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Euclidean Arithmetic

Preview

Euclid’s Elements, from around 300 bce, is the source of many basic parts of

modern mathematics, such as geometry, the axiomatic method, and the theory

of real numbers. It is also the source of arithmetic as mathematicians know it:

the theory of addition and multiplication of natural numbers, with emphasis on

the concepts of divisibility and primes.

For Euclid, a natural number b is a divisor of a natural number a if

a = bc for some natural number c.

Then a natural number p > 1 is prime if its only divisors are itself and 1.

These concepts lead, as Euclid showed by a short but ingenious proof, to the

discovery that there are infinitely many primes.

Even more ingeniously, Euclid proved the prime divisor property: If a

prime p divides a product ab, then p divides a or p divides b. His proof is

based on the famous Euclidean algorithm for finding the greatest common

divisor of two natural numbers. The prime divisor property easily implies

what we now call the fundamental theorem of arithmetic, or unique prime

factorization: Every natural number greater than 1 may be expressed uniquely

(up to the order of factors) as a product of primes.

Unique prime factorization is so useful that mathematicians would like it

to hold wherever the concept of “factorization” makes sense. In fact, as we

will see in later chapters, even when it is lost they will try to recover it. In

this chapter we prepare to explore more general domains for factorization by

introducing the concepts (and some examples) of ring and field.
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2 1 Euclidean Arithmetic

1.1 Divisors and Primes

In this chapter we will be working mainly with the set N = {0,1,2,3,4,5, . . .}
of natural numbers. These are the numbers obtained from 0 by “counting”:

that is, by repeatedly adding 1. It follows (informally) that from any natural

number n we can reach 0 in a finite number of steps by “counting backwards,”

and hence that any set of natural numbers has a least member. Since Euclid,

this so-called well-ordering property of N has been the basis of virtually

all reasoning about the natural numbers, so it is usually taken as an axiom.

In this section we will use it, as Euclid did, to prove results about divisibility

and primes.

We have already said what it means for a natural number b to divide a

natural number a; namely, a = bc for some natural number c. So if b does not

divide a, we necessarily have, for any natural number q,

a = bq + r, with r > 0.

When r is least possible, we call q the quotient (of a by b) and r the

remainder. It then follows that 0 < r < b, because if r = b + r ′, we would

have

a = b(q + 1) + r ′, contrary to the assumption that r is the least remainder.

The two cases, where b does and does not divide a, can be combined in

the following division property: For any natural numbers, there are natural

numbers q and r such that

a = bq + r, where 0 ≤ r < b. (*)

This property is often misleadingly called the “division algorithm.” (It is not

an algorithm, but it paves the way for the very important Euclidean algorithm,

as we will see in the next section.) Finding the quotient and remainder for a

given pair a,b is called division with remainder.

Another easy application of well-ordering of N tells us that every natural

number greater than 1 is divisible by a prime. Start with any natural number

a > 1. If a is not prime, then a = bc for some smaller numbers b and c. Then if

b is not prime, we have b = de for some smaller natural numbers d and e, and

so on. Since natural numbers cannot decrease forever, this process must halt –

necessarily with a prime p that divides a. It follows, by repeatedly finding

prime divisors, that every natural number has a prime factorization.

With these easy properties of divisors and primes, we are now ready for

something ingenious: Euclid’s proof that there are infinitely many primes.
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1.1 Divisors and Primes 3

Infinitude of primes. For any prime numbers p1,p2, . . . ,pk , there is a prime

number pk+1 � p1,p2, . . . ,pk .

Proof. Consider the number N = (p1 · p2 · · · pk) + 1. None of p1,p2, . . . ,pk

divide N because they each leave remainder 1. But some prime divides N

because N > 1. This prime is the pk+1 we seek. �

The beauty of this proof is that it avoids having to find any pattern in the

sequence of primes, or finding divisors of a number, both of which are hard

problems.

1.1.1 The Euclidean Algorithm

Although it is hard to find the divisors of a given (large) natural number,

it is surprisingly quick and easy to find common divisors of two natural

numbers. This can be done by the Euclidean algorithm for finding the

greatest common divisor gcd(a,b) of two natural numbers a and b. As Euclid

described it, (Elements, Book VII, Proposition 1) the algorithm “repeatedly

subtracts the lesser number from the greater.” More formally, it repeatedly

replaces the pair {a,b}, where a > b, by the pair {b,a − b} until the members

of the pair become equal – at which stage each member is gcd(a,b).

For example, if we begin with the pair {34,21}, the pairs produced by the

algorithm are the following

{34,21} → {21,13} → {13,8} → {8,5} → {5,3} → {3,2} → {2,1} → {1,1}.

And we conclude that gcd(34,21) = 1.

In general, the correctness of the Euclidean algorithm is guaranteed by the

following theorem.

Euclidean algorithm produces the gcd. If the Euclidean algorithm is

applied to two natural numbers a,b > 0, then it terminates in a finite number

of steps with the pair whose members are both gcd(a,b).

Proof. Suppose that d is any common divisor of a and b, where a > b. This

means that a = a′d and b = b′d for some a′,b′ > 0, and hence that

a − b = (a′ − b′)d.

Thus, d is also a divisor of a − b. There is a similar proof that any common

divisor of two numbers is also a divisor of their sum, so a divisor of b and a−b

is also a divisor of b + (a − b) = a. It follows that each pair produced by the

Euclidean algorithm has the same common divisors, and hence the same gcd.
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4 1 Euclidean Arithmetic

Now, as long as the pairs produced by the algorithm are unequal, subtraction

occurs, and it will decrease the sum of the two members of the pair. By

the well-ordering of N, the sum cannot decrease forever, so the algorithm

necessarily halts with a pair of equal numbers. Being equal, they equal their

own gcd; hence they each equal gcd(a,b). �

In practice it is usual to speed up the Euclidean algorithm by doing division

with remainder instead of subtraction. That is, we replace the pair {a,b},
where a > b, with the pair {b,r}, where r is the remainder when a is divided

by b. This process is simply a shortening of repeated subtraction, because r

can be found by subtracting b repeatedly from a. However, the usual “long

division” process generally finds r more quickly than repeated subtraction.

In fact, by using division with remainder, we can be sure that the number of

steps required for the Euclidean algorithm to halt is roughly proportional to the

number of decimal digits in a. The example above, incidentally, is one where

each division with remainder is actually the same as a single subtraction. This

happens whenever a and b are a pair of consecutive Fibonacci numbers: the

numbers 0,1,1,2,3,5,8,13,21,34,55,89,144,233, . . . defined by

F0 = 0, Fn+2 = Fn+1 + Fn.

This is the case where the Euclidean algorithm runs most slowly. But even

here, the number of steps is roughly proportional to the number of decimal

digits.

Exercises

1. Explain why the Euclidean algorithm, applied to the pair {Fn+2,Fn+1},
yields all preceding pairs of consecutive Fibonacci numbers.

2. Deduce that gcd(Fn+2,Fn+1) = 1.

Division with remainder is the preferred way to run the Euclidean algorithm

in practice, because it is generally faster. But it also has advantages in theory,

since it applies in situations (such as division of polynomials) where division

with remainder is not achievable by repeated subtraction. In the case of

ordinary positive integers a,b, the process of repeated division with remainder

can be elegantly “frozen in time” by the so-called continued fraction for a/b.

Given positive integers a > b, the continued fraction process finds q1 > 0

and r1 ≥ 0 (“quotient” and “remainder”) such that a = bq1 + r1 with r1 < b1,

and we write down the equivalent equation

a

b
= q1 +

r1

b
.
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1.2 The Form of the gcd 5

If r1 = 0, then the process ends there, because we have found that b divides a

and hence that gcd(a,b) = b.

If r1 > 0, then we rewrite the above equation as

a

b
= q1 +

1

b/r1

and repeat the process on the fraction b/r1 (which we can do since b > r1 > 0).

In this way we can simulate the action of the Euclidean algorithm on a pair

(a,b) by the process of “continuing” a fraction a/b.

3. Explain why the continued fraction process terminates for any positive

integers a,b.

4. Applying the continued fraction process to 23 and 5, show that

23

5
= 4 +

1

1 +
1

1 +
1

2

Division with remainder also has a neat representation by 2 × 2 matrices, in

which division with remainder corresponds to extracting a matrix factor from a

column vector. In this setup, the pair {a,b} is represented by the column vector

(

a

b

)

, where a > b.

5. If a = q1b + r1, show that

(

a

b

)

=
(

q1 1

1 0

) (

b

r1

)

.

Then, if b > r1 � 0, one can repeat the process on the column vector

(

b

r1

)

.

6. Show in particular that

(

23

5

)

=
(

4 1

1 0

)(

1 1

1 0

)(

1 1

1 0

) (

2 1

1 0

) (

1

0

)

.

1.2 The Form of the gcd

The correctness of the Euclidean algorithm says that gcd(a,b) results from the

pair {a,b} by repeated subtraction. This implies that gcd(a,b) has a very simple

symbolic form. Because subtraction is involved, the form involves integers;

that is, natural numbers and their negatives. The system of integers is denoted

by Z, from the German word “Zahlen” for numbers.
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6 1 Euclidean Arithmetic

Form of the gcd. For any natural numbers a,b > 0, there are m,n ∈ Z such

that

gcd(a,b) = ma + nb.

Proof. We show in fact that the numbers produced from a,b at each step of

the Euclidean algorithm are of the form ma + nb. This is certainly true at the

beginning, where a = 1 · a + 0 · b and b = 0 · a + 1 · b.

And if the pair at some stage is {m1a + n1b,m2a + n2b}, then the pair at

the next stage is {m2a + n2b,(m1 − m2)a + (n1 − n2)b}, which again consists

of numbers of the required form.

Thus, the numbers at all stages are of the form ma + nb. In particular, this

is true at the last stage, when each number is gcd(a,b). �

Given a pair of moderately sized numbers a,b (say, two-digit numbers), it

may be hard to spot m and n such that gcd(a,b) = ma+nb. However, m and n

are easily computed by running the Euclidean algorithm on the letters a and b,

doing exactly the same subtractions on the symbolic forms that we originally

did on numbers. For example, here is what happens when we run the numerical

and symbolic computations side by side in the case where a = 34 and b = 21.

{34,21} {a,b}
→ {21,34 − 21} = {21,13} → {b,a − b}
→ {13,21 − 13} = {13,8} → {a − b,b − (a − b)} = {a − b, − a + 2b}
→ {8,13 − 8} = {8,5} → {−a + 2b,a − b − (−a + 2b)} = {−a + 2b,2a − 3b}
→ {5,8 − 5} = {5,3} → {2a − 3b, − a + 2b − (2a − 3b)} = {2a − 3b, − 3a + 5b}
→ {3,5 − 3} = {3,2} → {−3a + 5b,2a − 3b − (−3a + 5b)} = {−3a + 5b,5a − 8b}
→ {2,3 − 2} = {2,1} → {5a − 8b, − 3a + 5b − (5a − 8b)} = {5a − 8b, − 8a + 13b}.

From the last line we read off 1 = gcd(a,b) = −8a + 13b, and it can be

checked that indeed 1 = −8 · 34 + 13 · 21.

The symbolic form of the Euclidean algorithm, and hence of the gcd,

was not known to Euclid. Indeed, written calculation with numbers did not

develop until centuries after him, because numerical calculation could be done

perfectly well with the abacus. And it was not until the sixteenth century that

mathematicians realized that written calculation with symbols (“algebra”) was

a powerful idea – in fact more powerful than written calculation with numbers.

Still, even with the primitive notation at his disposal, Euclid was able to prove

the prime divisor property, the main result of the next section.

1.2.1 Linear Diophantine Equations

The equation ax + by = c, where a,b,c are integers, becomes interesting

when integer solutions for x and y are sought. The equation obviously has no
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1.2 The Form of the gcd 7

such solution when gcd(a,b) does not divide c, because in that case gcd(a,b)

divides ax + by but not c. However, this is the only obstruction.

Criterion for solvability. If gcd(a,b) divides c, then ax + by = c has an

integer solution.

Proof. It follows from the above that gcd(a,b) = ma + nb for some integers

m and n. Then, if c = d · gcd(a,b), it follows that ax + by = c for x = dm

and y = dn. �

This criterion for solvability generalizes to linear equations in more than

two variables. For example, ax + by + cz = d has an integer solution ⇔
gcd(a,b,c) divides d. The (⇒) direction is clear, for the same reason as above.

The (⇐) direction holds because

gcd(a,b,c) = la + mb + nc for some integers l,m,n,

which follows from the above because gcd(a,b,c) = gcd(gcd(a,b),c).

We also know that we can find the required m,n for gcd(a,b) by the

extended Euclidean algorithm described above. Finally, we can find all

solutions of ax + by = c by adding to any single solution the solutions of

ax + by = 0, which are x = kb/ gcd(a,b), y = −ka/ gcd(a,b) for all inte-

gers k.

With these observations we can move on to Diophantine equations of higher

degree. We begin in Section 1.5 with a quadratic equation in two variables.

Other examples, of degree 2 and 3, are discussed in the next chapter. But first,

let us see what the gcd can tell us about prime numbers.

Exercises

1. Using the symbolic Euclidean algorithm above, find integers m,n such

that 13m + 17n = 1.

The matrix version of division with remainder, explored in the previous set

of exercises, can be very elegantly “inverted” to give the integers m and n

such that gcd(a,b) = ma + nb. Recall that a = q1b + r1 is represented by the

matrix equation
(

a

b

)

=
(

q1 1

1 0

) (

b

r1

)

.

2. Show that if repeated division with remainder on the pair a,b produces

successive quotients q1,q2, . . . ,qn and gcd(a,b) = d, then
(

a

b

)

=
(

q1 1

1 0

)(

q2 1

1 0

)

· · ·
(

qn 1

1 0

) (

d

0

)

.
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8 1 Euclidean Arithmetic

3. Deduce that

(

d

0

)

=
(

qn 1

1 0

)−1

· · ·
(

q2 1

1 0

)−1 (

q1 1

1 0

)−1 (

a

b

)

,

and show that

(

q 1

1 0

)−1

=
(

0 1

1 −q

)

.

4. Deduce from exercise 6 of Section 1.1 that
(

1

0

)

=
(

0 1

1 −2

) (

0 1

1 −1

)(

0 1

1 −1

) (

0 1

1 −4

) (

23

5

)

,

and hence express the gcd of 23 and 5 in the form 23m + 5n.

Another way to prove gcd(a,b) = ma + nb is by considering the smallest

positive value c of ma + nb for m,n ∈ Z. This idea will be used in Section 5.2

to prove that Z is a principal ideal domain.

5. Show that all values of ma + nb are multiples of c (this part uses the

division property of Z).

6. Deduce that c divides a and b, and that any divisor of a and b divides c.

7. Conclude that c = gcd(a,b).

1.3 The Prime Divisor Property

The relevance of the Euclidean algorithm to the theory of primes becomes clear

when we consider gcd(a,p), where p is prime. If p does not divide a, then we

must have gcd(a,p) = 1, because the only divisors of p are 1 and p itself.

This leads to a crucial result.

Prime divisor property. If a and b are natural numbers and p is a prime that

divides ab, then p divides a or p divides b.

Proof. Suppose that p does not divide a, so we must prove that p divides b.

First, as we have just remarked, gcd(a,p) = 1. Also, as we saw in the previous

section, gcd(a,p) = ma + np for some integers m and n, so

1 = ma + np for some integers m and n.

Multiplying both sides of this equation by b, we get

b = mab + npb for some integers m and n.
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1.3 The Prime Divisor Property 9

Since p divides ab by hypothesis and p divides pb, obviously, b is a sum of

terms divisible by p. Hence, b itself is divisible by p. �

In proving this prime divisor property, Euclid came as close as he probably

could (given his poor notational resources) to proving what we now call the

fundamental theorem of arithmetic, or unique prime factorization. Unique

prime factorization easily follows from the prime divisor property if one has

notation for arbitrary products of primes.

Unique prime factorization. If p1,p2, . . . ,pk and q1,q2, . . . ,ql are prime

numbers such that

p1p2 · · · pk = q1q2 · · · ql,

then the same factors occur on each side, perhaps in a different order.

Proof. Since p1 divides the left side of the equation, it also divides the right

side, hence, it divides one of the factors qi by the prime divisor property.

It follows that p1 = qi , and we may cancel p1 and qi from the equation.

Repeating the argument with the factors that remain, we eventually find that

each pj equals some qk , and vice versa, so the factors on each side are exactly

the same, though perhaps in a different order. �

We sometimes express this theorem by saying that factorization of a natural

number greater than 1 into primes is unique “up to the order of factors.”

Later, we will see many other statements of unique prime factorization, and

the “uniqueness“ will be “up to order” and sometimes other trivial variations.

For example, prime factorization of integers is unique not only “up to order”

but also “up to sign” because, for example, 6 = 2 · 3 = (−2) · (−3).

The next section gives some applications of unique prime factorization. Due

to its usefulness and simplicity, unique prime factorization has been sought in

many other domains where “factorization” makes sense. In fact, a major theme

of this book is the search for appropriate concepts of “prime” in domains where

the obvious kind of factorization fails to be unique.

Exercises

In school you may have used prime factorization to find the gcd (“greatest

common divisor”) and the lcm (“least common multiple”) of given positive

integers. We can justify this idea with the help of unique prime factorization.

1. Find gcd of 60 and 84 by finding the common primes in their prime

factorizations.
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10 1 Euclidean Arithmetic

2. Also find lcm(60,84).

3. Given that p1, . . . ,pk are the primes in the factorizations of a and b, so

a = p
m1

1 · · ·pmk

k , and

b = p
n1

1 · · · pnk

k , for some integers m1,n1, . . . ,mk,nk ≥ 0,

explain why

gcd(a,b) = p
min(m1,n1)
1 · · · pmin(mk,nk)

k

lcm(a,b) = p
max(m1,n1)
1 · · ·pmax(mk,nk)

k .

4. Use these formulas for gcd and lcm to prove gcd(a,b)lcm(a,b) = ab.

Our proof of unique prime factorization in this section comes from the

division property of Z, via the prime divisor property. In the exercises to the

last section we showed that the division property also implies the principal

ideal property of Z, according to which the numbers of the form ma + nb

are all multiples of a certain nonzero member c. We can also prove the prime

divisor property from the principal ideal property, as the following exercises

show.

5. Suppose that p divides ab, but p does not divide a. Given that the numbers

of the form mp + na are all multiples of some positive c � 0, show that

c = 1.

6. Now deduce the prime divisor property.

1.4 Irrational Numbers

The numbers considered so far are the natural numbers and their close relatives

the integers. A still larger class whose properties derive from those of the

integers is the set Q of rational numbers: the ratios, or quotients, m/n of

integers m,n with n � 0. It was once thought that all numbers are rational,

but that hope was dashed (and serious mathematics began) when one of the

followers of Pythagoras discovered that
√

2 is not. This discovery shocked the

Pythagoreans, who sought a “rational” (number) explanation of everything, but

who also knew that
√

2 was a fundamental quantity in geometry – the diagonal

of the unit square. We give a proof of the irrationality of
√

2 by a method that

extends to many other numbers.

Irrationality of
√

2. For any natural numbers m and n, m/n �
√

2.
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