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Introduction

1.1 Function-Theoretic Operator Theory on Vectorial Hardy

Spaces, Reproducing Kernel Hilbert Spaces, and

Discrete-Time Linear Systems: Background

Arguably the synthesis of Hardy space function theory with operator theory

begins with the famous paper of Beurling [50] making the connection between

invariant subspaces for the shift operator on the Hardy space H 2 and inner

functions, including the canonical factorization of any H 2-function as the

product of an outer function, a Blaschke product, and a singular inner function.

Around the same time appeared work of Livšic [122], obtaining triangular

models for operators close to self-adjoint (see Kriete [117] and Vinnikov [174]

for updates) and finding a characteristic function as a unitary invariant for a

class of operators close to being unitary [122]. Ensuing work of Sz.-Nagy–

Foias–Bercovici-Kércy [171] and of de Branges–Rovnyak [58, 59] further

developed a model theory based on a characteristic function for operators close

to being unitary. The work of Sz.-Nagy–Foias made an explicit connection

with dilation theory, while that of de Branges–Rovnyak went beyond Hardy

spaces by involving more general reproducing kernel Hilbert spaces only

contractively included in a larger ambient reproducing kernel Hilbert space.

However, as emphasized by Helton [99, 100], Fuhrmann [87], and others, at

least implicit in a lot of this work in function-theoretic operator theory were

connections with systems theory. In particular, the explicit formula for the Sz.-

Nagy–Foias characteristic function is recognizable as having the form of a

transfer function for a conservative discrete-time linear system; the fact that a

rational inner function has such a realization can be traced to the engineering

circuit-theory literature from the 1950s (see [99]), and the de Branges–

Rovnyak model theory can be developed from a system-theory perspective (see

[34]). For a thorough overview of all these connections between Hardy-space
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2 1 Introduction

function theory, operator theory, and systems theory and connections with still

other applications in engineering and harmonic analysis as of 2002, we refer

to the two-volume treatise of Nikolski [132, 133].

In the ensuing decades, there has been much work extending these

approaches to the context of multivariable function theory synthesized with

multivariable operator theory. In particular, there have been contributions to

multivariable operator theory with a distinctive reproducing kernel flavor,

in both concrete and abstract commutative settings (Arveson [19] and

Bhattacharyya, Eschmeier, Sarkar, and collaborators [51, 53–55, 80, 91, 163,

164], freely noncommutative settings (Ball–Bolotnikov–Fang [30, 33]), and

sometimes with interplay between the two settings (Davidson–Pitts [69],

Ball–Bolotnikov [22], Jury–Martin [108], Salomon–Shalit–Shamovich [160],

Hartz [94]). For the free noncommutative setting, there is now a notion of

reproducing kernel and associated reproducing kernel Hilbert space on a

noncommutative Reinhardt-domain setting (Ball-Vinnikov and collaborators

[43, 45]) as well as on more general free noncommutative domains (Ball–

Marx–Vinnikov [42]), which fits into the framework of a general noncommu-

tative function theory [9, 109]. There has also been work using system-theory

ideas to push multivariable operator theory in new directions (Ball, Bolotnikov,

Vinnikov, and collaborators [22–24, 44, 46] and Olofsson [134, 136]). Of

course there is some overlap between the systems-theory approach and the

reproducing kernel approach, Let us mention one instance of such an overlap:

What we have called observability operator here and elsewhere in our system-

theory approach is essentially the same as what is known as Gelu Poisson

kernel in the terminology of Gelu Popescu (see e.g. [147, 151–153]).

Apart from the connection with dilation theory, characteristic functions,

and operator model theory which we develop here, the multi-shift setting for

the study of operator tuples has been a core area of study in operator theory,

beginning with the work of Shields [166] and culminating in the recent beefy

papers of Chavan, Trivedi, and collaborators [62, 92]. Our goal here is to

lay out systematically the free noncommutative function theory for a class

of weighted Bergman spaces on a full free Fock space and the associated

Sz.-Nagy–Foias style model theory for the class of operators which can be

modeled as the compression to a joint ∗-invariant subspace of the shift operator

tuples on such a space.

Our primary tool is the system-theory approach outlined above, but there

will also be a nontrivial use of reproducing kernel techniques, specifically

of the notion of formal noncommutative reproducing kernel Hilbert space

developed in [43, 45]. In fact, we shall see that most of the basic results

can be derived via either approach, but there is at least one instance (see
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1.2 Systems Theory and Reproducing Kernels 3

Theorem 9.2.20) where the systems-theory approach leads to some additional

information not attainable via the purely reproducing kernel approach.

1.2 The Synthesis of the Systems-Theory and

Reproducing Kernel Approaches

1.2.1 The Systems-Theory Approach

By way of motivation for the more general noncommutative, multivariable

settings to come, we now illustrate in some detail the system-theory approach

to function-theoretic operator theory for the classical setting.

For X and Y , any pair of Hilbert spaces, we use the notation L(X ,Y) to

denote the space of bounded, linear operators from X to Y , shortening the

notation L(X ,X ) to L(X ). We start with the classical discrete-time linear

system

�(U) :

{
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)
(1.2.1)

with x(k) taking values in the state space X , u(k) taking values in the input

space U , and y(k) taking values in the output space Y , where U , Y , and X

are given Hilbert spaces and where the system matrix (sometimes also called

colligation matrix or connection matrix) of the system

U =

[
A B

C D

]
:

[
X

U

]
→

[
X

Y

]

is a given bounded linear operator. If we let the system evolve on the

nonnegative integers n ∈ Z+, then the whole trajectory {u(n),x(n),y(n)}n∈Z+

is determined from the input signal {u(n)}n∈Z+
and the initial state x(0) = x,

according to the formulas

x(k) = Akx +

k−1∑

j=0

Ak−1−jBu(j),

y(k) = CAkx +

k−1∑

j=0

CAk−1−jBu(k) + Du(k). (1.2.2)

Application of the Z-transform

{f (k)}k∈Z+
�→ f̂ (λ) =

∞∑

k=0

f (k)λk
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4 1 Introduction

to the system equations (1.2.1) converts the expressions (1.2.2) to the so-called

frequency-domain formulas

x̂(λ) = (I − λA)−1x + λ(I − λA)−1Bû(λ),

ŷ(λ) = C(I − λA)−1x +
[
D + λC(I − λA)−1B

]
û(λ)

= OC,Ax + �U(λ)̂u(λ), (1.2.3)

where

OC,A : x �→

∞∑

k=0

(CAkx) λk = C(I − λA)−1x (1.2.4)

is the observability operator and where

�U(λ) = D + λC(I − λA)−1B

is the transfer function of the system � given by (1.2.1). In particular, if the

input signal {u(n)}n∈Z+
is taken to be zero, the resulting output {y(n)}n∈Z+

is given by y = OC,Ax(0). If OC,A is injective, i.e., if (C,A) satisfies the

observability condition

∞⋂

k=0

Ker CAk = {0}, (1.2.5)

we say that the output pair (C,A) is observable. In case OC,A is bounded as an

operator from X into the standard vector-valued Hardy space of the unit disk

H 2
Y =

{
f (λ) =

∑

k≥0

fkλ
k :

∑

k≥0

‖fk‖
2
Y < ∞

}
,

we say that the pair (C,A) is output stable. Let us mention that it is possible

to give a complete characterization as to when a given output pair (C,A) is

output stable in terms of the existence of a positive-semidefinite solution of a

linear-matrix-inequality (here actually a Stein inequality) determined uniquely

by the pair (C,A) (see Theorem 4.0.1 for the precise statement).

The case where the operator system matrix U is isometric, or more generally

just contractive, is of special interest. In system-theoretic terms, the isometric

property of U has the interpretation that the system �(U) is conservative in

the sense that the energy stored by the state at time k (‖x(k + 1)‖2 − ‖x(k)‖2)

is exactly compensated by the net energy put into the system from the outside

environment (‖u(k)‖2 −‖y(k)‖2). In case U is contractive, the system �(U) is

said to be dissipative in the sense that the net energy (‖x(k + 1)‖2 − ‖x(k)‖2)

stored by the state at time k is no more than the net energy put into the system

from the outside environment (‖u(k)‖2−‖y(k)‖2) at time k. In case the system
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is dissipative (i.e., ‖U‖ ≤ 1), the transfer function �U is in the Schur class

S(U,Y) (the class of contractive L(U,Y)-valued analytic functions � on the

open unit disk D), and moreover the observability operator OC,A : X → H 2
Y

is contractive. Conversely, if � is in the Schur class, then � has a realization

as � = �U as in (1.2.1) with �(U) dissipative (in fact, even conservative).

Given any holomorphic L(U,Y)-valued function � on the unit disk, we

associate the multiplication operator M� : f (z) �→ �(z)f (z) (or f �→ � · f

for short). Then, the operator-theoretic significance of the Schur class S(U,Y)

is that the multiplication operator M� is a contraction from H 2
U to H 2

Y exactly

when � is in the Schur class S(U,Y).

If U is isometric and, in addition, the state-space operator A is strongly

stable in the sense that ‖Anx‖ → 0 as n → ∞ for each x ∈ X , then the

observability operator is a partial isometry (even an isometry in case (C,A)

is observable) and the transfer function �U is inner (the boundary values

�U(ζ ) existing as strong radial limits from inside D for almost every ζ on

the unit circle T are isometric operators from U to Y), or equivalently, the

multiplication operator M� : H 2
U → H 2

Y is isometric. Conversely: any inner

function � arises in this way as � = �U with U =
[

A B
C D

]
isometric with A

strongly stable.

We say that a subspace M ⊂ H 2
Y is shift-invariant if f ∈ M ⇒ SYf ∈M,

where SY is the shift operator given as the coordinate multiplication operator

on H 2
Y

SY = Mλ : f (λ) �→ λf (λ).

Note that if � is inner, then M := M�H 2
U = � · H 2

U is a shift-invariant

subspace for SY ; the content of the Beurling–Lax theorem is that conversely,

any such invariant subspace can be represented in this way. Similarly, we say

that the subspace N ⊂ H 2
Y is backward-shift-invariant if f ∈N ⇒ S∗

Yf ∈N ,

where the backward-shift operator S∗
Y , the Hilbert-space adjoint of the

forward-shift operator SY , works out to be

S∗
Y : f (λ) �→ [f (λ) − f (0)]/λ.

The computation

S∗
Y : C(I − λA)−1x �→ λ−1[C(I − λA)−1 − C]x = C(I − λA)−1Ax

shows that, for any output-stable pair (C,A), the space RanOC,A is

S∗
Y -invariant. Conversely, if M⊥ ⊂ H 2

Y is S∗
Y -invariant, then there is an output

pair (C,A) (with C∗C = I −A∗A) so that M⊥ = RanOC,A. Furthermore, in

case U is unitary with A strongly stable, then the set of possible Z-transformed
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6 1 Introduction

output signals ŷ(λ) appearing in the form in the transformed system equations

as in (1.2.3) is all of H 2
Y and the additive decomposition of ŷ(λ) appearing in

(1.2.3) is orthogonal:

H 2
Y = RanOC,A ⊕ Ran M�U

.

1.2.2 Realization Formulas for Reproducing Kernels

More generally, following the reproducing kernel approach of de Branges–

Rovnyak [58, 59], as enhanced in the work of the authors and collaborators

[30–34], it is of interest to consider also the case where the SY -invariant

subspace M carries its own norm distinct from the norm inherited from the

ambient space H 2
Y but with the prescription that the inclusion map ι : M →

H 2
Y be contractive. Then a generalization of the Beurling–Lax theorem due

to de Branges–Rovnyak says that one can always find a contractive multiplier

(i.e., a Schur-class function, not necessarily inner) � so that M = � · H 2
U ,

with lifted norm given by

‖�f ‖ = inf{‖g‖ : g ∈ H 2
U such that � · g = � · f }.

In this context, there is a generalization of orthogonal complement denoted

by M[⊥], which we call the Brangesian complement (see Section 3.1.1 for

details), which is also contractively included in H 2
Y and provides a linear

decomposition

H 2
Y = M + M[⊥]

that is neither orthogonal nor even a direct-sum decomposition but does have

a canonical minimality property, making the space M[⊥] uniquely determined

by M (see [28, 162] or Section 3.1.1). Here M[⊥] also carries its own norm

with the inclusion map into H 2
Y contractive. Furthermore, for the case where

M = � · H 2
U for a Schur-class function �, M[⊥] is a reproducing kernel

Hilbert space with reproducing kernel KM[⊥] given by

KM[⊥](λ,μ) =
IY − �(λ)�(μ)∗

1 − λμ

and as a lifted-norm space is induced by the operator (I − M�M∗
�)

1
2 ,

M[⊥] = Ran(I − M�M∗
�)

1
2

with

‖(I − M�M∗
�)

1
2 f ‖ = min

{
‖g‖H 2

Y
: (I − M�M∗

�)
1
2 g = (I − M�M∗

�)
1
2 f

}
.
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1.2 Systems Theory and Reproducing Kernels 7

Alternatively, one can start with an S∗
Y -invariant subspace N contractively

included in H 2
Y and find a contractive output pair (C,A) (so A∗A+C∗C � IX

where A ∈ L(X ), C ∈ L(X ,Y)) so that N is the range of the observability

operator OC,A. Then, N is itself a reproducing kernel Hilbert space with

reproducing kernel

KN (λ,μ) = C(IX − λA)−1(IX − μA∗)−1C∗.

If one then solves the factorization problem for injective
[

B
D

]
,

[
B

D

] [
B∗ D∗

]
=

[
IX 0

0 IY

]
−

[
A

C

] [
A∗ C∗

]
(1.2.6)

and then lets U be the system matrix U =
[

A B
C D

]
, then U is unitary with

associated transfer function �U(λ) = D + λC(I − λA)−1B giving rise to the

contractive multiplier �U generating the Brangesian complement of N ,

N [⊥] = �U · H 2
U,

or equivalently, solving the kernel factorization problem

IY

1 − λμ
− C(I − λA)−1(I − μA∗)−1C∗ =

�(λ)�(μ)∗

1 − λμ
. (1.2.7)

Then, the space H 2
Y has an additive decomposition

H 2
Y = N + N [⊥] = RanOC,A + M�U

H 2
U (1.2.8)

corresponding again to the additive decomposition of ŷ ∈ H 2
Y in (1.2.3), but

this time not orthogonal nor a direct sum but rather a Brangesian minimal

decomposition. In case one of RanOC,A or Ran M�U
is contained in H 2

Y

isometrically, then they both are isometrically included and the decomposition

(1.2.8) is orthogonal, and we recover most of the results discussed above

derived via the systems theory approach.

1.2.3 Connections with Operator Model Theory

If we start with a contraction operator T on a Hilbert space X , we can

always form the isometric output pair (C,A) := (DT ∗,T ∗), where DT ∗ =

(I − T T ∗)
1
2 is the defect operator of T ∗, here viewed as an operator from

X to the defect space Y := DT ∗ = Ran (I − T T ∗)
1
2 . Then, we may form

the observability operator ODT ∗,T ∗ : X → H 2
DT ∗

. If we assume that T is

completely noncoisometric (c.n.c. for short), then ODT ∗,T ∗ is one-to-one.

Since (D∗
T ,T ∗) is an isometric output pair, one can show that the observability
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8 1 Introduction

operator is isometric exactly when T is pure (i.e., T ∗ is strongly stable). Then,

the solution of the factorization problem (1.2.6) with (C,A) = (DT ∗,T ∗)

leads to

[
B

D

]
=

[
DT

−T

]
: DT →

[
X

DT ∗

]

giving rise to the unitary system matrix

UT =

[
T ∗ DT

DT ∗ −T

]
:

[
X

DT

]
�→

[
X

DT ∗

]

with associated transfer function

�T (λ) = [−T + λDT ∗(I − λT ∗)−1DT ]|DT
: DT → DT ∗ (1.2.9)

equal to the Sz.-Nagy–Foias as well as the de Branges–Rovnyak char-

acteristic function for the c.n.c. contraction operator T . Furthermore, the

observability operator ODT ∗,T ∗ is isometric exactly when T ∗ is strongly

stable, or equivalently, when �T is inner. In this case, T ∗ is unitarily

equivalent to the restriction of the backward shift S∗
DT ∗

to its invariant subspace

N = RanODT ∗,T ∗ ⊂ H 2
DT ∗

. In case T ∗ is not strongly stable, it is still

the case that T ∗ is unitarily equivalent to SDT ∗ restricted to an invariant

subspace N = RanODT ∗,T ∗ ⊂ H 2
DT ∗

, but in this case we have only a

contractive containment of N in the ambient space H 2
DT ∗

. In this case, we can

still see that T dilates to an isometry SDT ∗ ⊕ V on a space H 2
DT ∗

⊕ W , where

V is a unitary operator on the Hilbert space W , i.e., there is a subspace Ñ of

H 2
DT ∗

⊕ W so that T ∗ is unitarily equivalent to (SDT ∗ ⊕ V )∗|N . The model

theory of Sz.-Nagy–Foias–Bercovici–Kércy [171] gives a functional model for

T that is embedded isometrically in a functional model for (SDT ∗ ⊕V )∗|N via

a somewhat different approach, whereby one first proves the Sz.-Nagy dilation

theorem and finds a model for T inside the geometry of a functional model

for the unitary dilation of T . Section 1.5 of the paper of Douglas [73] obtains

a model for the isometric (and then by further extension unitary) dilation

SDT ∗ ⊕ V of T by finding a complementary embedding operator Q so that

the operator
[
ODT ∗ ,T ∗

Q

]
defines an embedding of X into a direct-sum space

[
H 2
DT ∗

Ran Q

]
.

We should point out that the Sz.-Nagy–Foias model theory actually applies

to the more general situation of a completely non-unitary (c.n.u. for short)

contraction operator, but explaining this additional feature does not fit into
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1.2 Systems Theory and Reproducing Kernels 9

our narrative here; for a sample of the difficulties in handling the c.n.u. class

in more general multivariable settings, we refer to work of the authors and

Vinnikov [22, 46].

1.2.4 Summary

In summary, we have the following themes connecting vectorial Hardy-

space function theory, conservative/dissipative discrete-time linear systems,

and model theory for Hilbert-space contraction operators:

1. Backward-shift-invariant subspaces and ranges of observability

operators: A backward-shift-invariant subspace of H 2
Y arises as the range

of some isometric observability operator. More generally, a contractively

included backward-shift-invariant subspace of H 2
Y arises as the

lifted-norm space associated with a contractive observability operator.

Moreover, it is possible to characterize in terms of existence of a solution

to a certain linear-matrix-inequality when a given output pair (C,A) gives

rise to an observability operator OC,A mapping X boundedly into H 2
Y .

The special case C = IX corresponds to exponential stability for A.

2. Forward-shift-invariant subspaces and contractive multipliers:

A forward-shift-invariant subspace of H 2
Y has Beurling–Lax representation

M = M� · H 2
U for some inner multiplier � from H 2

U to H 2
Y . More

generally, a contractively included forward-shift-invariant subspaces of

H 2
Y has a lifted-norm Beurling–Lax representation � · H 2

U for a

contractive multiplier � from H 2
U to H 2

Y .

3. Hardy-space decompositions in backward- and forward-

shift-invariant subspaces: In the case of a conservative linear system with

strongly stable state operator A (i.e., U =
[

A B
C D

]
is isometric and also

‖Anx‖ → 0 as n → ∞ for each x ∈ X ), the observability operator

OC,A : X → H 2
Y and the transfer-function multiplier operator M�U

are

isometric, and one has the orthogonal decomposition of the form

H 2
Y = RanOC,A ⊕ Ran M�U

⊕ W (1.2.10)

for a shift-invariant subspace W; if it is the case that U is also coisometric,

then W = {0}. Conversely, if M ⊂ H 2
Y is SY -invariant (and hence

M⊥ ⊂ H 2
Y is S∗

Y -invariant), then there is a unitary U =
[

A B
C D

]
with A

strongly stable such that M⊥ = RanOC,A and M = �U · H 2
U .

More generally, if U is merely contractive (rather than isometric or

unitary) and/or A is not strongly stable, then a linear decomposition of the

form (1.2.10) holds but as a Brangesian minimal decomposition rather
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than as a Hilbert-space orthogonal decomposition. If U is coisometric, it is

again the case that the space W is zero.

4. Model theory for Hilbert-space contraction operators: An inner (and

more generally, contractive) multiplier M� : H 2
U → H 2

Y arises as the

Sz.-Nagy–Foias/de Branges–Rovnyak characteristic function for some

c.n.c. Hilbert-space contraction operator T that in turn induces a canonical

functional model for the operator T which also exhibits a unitary dilation

S ⊕ V for T .

Much work has been done to extend this set of ideas, particularly

themes #2 and #4 (the operator-model theory aspects without the

system-theoretic connections) to more general settings, e.g.,

(i) to Bergman spaces and hypercontraction operators; see Agler [4],

Müller [130], Müller–Vasilescu [131], Hedenmalm–Korenblum–Zhu

[97], Duren–Schuster [76]),

(ii) to the Drury–Arveson space and commutative row-contractive

operator tuples; see Bhattacharyya–Eschmeier–Sarkar [53, 54],

Bhattacharyya–Sarkar [55], and Ball–Bolotnikov [22],

(iii) to more general domains in C
d than the ball and associated more

general commutative operator tuples; see Athavale [20],

Curto–Vasilescu [67, 68], Timotin [173], Pott [155],

Ambrozie–Englis̆–Müller [16], Arazy–Englis̆ [18].

(iv) to the full Fock space and freely noncommutative row-contractive

operator tuples, possibly also constrained to lie in a prescribed

noncommutative operator variety; see Bunce [60], Frazho [85],

Popescu [141–144, 147, 148],

(v) to a more general formalism of representations of certain operator

algebras based on tensor-algebra constructions; see Muhly–Solel

[126–129], and

(vi) to noncommutative hypercontractive operator tuples modeled on

noncommutative varieties (see Popescu [151–153]) as well as a

weighted version of the tensor-algebra context (see Muhly–Solel

[129]).

Identification of a characteristic function defined by a formula of the

Sz.-Nagy–Foias type (1.2.9) (the main thrust of theme #4 above) can be

found (i) for the Bergman space setting first in the work of Olofsson

[134–136] and then followed up by the authors [23, 24] and Eschmeier

[79], (ii) for the Drury–Arveson space setting earlier in the work of

Bhattacharyya et al. [53–55], (iii) for the full Fock space in the work of
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