶ two-valued measures which are not a point mass</td>
<td>[ar 6.10]</td>
</tr>
<tr>
<td>role of ‘small’ sets</td>
<td>▶ Lebesgue null sets may be uncountable/of second category</td>
<td>[ar 7.4, 7.9]</td>
</tr>
<tr>
<td></td>
<td>▶ $B + B = \mathbb{R}$ for a Lebesgue null set B</td>
<td>[ar 7.27]</td>
</tr>
<tr>
<td></td>
<td>▶ \mathcal{G} many Lebesgue sets but ‘only’ \mathcal{C} many Borel sets</td>
<td>[ar 4.20]</td>
</tr>
<tr>
<td></td>
<td>▶ $f' = 0$ a.e. $\not\Rightarrow$ f constant</td>
<td>[ar 2.6, 14.5]</td>
</tr>
<tr>
<td></td>
<td>▶ f a.e. continuous $\not\Rightarrow$ $f = g$ a.e. for g continuous</td>
<td>[ar 13.1]</td>
</tr>
<tr>
<td></td>
<td>▶ $\mu_n \Rightarrow \mu$ weakly $\not\Rightarrow$ $\mu_n(B) \to \mu(B)$ for all B</td>
<td>[ar 19.5]</td>
</tr>
<tr>
<td></td>
<td>▶ support of a probability measure may have measure 0</td>
<td>[ar 6.3]</td>
</tr>
<tr>
<td>lack of countability</td>
<td>▶ many theorems fail for nets, e.g. classical convergence theorems, Egorov’s and Lévy’s continuity theorem</td>
<td>[ar 12.9]</td>
</tr>
<tr>
<td></td>
<td>▶ uncountable supremum of measurable functions are not measurable</td>
<td>[ar 11.12, 19.12]</td>
</tr>
<tr>
<td></td>
<td>▶ $\mathcal{B}(X)^{\otimes I}$ is ‘small’ for I uncountable</td>
<td>[ar 8.18]</td>
</tr>
<tr>
<td></td>
<td>▶ $\mathcal{B}(X)^{\otimes I}$ is ‘small’ for I uncountable</td>
<td>[ar 15.8, 4.17]</td>
</tr>
</tbody>
</table>
List of Topics and Phenomena

<table>
<thead>
<tr>
<th>Topic</th>
<th>Possible consequence</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ projective limit of consistent family may not exist</td>
<td></td>
<td>[فارسی 16.21]</td>
</tr>
<tr>
<td>▶ (t \mapsto f(t, x)) cts. (\forall x)</td>
<td></td>
<td>[فارسی 14.12]</td>
</tr>
<tr>
<td>▶ (t \mapsto f(t, x) \mu(dx)) cts.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▶ ((f_n)_{n \in \mathbb{N}} \subseteq L^1, f_n \to 0 \text{ a.e.} \Rightarrow f \not\Rightarrow 0)</td>
<td></td>
<td>[فارسی 12.1, 12.7]</td>
</tr>
<tr>
<td>▶ (f_n \to f, f'_n \to g \text{ everywhere} \Rightarrow f' = g \text{ a.e.})</td>
<td></td>
<td>[فارسی 14.8]</td>
</tr>
<tr>
<td>▶ (f_n \to f \text{ in probability} \Rightarrow f_{n_k} \to f \text{ in measure})</td>
<td></td>
<td>[فارسی 11.8]</td>
</tr>
<tr>
<td>▶ sequential weak compactness fails</td>
<td></td>
<td>[فارسی 18.29]</td>
</tr>
<tr>
<td>(L^1, L^\infty) are special</td>
<td>▶ (L^\infty) separable if, and only if, (\dim L^\infty < \infty)</td>
<td>[فارسی 18.15]</td>
</tr>
<tr>
<td></td>
<td>▶ ((L^1)^* \nsubseteq L^\infty)</td>
<td>[فارسی 18.21, 18.22]</td>
</tr>
<tr>
<td></td>
<td>▶ ((L^\infty)^* \nsubseteq L^1)</td>
<td>[فارسی 18.24]</td>
</tr>
<tr>
<td></td>
<td>▶ not uniformly convex</td>
<td>[فارسی 18.32]</td>
</tr>
<tr>
<td>□ atom</td>
<td>▶ comparison: different definitions of atom</td>
<td>[فارسی 6.11]</td>
</tr>
<tr>
<td>□ absolute continuity</td>
<td>▶ comparison: different definitions of absolute continuity</td>
<td>[فارسی 17.4]</td>
</tr>
<tr>
<td>□ convergence in measure</td>
<td>▶ comparison: convergence in measure vs. in probability</td>
<td>[فارسی p. 20 Fig. 1.4 pp. 221, 226–227]</td>
</tr>
<tr>
<td>□ weak convergence</td>
<td>▶ weak convergence of measures is not weak convergence in the sense of functional analysis</td>
<td>[فارسی p. 371, 19.7]</td>
</tr>
<tr>
<td>□ Baire σ-algebra</td>
<td>▶ comparison of different definitions of Baire sets</td>
<td>[فارسی 4.23]</td>
</tr>
</tbody>
</table>