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Introduction

This book is about the fundamentals of algorithms for solving continuous

optimization problems, which involve minimizing functions of multiple real-

valued variables, possibly subject to some restrictions or constraints on the

values that those variables may take. We focus particularly (though not

exclusively) on convex problems, and our choice of topics is motivated by

relevance to data science. That is, the formulations and algorithms that we

discuss are useful in solving problems from machine learning, statistics, and

data analysis.

To set the stage for subsequent chapters, the rest of this chapter outlines

several paradigms from data science and shows how they can be formulated

as continuous optimization problems. We must pay attention to particular

properties of these formulations – their smoothness properties and structure –

when we choose algorithms to solve them.

1.1 Data Analysis and Optimization

The typical optimization problem in data analysis is to find a model that agrees

with some collected data set but also adheres to some structural constraints that

reflect our beliefs about what a good model should be. The data set in a typical

analysis problem consists of m objects:

D := {(aj,yj ), j = 1,2, . . . ,m}, (1.1)

where aj is a vector (or matrix) of features and yj is an observation or label.

(We can assume that the data has been cleaned so that all pairs (aj,yj ), j =

1,2, . . . ,m have the same size and shape.) The data analysis task then consists

of discovering a function φ such that φ(aj ) ≈ yj for most j = 1,2, . . . ,m. The

process of discovering the mapping φ is often called “learning” or “training.”
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2 1 Introduction

The function φ is often defined in terms of a vector or matrix of parameters,

which we denote in what follows by x or X (and occasionally by other

notation). With these parametrizations, the problem of identifying φ becomes

a traditional data-fitting problem: Find the parameters x defining φ such that

φ(aj ) ≈ yj , j = 1,2, . . . ,m in some optimal sense. Once we come up with

a definition of the term “optimal” (and possibly also with restrictions on the

values that we allow to parameters to take), we have an optimization problem.

Frequently, these optimization formulations have objective functions of the

finite-sum type

LD(x) :=
1

m

m
∑

j=1

ℓ(aj,yj ;x). (1.2)

The function ℓ(a,y;x) here represents a “loss” incurred for not properly

aligning our prediction φ(a) with y. Thus, the objective LD(x) measures the

average loss accrued over the entire data set when the parameter vector is

equal to x.

Once an appropriate value of x (and thus φ) has been learned from the data,

we can use it to make predictions about other items of data not in the set D

(1.1). Given an unseen item of data â of the same type as aj , j = 1,2, . . . ,m,

we predict the label ŷ associated with â to be φ(â). The mapping φ may also

expose other structures and properties in the data set. For example, it may

reveal that only a small fraction of the features in aj are needed to reliably

predict the label yj . (This is known as feature selection.) When the parameter

x is a matrix, it could reveal a low-dimensional subspace that contains most of

the vectors aj , or it could reveal a matrix with particular structure (low-rank,

sparse) such that observations of X prompted by the feature vectors aj yield

results close to yj .

The form of the labels yj differs according to the nature of the data analysis

problem.

• If each yj is a real number, we typically have a regression problem.

• When each yj is a label, that is, an integer drawn from the set {1,2, . . . ,M}

indicating that aj belongs to one of M classes, this is a classification

problem. When M = 2, we have a binary classification problem, whereas

M > 2 is multiclass classification. (In data analysis problems arising in

speech and image recognition, M can be very large, of the order of

thousands or more.)

• The labels yj may not even exist; the data set may contain only the feature

vectors aj , j = 1,2, . . . ,m. There are still interesting data analysis

problems associated with these cases. For example, we may wish to group
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1.1 Data Analysis and Optimization 3

the aj into clusters (where the vectors within each cluster are deemed to be

functionally similar) or identify a low-dimensional subspace (or a

collection of low-dimensional subspaces) that approximately contains the

aj . In such problems, we are essentially learning the labels yj alongside the

function φ. For example, in a clustering problem, yj could represent the

cluster to which aj is assigned.

Even after cleaning and preparation, the preceding setup may contain many

complications that need to be dealt with in formulating the problem in rigorous

mathematical terms. The quantities (aj,yj ) may contain noise or may be

otherwise corrupted, and we would like the mapping φ to be robust to such

errors. There may be missing data: Parts of the vectors aj may be missing,

or we may not know all the labels yj . The data may be arriving in streaming

fashion rather than being available all at once. In this case, we would learn φ

in an online fashion.

One consideration that arises frequently is that we wish to avoid overfitting

the model to the data set D in (1.1). The particular data set D available to us

can often be thought of as a finite sample drawn from some underlying larger

(perhaps infinite) collection of possible data points, and we wish the function φ

to perform well on the unobserved data points as well as the observed subset D.

In other words, we want φ to be not too sensitive to the particular sample D that

is used to define empirical objective functions such as (1.2). One way to avoid

this issue is to modify the objective function by adding constraints or penalty

terms, in a way that limits the “complexity” of the function φ. This process is

typically called regularization. An optimization formulation that balances fit

to the training data D, model complexity, and model structure is

min
x∈�

LD(x) + λ pen(x), (1.3)

where � is a set of allowable values for x, pen(·) is a regularization function or

regularizer, and λ ≥ 0 is a regularization parameter. The regularizer usually

takes lower values for parameters x that yield functions φ with lower complex-

ity. (For example, φ may depend on fewer of the features in the data vectors

aj or may be less oscillatory.) The parameter λ can be “tuned” to provide an

appropriate balance between fitting the data and lowering the complexity of φ:

Smaller values of λ tend to produce solutions that fit the training data D more

accurately, while large values of λ lead to less complex models.1

1 Interestingly, the concept of overfitting has been reexamined in recent years, particularly in the
context of deep learning, where models that perfectly fit the training data are sometimes
observed to also do a good job of classifying previously unseen data. This phenomenon is a
topic of intense current research in the machine learning community.
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4 1 Introduction

The constraint set � in (1.3) may be chosen to exclude values of x that are

not relevant or useful in the context of the data analysis problem. For example,

in some applications, we may not wish to consider values of x in which one

or more components are negative, so we could set � to be the set of vectors

whose components are all greater than or equal to zero.

We now examine some particular problems in data science that give rise to

formulations that are special cases of our master problem (1.3). We will see that

a large variety of problems can be formulated using this general framework, but

we will also see that within this framework, there is a wide range of structures

that must be taken into account in choosing algorithms to solve these problems

efficiently.

1.2 Least Squares

Probably the oldest and best-known data analysis problem is linear least

squares. Here, the data points (aj,yj ) lie in Rn × R, and we solve

min
x

1

2m

m
∑

j=1

(

aT
j x − yj

)2
=

1

2m
‖Ax − y‖2

2, (1.4)

where A the matrix whose rows are aT
j , j = 1,2, . . . ,m and y =

(y1,y2, . . . ,ym)T . In the preceding terminology, the function φ is defined

by φ(a) := aT x. (We can introduce a nonzero intercept by adding an extra

parameter β ∈ R and defining φ(a) := aT x + β.) This formulation can

be motivated statistically, as a maximum-likelihood estimate of x when the

observations yj are exact but for independent identically distributed (i.i.d.)

Gaussian noise. We can add a variety of penalty functions to this basic least

squares problem to impose desirable structure on x and, hence, on φ. For

example, ridge regression adds a squared ℓ2-norm penalty, resulting in

min
x

1

2m
‖Ax − y‖2

2 + λ‖x‖2
2, for some parameter λ > 0.

The solution x of this regularized formulation has less sensitivity to perturba-

tions in the data (aj,yj ). The LASSO formulation

min
x

1

2m
‖Ax − y‖2

2 + λ‖x‖1 (1.5)

tends to yield solutions x that are sparse – that is, containing relatively

few nonzero components (Tibshirani, 1996). This formulation performs

feature selection: The locations of the nonzero components in x reveal those
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components of aj that are instrumental in determining the observation yj .

Besides its statistical appeal – predictors that depend on few features are

potentially simpler and more comprehensible than those depending on many

features – feature selection has practical appeal in making predictions about

future data. Rather than gathering all components of a new data vector â, we

need to find only the “selected” features because only these are needed to make

a prediction.

The LASSO formulation (1.5) is an important prototype for many problems

in data analysis in that it involves a regularization term λ‖x‖1 that is non-

smooth and convex but has relatively simple structure that can potentially be

exploited by algorithms.

1.3 Matrix Factorization Problems

There are a variety of data analysis problems that require estimating a low-rank

matrix from some sparse collection of data. Such problems can be formulated

as natural extension of least squares to problems in which the data aj are

naturally represented as matrices rather than vectors.

Changing notation slightly, we suppose that each Aj is an n×p matrix, and

we seek another n × p matrix X that solves

min
X

1

2m

m
∑

j=1

(〈Aj,X〉 − yj )
2, (1.6)

where 〈A,B〉 := trace(AT B). Here we can think of the Aj as “probing” the

unknown matrix X. Commonly considered types of observations are random

linear combinations (where the elements of Aj are selected i.i.d. from some

distribution) or single-element observations (in which each Aj has 1 in a

single location and zeros elsewhere). A regularized version of (1.6), leading

to solutions X that are low rank, is

min
X

1

2m

m
∑

j=1

(〈Aj,X〉 − yj )
2 + λ‖X‖∗, (1.7)

where ‖X‖∗ is the nuclear norm, which is the sum of singular values of X

(Recht et al., 2010). The nuclear norm plays a role analogous to the ℓ1 norm in

(1.5), where as the ℓ1 norm favors sparse vectors, the nuclear norm favors low-

rank matrices. Although the nuclear norm is a somewhat complex nonsmooth

function, it is at least convex so that the formulation (1.7) is also convex. This

formulation can be shown to yield a statistically valid solution when the true
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X is low rank and the observation matrices Aj satisfy a “restricted isometry

property,” commonly satisfied by random matrices but not by matrices with

just one nonzero element. The formulation is also valid in a different context,

in which the true X is incoherent (roughly speaking, it does not have a few

elements that are much larger than the others), and the observations Aj are of

single elements (Candès and Recht, 2009).

In another form of regularization, the matrix X is represented explicitly as

a product of two “thin” matrices L and R, where L ∈ Rn×r and R ∈ Rp×r ,

with r ≪ min(n,p). We set X = LRT in (1.6) and solve

min
L,R

1

2m

m
∑

j=1

(〈Aj,LRT 〉 − yj )
2. (1.8)

In this formulation, the rank r is “hard-wired” into the definition of X, so

there is no need to include a regularizing term. This formulation is also

typically much more compact than (1.7); the total number of elements in

(L,R) is (n + p)r , which is much less than np. However, this function is

nonconvex when considered as a function of (L,R) jointly. An active line of

current research, pioneered by Burer and Monteiro (2003) and also drawing on

statistical sources, shows that the nonconvexity is benign in many situations

and that, under certain assumptions on the data (Aj,yj ), j = 1,2, . . . ,m and

careful choice of algorithmic strategy, good solutions can be obtained from the

formulation (1.8). A clue to this good behavior is that although this formulation

is nonconvex, it is in some sense an approximation to a tractable problem: If we

have a complete observation of X, then a rank-r approximation can be found

by performing a singular value decomposition of X and defining L and R in

terms of the r leading left and right singular vectors.

Some applications in computer vision, chemometrics, and document clus-

tering require us to find factors L and R like those in (1.8) in which all elements

are nonnegative. If the full matrix Y ∈ Rn×p is observed, this problem has the

form

min
L,R

‖LRT − Y‖2
F , subject to L ≥ 0, R ≥ 0

and is called nonnegative matrix factorization.

1.4 Support Vector Machines

Classification via support vector machines (SVM) is a classical optimization

problem in machine learning, tracing its origins to the 1960s. Given the input
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1.4 Support Vector Machines 7

data (aj,yj ) with aj ∈ Rn and yj ∈ {−1,1}, SVM seeks a vector x ∈ Rn and

a scalar β ∈ R such that

aT
j x − β ≥ 1 when yj = +1, (1.9a)

aT
j x − β ≤ −1 when yj = −1. (1.9b)

Any pair (x,β) that satisfies these conditions defines a separating hyperplane

in Rn, that separates the “positive” cases {aj | yj = +1} from the “negative”

cases {aj | yj = −1}. Among all separating hyperplanes, the one that

minimizes ‖x‖2 is the one that maximizes the margin between the two classes –

that is, the hyperplane whose distance to the nearest point aj of either class is

greatest.

We can formulate the problem of finding a separating hyperplane as an

optimization problem by defining an objective with the summation form (1.2):

H(x,β) =
1

m

m
∑

j=1

max(1 − yj (a
T
j x − β),0). (1.10)

Note that the j th term in this summation is zero if the conditions (1.9) are

satisfied, and it is positive otherwise. Even if no pair (x,β) exists for which

H(x,β) = 0, a value (x,β) that minimizes (1.2) will be the one that comes

as close as possible to satisfying (1.9) in some sense. A term λ‖x‖2
2 (for some

parameter λ > 0) is often added to (1.10), yielding the following regularized

version:

H(x,β) =
1

m

m
∑

j=1

max(1 − yj (a
T
j x − β),0) +

1

2
λ‖x‖2

2. (1.11)

Note that, in contrast to the examples presented so far, the SVM problem has

a nonsmooth loss function and a smooth regularizer.

If λ is sufficiently small, and if separating hyperplanes exist, the pair

(x,β) that minimizes (1.11) is the maximum-margin separating hyperplane.

The maximum-margin property is consistent with the goals of generalizability

and robustness. For example, if the observed data (aj,yj ) is drawn from

an underlying “cloud” of positive and negative cases, the maximum-margin

solution usually does a reasonable job of separating other empirical data

samples drawn from the same clouds, whereas a hyperplane that passes close

to several of the observed data points may not do as well (see Figure 1.1).

Often, it is not possible to find a hyperplane that separates the positive

and negative cases well enough to be useful as a classifier. One solution is

to transform all of the raw data vectors aj by some nonlinear mapping ψ and
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.

Figure 1.1 Linear support vector machine classification, with the one class

represented by circles and the other by squares. One possible choice of separating

hyperplane is shown at left. If the training data is an empirical sample drawn from

a cloud of underlying data points, this plane does not do well in separating the two

clouds (middle). The maximum-margin separating hyperplane does better (right).

then perform the support vector machine classification on the vectors ψ(aj ),

j = 1,2, . . . ,m. The conditions (1.9) would thus be replaced by

ψ(aj )
T x − β ≥ 1 when yj = +1; (1.12a)

ψ(aj )
T x − β ≤ −1 when yj = −1, (1.12b)

leading to the following analog of (1.11):

H(x,β) =
1

m

m
∑

j=1

max(1 − yj (ψ(aj )
T x − β),0) +

1

2
λ‖x‖2

2. (1.13)

When transformed back to Rm, the surface {a | ψ(a)T x − β = 0} is nonlinear

and possibly disconnected, and is often a much more powerful classifier than

the hyperplanes resulting from (1.11).

We note that SVM can also be expressed naturally as a minimization

problem over a convex set. By introducing artificial variables, the problem

(1.13) (and (1.11)) can be formulated as a convex quadratic program – that is,

a problem with a convex quadratic objective and linear constraints. By taking

the dual of this problem, we obtain another convex quadratic program, in m

variables:

min
α∈Rm

1

2
αT Qα − 1T α subject to 0 ≤ α ≤

1

λ
1, yT α = 0, (1.14)

where

Qkl = ykylψ(ak)
T ψ(al), y = (y1,y2, . . . ,ym)T , 1 = (1,1, . . . ,1)T .

Interestingly, problem (1.14) can be formulated and solved without explicit

knowledge or definition of the mapping ψ . We need only a technique to define

the elements of Q. This can be done with the use of a kernel function K : Rn ×

R
n → R, where K(ak,al) replaces ψ(ak)

T ψ(al) (Boser et al., 1992; Cortes
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1.5 Logistic Regression 9

and Vapnik, 1995). This is the so-called kernel trick. (The kernel function K

can also be used to construct a classification function φ from the solution of

(1.14).) A particularly popular choice of kernel is the Gaussian kernel:

K(ak,al) := exp

(

−
1

2σ
‖ak − al‖

2

)

,

where σ is a positive parameter.

1.5 Logistic Regression

Logistic regression can be viewed as a softened form of binary support vector

machine classification in which, rather than the classification function φ giving

a unqualified prediction of the class in which a new data vector a lies, it returns

an estimate of the odds of a belonging to one class or the other. We seek an

“odds function” p parametrized by a vector x ∈ Rn,

p(a;x) := (1 + exp(aT x))−1, (1.15)

and aim to choose the parameter x in so that

p(aj ;x) ≈ 1 when yj = +1; (1.16a)

p(aj ;x) ≈ 0 when yj = −1. (1.16b)

(Note the similarity to (1.9).) The optimal value of x can be found by

minimizing a negative-log-likelihood function:

L(x) := −
1

m

⎡

⎣

∑

j :yj =−1

log(1 − p(aj ;x)) +
∑

j :yj =1

log p(aj ;x)

⎤

⎦ . (1.17)

Note that the definition (1.15) ensures that p(a;x) ∈ (0,1) for all a and x;

thus, log(1 − p(aj ;x)) < 0 and log p(aj ;x) < 0 for all j and all x. When the

conditions (1.16) are satisfied, these log terms will be only slightly negative,

so values of x that satisfy (1.17) will be near optimal.

We can perform feature selection using the model (1.17) by introducing a

regularizer λ‖x‖1 (as in the LASSO technique for least squares (1.5)),

min
x

−
1

m

⎡

⎣

∑

j :yj =−1

log(1 − p(aj ;x)) +
∑

j :yj =1

log p(aj ;x)

⎤

⎦ + λ‖x‖1,

(1.18)

where λ > 0 is a regularization parameter. As we see later, this term has

the effect of producing a solution in which few components of x are nonzero,
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making it possible to evaluate p(a;x) by knowing only those components of a

that correspond to the nonzeros in x.

An important extension of this technique is to multiclass (or multinomial)

logistic regression, in which the data vectors aj belong to more than two

classes. Such applications are common in modern data analysis. For example,

in a speech recognition system, the M classes could each represent a phoneme

of speech, one of the potentially thousands of distinct elementary sounds

that can be uttered by humans in a few tens of milliseconds. A multinomial

logistic regression problem requires a distinct odds function pk for each class

k ∈ {1,2, . . . ,M}. These functions are parametrized by vectors x[k] ∈ Rn,

k = 1,2, . . . ,M , defined as follows:

pk(a;X) :=
exp(aT x[k])

∑M
l=1 exp(aT x[l])

, k = 1,2, . . . ,M, (1.19)

where we define X := {x[k] | k = 1,2, . . . ,M}. As in the binary case, we

have pk(a) ∈ (0,1) for all a and all k = 1,2, . . . ,M and, in addition, that
∑M

k=1 pk(a) = 1. The functions (1.19) perform a “softmax” on the quantities

{aT x[l] | l = 1,2, . . . ,M}.

In the setting of multiclass logistic regression, the labels yj are vectors in

RM whose elements are defined as follows:

yjk =

{

1 when aj belongs to class k,

0 otherwise.
(1.20)

Similarly to (1.16), we seek to define the vectors x[k] so that

pk(aj ;X) ≈ 1 when yjk = 1 (1.21a)

pk(aj ;X) ≈ 0 when yjk = 0. (1.21b)

The problem of finding values of x[k] that satisfy these conditions can again be

formulated as one of minimizing a negative-log-likelihood:

L(X) := −
1

m

m
∑

j=1

[

M
∑

ℓ=1

yjℓ(x
T
[ℓ]aj ) − log

(

M
∑

ℓ=1

exp(xT
[ℓ]aj )

)]

. (1.22)

“Group-sparse” regularization terms can be included in this formulation to

select a set of features in the vectors aj , common to each class, that distinguish

effectively between the classes.
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