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Foreword

S.J. Patterson

There are few books which remain in print and in constant use for over a century; “Whittaker

and Watson” belongs to this select group. In fact there were two books with the title “A

Course in Modern Analysis”, the first in 1902 by Edmund Whittaker alone, a textbook with

a very specific agenda, and then the joint work, first published in 1915 as a second edition.

It is an extension of the first edition but in such a fashion that it becomes a handbook for

those working in analysis. As late as 1966 J.T. Whittaker, the son of E.T. Whittaker, wrote in

his Biographical Memoir of Fellows of the Royal Society (i.e. obituary) of G.N. Watson that

there were still those who preferred the first edition but added that for most readers the later

edition was to be preferred. Indeed the joint work is superior in many different ways.

The first edition was written at a time when there was a movement for reform in mathe-

matics at Cambridge. Edmund Whittaker’s mentor Andrew Forsyth was one of the driving

forces in this movement and had himself written a Theory of Functions (1893) which was,

in its time, very influential but is now scarcely remembered. In the course of the nineteenth

century the mathematics education had become centered around the Mathematical Tripos, an

intensely competitive examination. Competitions and sports were salient features of Victo-

rian Britain, a move away from the older system of patronage and towards a meritocracy. The

reader familiar with Gilbert and Sullivan operettas will think of the Modern Major-General

in The Pirates of Penzance. The Tripos had become not only a sport but a spectator sport,

followed extensively in middle-class England1 . The result of this system was that the colleges

were in competition with one another and employed coaches to prepare the talented students

for the Tripos. They developed the skills needed to answer difficult questions quickly and

accurately – many Tripos questions can be found in the exercises in Whittaker and Watson.

The Tripos system did not encourage the students to become mathematicians and separated

them from the professors who were generally very well informed about the developments

on the Continent. It was a very inward-looking, self-reproducing system. The system on the

Continent, especially in the German universities, was quite different. The professors there

sought contact with the students, either as note-takers for lectures or in seminar talks, and

actively supported those by whom they were most impressed. The students vied with one an-

other for the attention of the professor, a different and more fruitful form of competition. This

1 Some idea of this may be gleaned from G.B. Shaw’s play Mrs Warren’s Profession, written in 1893 but held

back by censorship until 1902. In this play Mrs Warren’s daughter Vivie has distinguished herself in

Cambridge – she tied with the third Wrangler, described as a “magnificent achievement” by a character who

has no mathematical background. She herself could not be ranked as a Wrangler as she was female. She would

have been a contemporary of Grace Chisholm, later Grace Chisholm Young, whose family background was by

no means as colourful as that of the fictional Vivie Warren.

xvii
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xviii Foreword

system allowed the likes of Weierstrass and Klein to build up groups of talented and highly

motivated students. It had become evident to Andrew Forsyth and others that Cambridge was

missing out on the developments abroad because of the concentration on the Tripos system2 .

It is interesting to read what Whittaker himself wrote about the situation at the end of

the nineteenth century in Cambridge and so of the conditions under which Whittaker and

Watson was written. We quote from his Royal Society Obituary Notice (1942) of Andrew

Russell Forsyth:

He had for some time past realized, as no one else did, the most serious

deficiency of the Cambridge school, namely its ignorance of what had

been and was being done on the continent of Europe. The college lecturers

could not read German, and did not read French.
...

The schools of Göttingen and Berlin to a great extent ignored each other

(Berlin said that Göttingen proved nothing, and Göttingen retorted that

Berlin had no ideas) and both of them ignored French work.

But Cambridge had hitherto ignored them all: and the time was ripe

for Forsyth’s book. The younger men, even undergraduates, had heard in

his lectures of the extraordinary riches and beauty of the domain beyond

Tripos mathematics, and were eager to enter into it. From the day of its

publication in 1893, the face of Cambridge was changed: the majority of

the pure mathematicians who took their degrees in the next twenty years

became function-theorists.

and further

As head of the Cambridge school of mathematics he was conspicuously

successful. British mathematicians were already indebted to him for the

first introduction of the symbolic invariant-theory, the Weierstrassian ellip-

tic functions, the Cauchy–Hermite applications of contour-integration, the

Riemannian treatment of algebraic functions, the theory of entire func-

tions, and the theory of automorphic functions: and the importation of

novelties continued to occupy his attention. A great traveller and a good

linguist, he loved to meet eminent foreigners and invite them to enjoy

Trinity hospitality: and in this way his post-graduate students had oppor-

tunities of becoming known personally to such men as Felix Klein (who

came frequently), Mittag-Leffler, Darboux and Poincaré. To the students

themselves, he was devoted: young men fresh from the narrow examina-

tion routine of the Tripos were invited to his rooms and told of the latest

research papers: and under his fostering care, many of the wranglers of the

period 1894–1910 became original workers of distinction.

The two authors were very different people. Edmund Whittaker (1874–1956) went on

from Cambridge in 1906 to become the Royal Astronomer in Ireland (then still a part of the

2 For his arguments see A. Forsyth: Old Tripos Days at Cambridge, Math. Gazette 19 162–179 (1935). For a

dissenting opinion see K. Pearson: Old Tripos Days at Cambridge, as seen from another viewpoint, Math.

Gazette 20 27–36 (1936).
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Foreword xix

United Kingdom) and Director of Dunsink Observatory, thereby following in the footsteps

of William Rowan Hamilton. In 1985, on the occasion of the bicentenary of Dunsink, the

then Director, Patrick A. Wayman, singled out Whittaker as the greatest director aside from

Hamilton and one who, despite his relatively short tenure of office, 1906–1912, had achieved

most for the Observatory3 . This appointment brought out his skills as an administrator.

Following this he moved to Edinburgh where he exerted his influence to guide mathematics

there into the new century. Some indication of the success is given by the fact that it was

W.V.D. Hodge, a student of his, who, at the International Congress of Mathematicians in

1954, invited the International Mathematical Union to hold the next Congress in Edinburgh.

Whittaker himself did not live to experience the event which reflected the status in which

Edinburgh was held at the end of his life.

George Neville Watson (1886–1965) on the other hand was a retiring scholar who, after

leaving Cambridge, at least in the flesh, spent four years (1914–1918) in London, and then

became professor in Birmingham where he remained for the rest of his life4 , living a relatively

withdrawn life devoted to his mathematical work and with stamp-collecting and the study

of the history of railways as hobbies. His early work was very much in the direction of

E.W. Barnes and A.G. Greenhill. After Ramanujan’s death he took over from Hardy the

analysis of many of Ramanujan’s unpublished papers, especially those connected with the

theory of modular forms and functions, and of complex multiplication. It is worth remarking

that Greenhill, a student and ardent admirer of James Clerk Maxwell and primarily an

applied mathematician, concerned himself with the computation of singular moduli, and it

was probably he who aroused Ramanujan’s interest in this topic. Watson’s work in this area

is, besides his books, that for which he is best remembered today.

Both authors wrote other books that are still used today. In Whittaker’s case these are his

A Treatise on the Analytical Dynamics of Particles & Rigid Bodies, reprinted in 1999, with

a foreword by Sir William McCrea in the CUP series “Cambridge Mathematical Library”, a

source of much mathematics which is difficult to find elsewhere, and his History of Theories

of the Aether and Electricity which, despite some unconventional views, is an invaluable

source on the history of these parts of physics and the associated mathematics.

Watson, on the other hand, wrote his A Treatise on the Theory of Bessel Functions,

published in 1922, which like Whittaker and Watson has not been out of print since its

appearance. On coming across it for the first time as a student I was taken aback by such

a thick book being devoted to what seemed to be a very circumscribed subject. One of the

Fellows of my college, a physicist, replying to a fellow student who had made a similar

observation, declared that it was a work of genius and he would have been proud to have

written something like it. In the course of the years I have had recourse to it over and over

again and would now concur with this opinion.

Watson’s Bessel Functions, like Whittaker and Watson, despite being somewhat old-

fashioned, has retained a freshness and relevance that has made both of them classics. Unlike

many other books of this period the terminology, although not the style, is that of today. It

is less a Cours d’Analyse and more of a Handbuch der Funktionentheorie. Perhaps my own

experiences can illuminate this. My copy was given to me in 1967 by my mathematics teacher,

3 Irish Astronomical Journal 17 177–178 (1986).
4 It is worth noting that from 1924 on E.W. Barnes was a disputative Bishop of Birmingham.
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Mr Cecil Hawe, after I had been awarded a place to study mathematics in Cambridge. He had

bought it 20 years earlier as a student. During my student years the textbook on second year

analysis was J. Dieudonné’s Foundations of Modern Analysis. People then were prone to be

a bit supercilious at least about the “modern” in the title of Whittaker and Watson.5 At that

time it lay on my bookshelf unused. Five years later I was coming to terms with the theory

of non-analytic automorphic forms, especially with Selberg’s theory of Eisenstein series. At

this point I discovered how useful a book it was, both for the treatment of Bessel functions

and for that of the hypergeometric function. It also has a very useful chapter on Fredholm’s

theory of integral equations which Selberg had used. In the years since then several other

chapters have proved useful, and ones I thought I knew became useful in novel ways. It

became a constant companion. This was mainly in connection with doing mathematics but

it also proved its worth in teaching – for example the chapter on Fourier series gives very

useful results which can be obtained by relatively elementary methods and are suitable for

undergraduate lectures. Dieudonné’s book is tremendous for the university teacher; it gives

the fundamentals of analysis in a concentrated form, something very useful when one has an

overloaded syllabus and a limited number of hours to teach it in. On the other hand it is much

less useful as a “Handbuch” for the working analyst, at least in my experience. Nor was it

written for this purpose. Whittaker and Watson started, in the first edition, as such a book for

teaching but in the second and later editions became that book which has remained on the

bookshelves of generations of working mathematicians, be they formally mathematicians,

natural scientists or engineers.

One aspect that probably contributed to the long popularity of Whittaker and Watson is

the fact that it is not overloaded with many of the topics that are within range of the text.

Thus, for example, the authors do not go into the arithmetic theory of the Riemann zeta-

function beyond the Euler product over primes. Whereas they discuss the 24 solutions to

the hypergeometric equation in terms of the hypergeometric series from Riemann’s point of

view they do not go into H.A. Schwarz’ beautiful solution of Gauss’ problem as to which

of these functions is algebraic. Schwarz’ theory is covered in Forsyth’s Function Theory.

The decision to leave this out must have been difficult for Whittaker for it is a topic close to

his early research. Finally they touch on the theory of Hilbert spaces only very lightly, just

enough for their purposes. On the other hand Fredholm’s theory, well treated here, has often

been pushed aside by the theory of Hilbert spaces in other texts and it is a topic about which

an analyst should be aware.

So, gentle reader, you have in your hands a book which has been useful and instructive to

those working in mathematics for well over a hundred years. The language is perhaps a little

quaint but it is a pleasure to peruse. May you too profit from this new edition.

5 B.L. v.d. Waerden’s Moderne Algebra became simply Algebra from the 1955 edition on; with either name it

remains a great text on algebra.
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Preface to the Fifth Edition

In 1896 Edmund Whittaker was elected to a Fellowship at Trinity College, Cambridge.

Amongst other duties, he was employed to teach students, many of whom would later

become distinguished figures in science and mathematics. These included G.H. Hardy,

Arthur Eddington, James Jeans, J.E. Littlewood and a certain G. Neville Watson. His course

on mathematical analysis changed the way the subject was taught, and he decided to write

a book. So was born A Course of Modern Analysis, which was first published in 1902. It

introduced students to functions of a complex variable, to the ‘methods and processes of

higher mathematical analysis’, much of which was then fairly modern, and above all to special

functions associated with equations that were used to describe physical phenomena. It was

one of the first books in English to describe material developed on the continent, mostly in

France and Germany. Its breadth and depth of coverage were unparalleled at the time and it

became an instant classic. A second edition was called for, but in 1906 Whittaker had left

Cambridge, moving first to Dublin, and then in 1912 to Edinburgh. His various duties, and

no doubt, the moves themselves, impeded work on the new edition, and Whittaker gratefully

accepted the offer from Watson to help him. A greatly expanded second edition duly appeared

in 1915. The third edition, published five years later, was also enlarged by the addition of

chapters, but the fourth edition was not much more than a corrected reprint with added

references. I do not know if a fifth edition was ever planned. Both authors remained active

for many years (Watson wrote, amongst other publications, the definitive Treatise on Bessel

Functions), but perhaps they had nothing more to say to warrant a new edition. Nevertheless,

the book remained a classic, being continually in print and reissued in paperback, first in

1963, and again, in 1996, as a volume of the Cambridge Mathematical Library. It never lost

its appeal and occupied a unique place in the heart and work of many mathematicians (in

particular, me) as an indispensable reference.

The original editions were typeset using ‘hot metal’, and over the years successive reprint-

ings led to the degrading of the original plates. Photographic printing methods slowed this

decline, but David Tranah at Cambridge University Press had the idea to halt, indeed reverse,

the degradation, by rekeying the book and at the same time updating it with new references

and commentary. He spoke to me about this, and we agreed that if he arranged for the rekey-

ing into LaTeX, I would do the updating. I did not need much persuading: it has been a labor

of love. So much so that I have preserved the archaic spelling of the original, along with

the Peano decimal system of numbering paragraphs, as described by Watson in the Preface

to the fourth edition! This will make it straightforward for users of this fifth edition to refer

to the previous one. I have however decided to create a complete reference list and to refer

readers to that rather than to items in footnotes, items that were often hard to identify. Many

xxi
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xxii Preface to the Fifth Edition

of these items are now available in digital libraries and so for many people will be easier to

access than they were in the authors’ time.

I have made no substantial changes to the text: in particular, the original idea of adding

commentaries on the text was abandoned. I have checked and rechecked the mathematics, and

I have added some additional references. I have also written an introduction that describes

what’s in the book and how it may be used in contemporary teaching of analysis. I have also

provided summaries of each chapter, and, within them, make mention of more recent work

where appropriate.

As I said, preparing this edition has been a labor of love. I have also learned a lot of

mathematics, evidence of the enduring quality and value of the original work. It has been

a rewarding experience to edit A Course of Modern Analysis: I hope that it will be equally

rewarding for readers.

Victor H. Moll

2020, New Orleans
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Preface to the Fourth Edition

Advantage has been taken of the preparation of the fourth edition of this work to add a few

additional references and to make a number of corrections of minor errors.

Our thanks are due to a number of our readers for pointing out errors and misprints, and

in particular we are grateful to Mr E. T. Copson, Lecturer in Mathematics in the University

of Edinburgh, for the trouble which he has taken in supplying us with a somewhat lengthy

list.

E. T. W.

G. N. W.

June 18, 1927

The decimal system of paragraphing, introduced by Peano, is adopted in this work. The

integral part of the decimal represents the number of the chapter and the fractional parts are

arranged in each chapter in order of magnitude. Thus, e.g., on pp. 187, 1886 , §9.632 precedes

§9.7 [because 9.632 < 9.7.]

G.N.W.

July 1920

6 in the fourth edition

xxiii
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Preface to the Third Edition

Advantage has been taken of the preparation of the third edition of this work to add a chapter

on Ellipsoidal Harmonics and Lamé’s Equation and to rearrange the chapter on Trigonometric

Series so that the parts which are used in Applied Mathematics come at the beginning of the

chapter. A number of minor errors have been corrected and we have endeavoured to make

the references more complete.

Our thanks are due to Miss Wrinch for reading the greater part of the proofs and to the

staff of the University Press for much courtesy and consideration during the progress of the

printing.

E. T. W.

G. N. W.

July, 1920

xxiv
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Preface to the Second Edition

When the first edition of my Course of Modern Analysis became exhausted, and the Syndics

of the Press invited me to prepare a second edition, I determined to introduce many new

features into the work. The pressure of other duties prevented me for some time from carrying

out this plan, and it seemed as if the appearance of the new edition might be indefinitely

postponed. At this juncture, my friend and former pupil, Mr G. N. Watson, offered to share

the work of preparation; and, with his cooperation, it has now been completed.

The appearance of several treatises on the Theory of Convergence, such as Mr Hardy’s

Course of Pure Mathematics and, more particularly, Dr Bromwich’s Theory of Infinite Series,

led us to consider the desirability of omitting the first four chapters of this work; but we finally

decided to retain all that was necessary for subsequent developments in order to make the

book complete in itself. The concise account which will be found in these chapters is by no

means exhaustive, although we believe it to be fairly complete. For the discussion of Infinite

Series on their own merits, we may refer to the work of Dr Bromwich.

The new chapters of Riemann Integration, on Integral Equations, and on the Riemann

Zeta-Function, are entirely due to Mr Watson: he has revised and improved the new chapters

which I had myself drafted and he has enlarged or partly rewritten much of the matter which

appeared in the original work. It is therefore fitting that our names should stand together on

the title-page.

Grateful acknowledgement must be made to Mr W. H. A. Lawrence, B.A., and Mr C. E.

Winn, B.A., Scholars of Trinity College, who with great kindness and care have read the

proof-sheets, to Miss Wrinch, Scholar of Girton College, who assisted in preparing the index,

and to Mr Littlewood, who read the early chapters in manuscript and made helpful criticisms.

Thanks are due also to many readers of the first edition who supplied corrections to it; and

to the staff of the University Press for much courtesy and consideration during the progress

of the printing.

E.T. Whittaker

July 1915

xxv
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Preface to the First Edition

The first half of this book contains an account of those methods and processes of higher

mathematical analysis, which seem to be of greatest importance at the present time; as will

be seen by a glance at the table of contents, it is chiefly concerned with the properties

of infinite series and complex integrals and their applications to the analytical expression

of functions. A discussion of infinite determinants and of asymptotic expansions has been

included, as it seemed to be called for by the value of these theories in connexion with linear

differential equations and astronomy.

In the second half of the book, the methods of the earlier part are applied in order to

furnish the theory of the principal functions of analysis – the Gamma, Legendre, Bessel,

Hypergeometric, and Elliptic Functions. An account has also been given of those solutions

of the partial differential equations of mathematical physics which can be constructed by the

help of these functions.

My grateful thanks are due to two members of Trinity College, Rev. E. M. Radford, M.A.

(now of St John’s School, Leatherhead), and Mr J. E. Wright, B.A., who with great kindness

and care have read the proof-sheets; and to Professor Forsyth, for many helpful consultations

during the progress of the work. My great indebtedness to Dr Hobson’s memoirs on Legendre

functions must be specially mentioned here; and I must thank the staff of the University Press

for their excellent cooperation in the production of the volume.

E. T. WHITTAKER

Cambridge

1902 August 5

xxvi
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Introduction

The book is divided into two distinct parts. Part I. The Processes of Analysis discusses

topics that have become standard in beginning courses. Of course the emphasis is in concrete

examples and regrettably, this is different nowadays. Moreover the quality and level of the

problems presented in this part is higher than what appears in more modern texts. During the

second part of the last century, the tendency in introductory Analysis texts was to emphasize

the topological aspects of the material. For obvious reasons, this is absent in the present text.

There are 11 chapters in Part I.

For a student in an American university, the material presented here is roughly distributed

along the following lines:

• Chapter 1 (Complex Numbers)

• Chapter 2 (The Theory of Convergence)

• Chapter 3 (Continuous Functions and Uniform Convergence)

• Chapter 4 (The Theory of Riemann Integration)

are covered in Real Analysis courses.

• Chapter 5 (The Fundamental Properties of Analytic Functions; Taylor’s, Laurent’s and

Liouville’s Theorems)

• Chapter 6 (The Theory of Residues, Applications to the Evaluations of Definite Integrals)

• Chapter 7 (The Expansion of Functions in Infinite Series)

are covered in Complex Analysis. These courses usually cover the more elementary aspects

of

• Chapter 12 (The Gamma-Function)

appearing in Part II.

Most undergraduate programs also include basic parts of

• Chapter 9 (Fourier Series and Trigonometric Series)

• Chapter 10 (Linear Differential Equations)

and some of them will expose the student to the elementary parts of

• Chapter 8 ( Asymptotic Expansions and Summable Series)

• Chapter 11 (Integral Equations)

The material covered in Part II is mostly absent from a generic graduate program. Students

interested in Number Theory will be exposed to some parts of the contents in

xxvii
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• Chapter 12 (The Gamma-Function)

• Chapter 13 (The Zeta-Function of Riemann)

• Chapter 14 (The Hypergeometric Function)

and a glimpse of

• Chapter 17 (Bessel Functions)

• Chapter 20 (Elliptic Functions. General Theorems and the Weierstrassian Functions)

• Chapter 21 (The Theta-Functions)

• Chapter 22 (The Jacobian Elliptic Functions).

Students interested in Applied Mathematics will be exposed to

• Chapter 15 (Legendre Functions)

• Chapter 16 (The Confluent Hypergeometric Function)

• Chapter 18 (The Equations of Mathematical Physics)

and some parts of

• Chapter 19 (Mathieu Functions)

• Chapter 23 (Ellipsoidal Harmonics and Lamé’s Equation)

It is perfectly possible to complete a graduate education without touching upon the topics

in Part II. For instance, in the most commonly used textbooks for Analysis, such as Royden

[565] and Wheeden and Zygmund [666] there is no mention of special functions. On the

complex variables side, in Ahlfors [13] and Greene–Krantz [260] one finds some discussion

on the Gamma function, but not much more.

This is not a new phenomenon. Fleix Klein [377] in 1928 (quoted in [91, p. 209]) writes

‘When I was a student, Abelian functions were, as an effect of the Jacobian tradition,

considered the uncontested summit of mathematics, and each of us was ambitious to make

progress in this field. And now? The younger generation hardly knows Abelian functions.

During the last two decades, the trend towards the abstraction is being complemented by

a group of researchers who emphasize concrete examples as developed by Whittaker and

Watson. Among the factors influencing this return to the classics one should include7 the

appearance of symbolic languages and algorithms producing automatic proofs of identities.

The work initiated by Wilf and Zeilberger, described in [518], shows that many identities

have automatic proofs. A second influential factor is the monumental work by B. Berndt,

G. Andrews and collaborators to provide context and proofs of all results appearing in

S. Ramanujan’s work. This has produced a collection of books, starting with [60] and

currently at [25]. The third example in this list is the work developed by J. M. Borwein and

his collaborators in the propagation of Experimental Mathematics. In the volumes [88, 89]

the authors present their ideas on how to transform mathematics into a subject, similar in

flavor to other experimental sciences. The point of view expressed in the three examples

mentioned above has attracted a new generation of researchers to get involved in this point

of view type of mathematics. This is just one direction in which Whittaker and Watson has

been a profound influence in modern authors.

7 This list is clearly a subjective one.
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The remainder of this chapter outlines the content of the book and a comparison with

modern practices.

The first part is named The Processes of Analysis. It consists of 11 chapters. A brief

description of each chapter is provided next.

Chapter 1: Complex Numbers. The authors begin with an informal description of positive

integers and move on to rational numbers. Stating that from the logical standpoint it is

improper to introduce geometrical intuition to supply deficiencies in arithmetical arguments,

they adopt Dedekind’s point of view on the construction of real numbers as classes of rational

numbers, later called Dedekind’s cuts. An example is given to show that there is no rational

number whose square is 2. The arithmetic of real numbers is defined in terms of these

cuts. Complex numbers are then introduced with a short description of Argand diagrams.

The current treatment offers two alternatives: some authors present the real number from a

collection of axioms (as an ordered infinite field) and other approach them from Cauchy’s

theory of sequences: a real number is an equivalence class of Cauchy sequences of rational

numbers. The reader will find the first point of view in [304] and the second one is presented

in [599].

Chapter 2. The Theory of Convergence. This chapter introduces the notion of convergence

of sequences of real or complex numbers starting with the definition of lim
n→∞

xn = L currently

given in introductory texts. The authors then consider monotone sequences of real numbers

and show that, for bounded sequences, there is a natural Dedekind cut (that is, a real number)

associated to them. A presentation of Bolzano’s theorem a bounded sequence of real numbers

contains a limit point and Cauchy’s formulation of the completeness of real numbers; that

is, the existence of the limit of a sequence in terms of elements being arbitrarily close,

is discussed. These ideas are then illustrated in the analysis of convergence of series. The

discussion begins with Dirichlet’s test for convergence: Assume an is a sequence of complex

numbers and fn is a sequence of positive real numbers. If the partial sums
p
∑

n=1

an are uniformly

bounded and fn is decreasing and converges to 0, then
∞
∑

n=1

an fn converges. This is used to give

examples of convergence of Fourier series (discussed in detail in Chapter 9). The convergence

of the geometric series
∞
∑

n=1

xn and the series
∞
∑

n=1

1
ns , for real s, are presented in detail. This

last series defines the Riemann zeta function ζ(s), discussed in Chapter 13. The elementary

ratio test states that
∞
∑

n=1

an converges if lim
n→∞

|an+1/an | < 1 and diverges if the limit is strictly

above 1. A discussion of the case when the limit is 1 is presented and illustrated with the

convergence analysis of the hypergeometric series (presented in detail in Chapter 14). The

chapter contains some standard material on the convergence of power series as well as some

topics not usually found in modern textbooks: discussion on double series, convergence of

infinite products and infinite determinants. The final exercise8 in this chapter presents the

evaluation of an infinite determinant considered by Hill in his analysis of the Schrödinger

8 In this book, Examples are often what are normally known as Exercises and are numbered by section, i.e.,

‘Example a.b.c’. At the end of most chapters are Miscellaneous Examples, all of which are Exercises, and

which are numbered by chapter: thus ‘Example a.b’. This is how to distinguish them.
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equation with periodic potential (this is now called the Hill equation). The reader will find

in [451] and [536] information about this equation.

Chapter 3. Continuous Functions and Uniform Convergence. This chapter also discusses

functions f (x, y) of two real variables as well as functions of one complex variable g(z).
The notion of uniform convergence of a series is discussed in the context of the limiting

function of a series of functions. This is normally covered in every introductory course in

Analysis. The classical M-test of Weierstrass is presented. The reader will also find a test for

uniform convergence, due to Hardy, and its application to the convergence of Fourier series.

The chapter also contains a discussion of the series

g(z) =
∑

m,n

1

(z + 2mω1 + 2nω2)α

which will be used to analyze the Weierstrass ℘-function: one of the fundamental elliptic

functions (discussed in Chapter 20). The chapter contains a discussion on the fact that

a continuous function defined of a compact set (in the modern terminology) attains its

maximum/minimum value. This is nowadays a standard result in elementary analysis courses.

Chapter 4. The Theory of Riemann Integration. The authors present the notion of the Riemann

integral on a finite interval [a, b], as it is currently done: as limiting values of upper and lower

sums. The fact that a continuous function is integrable is presented. The case with finite

number of discontinuities is given as an exercise. Basic results, such as integration by parts,

differentiation with respect to the limits of integration, differentiation with respect to a

parameter, the mean value theorem for integrals and the representation of a double integral

as iterated integral are presented. This material has become standard. The chapter also

contains a discussion on integrals defined on an infinite interval. There is a variety of tests to

determine convergence and criteria that can be used to evaluate the integrals. Two examples

of integral representations of the beta integral (discussed in Chapter 12) are presented. A

basic introduction to complex integration is given at the end of the chapter; the reader is

referred to Watson [650] for more details. This material is included in basic textbooks in

Complex Analysis (for instance, see [13, 26, 155, 260, 455, 552]).

Chapter 5. The Fundamental Properties of Analytic Functions; Taylor’s, Laurent’s and

Liouville’s Theorems. This chapter presents the basic properties of analytic functions that

have become standard in elementary books in complex analysis. These include the Cauchy–

Riemann equations and Cauchy’s theorem on the vanishing of the integral of an analytic

function taken over a closed contour. This is used to provide an integral representation as

f (z) = 1

2πi

∫

Γ

f (ξ)
z − ξ dξ

where Γ is a closed contour containing ξ in its interior. This is then used to establish

classical results on analytic functions such as bounds on the derivatives and Taylor theorem.

There is also a small discussion on the process of analytic continuation and many-valued

functions. This chapter contains also basic properties on functions having poles as isolated

singularities: Laurent’s theorem on expansions and Liouville’s theorem on the fact that every

entire function that is bounded must be constant (a result that plays an important role in

the presentation of elliptic functions in Chapter 20). The Bessel function Jn, defined by its
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integral representation

Jn(x) =
1

2π

∫ 2π

0

cos(nθ − x sin θ) dθ

makes its appearance in an exercise. This function is discussed in detail in Chapter 17. The

chapter also contains a proof of the following fact: any function that is analytic, including

at ∞, except for a number of non-essential singularities, must be a rational function. This

has become a standard result. It represents the most elementary example of characterizing

functions of rational character on a Riemann surface. This is the case of P1, the Riemann

sphere. The next example corresponds to the torus C/L, where L is a lattice. This is the

class of elliptic functions described in Chapters 20, 21 and 22. The reader is referred to

[461, 553, 600, 665] for more details.

Chapter 6. The Theory of Residues: Application to the Evaluation of Definite Integrals. This

chapter presents application of Cauchy’s integral representation of functions analytic except

for a certain number of poles. Most of the material discussed here has become standard.

One of the central concepts is that of the residue of a function at a pole z = zk , defined

as the coefficient of (z − zk)−1 in the expansion of f near z = zk . As a first sign of the

importance of these residues is the statement that the integral of f (z) over the boundary of a

domainΩ is given by the sum of the residues of f insideΩ, the so-called argument principle

which gives the difference between zeros and poles of a function as a contour integral. This

chapter also presents methods based on residues to evaluate a variety of definite integrals

including rational functions of cos θ, sin θ over [0,2π], integrals over the whole real line

via deformation of a semicircle, integrals involving some of the kernels such as 1/(e2πz − 1)
(coming from the Fermi–Dirac distribution in Statistical Mechanics) and 1/(1−2a cos x+a2)
related to Legendre polynomials (discussed in Chapter 15). An important function makes its

appearance as Exercise 17:

ψ(t) =
∞
∑

n=−∞
e−n

2πt,

introduced by Poisson in 1823. The exercise outlines a proof of the transformation rule

ψ(t) = t−1/2ψ(1/t)

known as Poisson summation formula. It plays a fundamental role in many problems in

Number Theory, including the proof of the prime number theorem. This states that, for x > 0,

the number of primes up to x, denoted by π(x), has the asymptotic behavior π(x) ∼ x/log x

as x → ∞. The reader will find in [492] how to use contour integration and the function ψ(t)
to provide a proof of the asymptotic behavior of ψ(t). This function reappears in Chapter 21

in the study of theta functions.

Chapter 7. The Expansion of Functions in Infinite Series. This chapter begins with a result

of Darboux on the expansion of an analytic function defined on a region Ω. For points a, x,
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with the segment from a to x contained in Ω, one has the expansion

φ(n)(0)[ f (z) − f (0)] =
n

∑

k=1

(−1)k−1(z − a)k
[

φ(n−k)(1) f (m)(z) − φn−k(0) f (k)(a)
]

+ (−1)n(z − a)n+1

∫ 1

0

φ(t) f (n+1)(a + t(z − a)) dt,

for any polynomial φ. The formula is then applied to the Bernoulli polynomials currently

defined by the generating function

tezt

et − 1
=

∞
∑

n=0

Bn(z)
n!

tn.

(The text employs the notation φn(t) without giving the value for n = 0.) Darboux’s theorem

then becomes the classical Euler–MacLaurin summation formula

n
∑

j=0

f ( j) =
∫ n

0

f (x) dx +
f (n) + f (0)

2
+

⌊p/2⌋
∑

k=1

B2k

(2k)!
[

f (2k−1)(n) − f (2k−1)(0)
]

+ (−1)p−1

∫ n

0

f (p)(x)
Bp(x − ⌊x⌋)

p!
dx.

The quantity x − ⌊x⌋ is the fractional part of x, denoted by {x}. This formula is used to

estimate partial sums of series of values of an analytic function in terms of the corresponding

integrals. The important example of the Riemann zeta function ζ(s) is presented in Chapter 13.

The chapter contains a couple of examples of expansions of one function in terms of

another one. The first one, due to Bürmann, starts with an analytic function φ(z) defined on

a region and φ(a) = b with φ′(a) , 0. Define ψ(z) = (z − a)/(φ(z) − a), then one obtains the

expansion

f (z) = f (a) +
n−1
∑

k=1

[φ(z) − b]k
k!

(

d

da

)k−1
[

f ′(a)ψk(a)
]

+ Rn

where the error term has the integral representation

Rn =
1

2πi

∫ z

a

∫

γ

[

φ(z) − b

φ(t) − b

]n−1
f ′(t)φ′(z)
φ(t) − φ(z) dt dz,

where γ is a contour in the t-plane, enclosing a and t and such that, for any µ interior to γ,

the equation φ(t) = φ(µ) has a unique solution t = µ. The discussion also contains results of

Teixeira on conditions for the convergence of the series for f (z) obtained by letting n → ∞.

This type of result also contains an expansion of Lagrange for solutions of the equation

µ = a + tφ(µ), for analytic function φ satisfying |tφ(z)| < |z − a|. The theorem states that

any analytic function f of the solution µ can be expanded as

f (µ) = f (a) +
∞
∑

n=1

tn

n!

(

d

da

)n−1

[ f ′(a)φn(a)] .

This expansion has interesting applications in Combinatorics; see [681] for details. The
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last type of series expansion described here corresponds to the classical partial fraction

expansions of a rational function and its extensions to trigonometric functions.

The results of this chapter are then used to prove representations of an entire function f

in the form

f (z) = f (0)eG(z)
∞

∏

n=1

{(

1 − z

an

)

egn (z)
}mn

where an is a zero of f of multiplicity mn and G(z) is an entire function. The function gn(z) is

a polynomial, introduced by Weierstrass, which makes the product converge. An application

to 1/Γ(z) is discussed in Chapter 12.

Chapter 8. Asymptotic Expansions and Summable Series. This chapter presents an intro-

duction to the basic concepts behind asymptotic expansion. The initial example considers

f (x) =
∫ ∞

x

t−1ex−t dt. A direct integration by parts shows that the sum Sn(x) =
∞
∑

k=0

(−1)k k!

xk+1

satisfies, for fixed x, the inequality | f (x) − Sn(x)| ≤ n!/xn+1. Therefore, for x ≥ 2n, one

obtains | f (x) − Sn(x)| < 1/n22n+1. It follows that the integral f can be evaluated with great

accuracy for large values of x by computing the partial sum of the divergent series Sn(x).
This type of behavior is written as f (x) ∼

∞
∑

n=0

Anx−n and the series is called the asymptotic

expansion of f .

The chapter covers the basic properties of asymptotic series: such expansions can be

multiplied and integrated but not differentiated. Examples of asymptotic expansions of

special functions appear in later chapters: for the Gamma function in Chapter 12 and for the

Bessel function in Chapter 17.

The final part of the chapter deals with summation methods, concentrating on methods

assigning a value to a function given by a power series outside its circle of convergence D.

The first example, due to Borel, starts with the identity

∞
∑

n=0

anzn =

∫ ∞

0

e−tφ(tz) dt where φ(u) =
∞
∑

n=0

an

n!
un valid for z ∈ D.

The series
∞
∑

n=0

anzn is said to be Borel summable if the integral on the right converges for z

outside D. For such z, the Borel sum of the series is assigned to be the value of the integral.

The discussion continues with Cesàro summability, a notion to be discussed in the context

of Fourier series in Chapter 9. Extensions by Riesz and Hardy are mentioned. More details

on asymptotic expansions can be found in [468, 508].

Chapter 9. Fourier Series and Trigonometric Series. The authors discuss trigonometrical

series defined as series of the form

1

2
a0 +

∞
∑

n=1

(an cos nx + bn sin nx)

for two sequences of real numbers {an} and {bn}. Such series are named Fourier series if

there is a function f , with finite integral over (−π, π), such that the coefficients are given by

an =
1

π

∫ π

−π
f (t) cos nt dt and bn =

1

π

∫ π

−π
f (t) sin nt dt .
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The chapter contains a variety of results dealing with conditions under which the Fourier

series associated to a function f converges to f . These include Dirichlet’s theorem stating

that, under some technical conditions, the Fourier series converges to 1
2
[ f (x + 0) + f (x − 0)].

This is followed by Fejer’s theorem that the Fourier series is Césaro summable at all points

where the limits f (x±0) exist. The proofs are based on the analysis of the so-called Dirichlet–

Féjer kernel. Examples are provided where there is not a single analytic expression for the

Fourier series. The notion of orthogonality of the sequence of trigonometric functions makes

an implicit appearance in all the proofs. The so-called Riemann–Lebesgue theorem, on the

behavior of Fourier coefficients, is established. This result states that if ψ(θ) is integrable

on the interval (a, b), then lim
n→∞

∫ b

a

ψ(θ) sin(λθ) dθ = 0. The chapter contains results on the

function f which imply pointwise convergence of the Fourier series. The results of Dini and

Jordan, with conditions on the expressions f (x ± 2θ) − f (x ± 0) near θ = 0, are presented.

The reader will find more information about convergence of Fourier series in [368] and in

the treatise [690]. The results of Kolmogorov [381, 382] on an integrable function with a

Fourier series diverging everywhere, as well as the theorem of Carleson [118] on the almost-

everywhere convergence of the Fourier series of a continuous function, are some of the high

points of this difficult subject.

The chapter also includes a discussion on the uniqueness of the representation of a Fourier

series for a function f and also of the Gibbs phenomenon on the behavior of a Fourier series

in a neighborhood of a point of discontinuity of f .

Chapter 10. Linear Differential Equations. This chapter discusses properties of solutions of

second order linear differential equations

d2u

dz2
+ p(z)du

dz
+ q(z)u = 0,

where p, q are analytic functions of z except for a finite number of points. The discussion

is local; that is, in a neighborhood of a point c ∈ C. The points c are classified as ordinary,

where the functions p, q are assumed to be analytic at c and otherwise singular.

The question of existence and uniqueness of solutions of the equation is discussed. The

equation is transformed first into the form
d2
v

dz2
+ J(z)v = 0, by an elementary change of

variables. Existence of solutions is obtained from an integral equation equivalent to the

original problem. An iteration process is used to produce a sequence of analytic functions

{vn}. Then it is shown that, in a neighborhood of an ordinary point, this sequence converges

uniformly to a solution of the equation. Uniqueness of the solution comes also from this

process.

The solutions near an ordinary point are presented in the case of an ordinary singular

point. These are points c ∈ C where p or q have a pole, but (z − c)p(z) and (z − c)2q(z) are

analytic functions in a deleted neighborhood of z = c. The so-called method of Frobenius is

then used to seek formal series solutions in the form

u(z) = (z − c)α
[

1 +

∞
∑

n=1

an(z − c)n
]

.

The so-called indicial equation α2
+ (p0 − 1)α + q0 = 0 and its roots α1, α2, control the
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properties of these formal power series. The numbers p0, q0 are the leading terms of (z−c)p(z)
and (z − c)2q(z), respectively. It is shown that if α1, α2 do not differ by an integer, there are

two formal solutions and these series actually converge and thus represent actual solutions.

Otherwise one of the formal series is an actual solution and there is a procedure to obtain a

second solution containing a logarithmic term. The reader will find in [151] all the details.

It is a remarkable fact that the behavior of the singularities determines the equation itself.

For example, the most general differential equation of second order which has every point

except a1, a2, a3, a4 and ∞ as ordinary points and these five points as regular points, must be

of the form

d2u

dz2
+

{

4
∑

r=1

1 − αr − βr

z − ar

}

du

dz

+

{

4
∑

r=1

αr βr

(z − ar )2
+

Az2
+ Bz + C

(z − a1)(z − a2)(z − a3)(z − a4)

}

u = 0,

for some constants αr , βr , A, B, C. F. Klein [376] describes how all the classical equations

of Mathematical Physics appear in this class. Six classes, carrying the names of their discov-

erers (Lamé, Mathieu, Legendre, Bessel, Weber–Hermite and Stokes) are discussed in later

chapters.

The chapter finally discusses the so-called Riemann P-function. This is a mechanism used

to write a solution of an equation with three singular points and the corresponding roots

of the indicial equation. Some examples of formal rules on P, which allow to transform a

solution with expansion at one singularity to another are presented. The chapter concludes

showing that a second order equation with three regular singular points may be converted to

the hypergeometric equation. This is the subject of Chapter 14.

The modern theory of this program, to classify differential equations by their singularities,

is its extension to nonlinear equations. A singularity of an ordinary differential equation

is called movable if its location depends on the initial condition. An equation is called a

Painlevé equation if its only movable singularities are poles. Poincaré and Fuchs proved

that any first-order equation with this property may be transformed into the Ricatti equation

or it may be solved in terms of the Weierstrass elliptic function. Painlevé considered the

case of second order, transformed them into the form u′′
= R(u,u′, z), where R is a rational

function. Then he put them into 50 canonical forms and showed that all but six may be

solved in terms of previously known functions. The six remaining cases gave rise to the six

Painlevé functions PI, . . . ,PVI. See [261, 310, 336] for details. It is a remarkable fact that

these functions, created for an analytic study, have recently appeared in a large variety of

problems. See [37] and [562] for their appearance in combinatorial questions, [76, 636] for

their relations to classical functions, [640] for connections to orthogonal polynomials, [632]

for their appearance in Statistical Physics. The reader will find in [212] detailed information

about their asymptotic behavior.

Chapter 11. Integral Equations. Given a function f , continuous on an interval [a, b] and

a kernel K(x, y), say continuous on both variables or in the region a ≤ y ≤ x ≤ b and
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vanishing for y > x, the equation

φ(x) = f (x) + λ
∫ b

a

K(x, y)φ(y) dy

for the unknown function φ, is called the Fredholm integral equation of the second kind. The

solution presented in this chapter is based on the construction of functions D(x, y, λ) and

D(λ), both entire in λ, as a series in which the nth-term consists of determinants of order

n × n based on the function K(x, y). The solution is then expressed as

φ(x) = f (x) + 1

D(λ)

∫ b

a

D(x, ξ, λ) f (ξ) dξ.

In particular, in the homogeneous case f ≡ 0, there is a unique solution φ ≡ 0 for those

values of λ with D(λ) , 0. A process to obtain a solution for those values of λ with D(λ) = 0

is also described.

Volterra introduced the concept of reciprocal functions for a pair of functions K(x, y) and

k(x, y; λ) satisfying the relation

K(x, y) + k(x, y; λ) = λ
∫ b

a

k(x, ξ; λ)K(ξ, y)dξ.

Then the solution to the Fredholm equation is given by

f (x) = φ(x) + λ
∫ b

a

k(x, ξ; λ)φ(ξ)dξ.

The last part of the chapter discusses the equation

Φ(x) = f (x) + λ
∫ b

a

K(x, ξ)Φ(ξ) dξ

and the solution is expressed as a series in terms of a sequence of orthonormal functions and

the sequence {λn} of eigenvalues of the kernel K(x, y). In detail, if f (x) = ∑

bnφn(x), then

the solution Φ is given by Φ(x) = ∑ bnλn

λ−λn

φn(x).
The Fredholm equation is written formally asΦ = f +KΦ and this givesΦ = f +K f +K2

Φ.

Iteration of this process gives the so-called Neumann series Φ =
∞
∑

n=0

Kn f , expressing the

unknown Φ in terms of iterations of the functional defined by the kernel K .

The study of Fredholm integral equations is one of the beginnings of modern Functional

Analysis. The reader will find more details in P. Lax [415]. The ideas of Fredholm have

many applications: the reader will find in H. P. McKean [460] a down-to-earth explanation

of Fredholm’s work and applications to integrable systems (such as the Korteweg–de Vries

equation ut = uxxx + 6uux and some special solutions called solitons), to the calculations of

some integrals involving Brownian paths (such as P. Lévy’s formula for the area generated by

a two-dimensional Brownian path) and finally to explain the appearance of the so-called sine

kernel in the limiting distribution of eigenvalues of random unitary matrices. This subject has

some mysterious connections to the Riemann hypothesis as described by B. Conrey [154].

The second part of the book is called The Transcendental Functions and it consists of

12 chapters. A brief description of them is provided next.
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Chapter 12. The Gamma-Function. This function, introduced by Euler, represents an exten-

sion of factorials n! from positive integers to complex values of n. The presentation begins

with the infinite product

P(z) = zeγz
∞

∏

n=1

(

1 +
z

n

)

e−z/n

where γ = lim
n→∞

(

1 + 1
2
+ · · · + 1

n
− log n

)

is nowadays called the Euler–Mascheroni constant.

The product is an entire function of z ∈ C and the Gamma function is defined by Γ(z) =
1/P(z). Therefore Γ(z) is an analytic function except for simple poles at z = 0,−1,2, . . . . The

constant γ is identified as−Γ′(1). The fact that Γ is a transcendental function is reflected by the

fact, mentioned in this chapter, that Γ does not satisfy a differential equation with coefficients

being rational functions of z. The chapter contains proofs of a couple of representations by

Euler

Γ(z) = 1

z

∞
∏

n=1

(

1 +
1

z

)z
(

1 +
z

n

)−1

= lim
n→∞

(n − 1)!
z(z + 1) · · · (z + n − 1)nz .

The functional equation Γ(z+1) = zΓ(z) follows directly from here. Using the value Γ(1) = 1,

this leads to Γ(n) = (n − 1)! for n ∈ N, showing that Γ interpolates factorials.

The chapter also presents proofs of the reflection formula

Γ(z)Γ(1 − z) = π

sin πz

leading to the special value Γ( 1
2
) =

√
π. There is also a discussion of the multiplication

formula due to Gauss

Γ(nz) = (2π)−(n−1)/2n−1/2+nz
n−1
∏

k=0

Γ

(

z +
k

n

)

and the special duplication formula of Legendre

Γ(2z) = 1
√
π

22z−1
Γ(z)Γ(z + 1

2
).

This may be used to derive the relation Γ( 1
3
)Γ( 2

3
) = 2π√

3
. Arithmetical properties of these values

are difficult to establish. The reader is referred to [92] and [166] for an elementary presentation

of the Gamma function, and to [106] for an introduction to issues of transcendence.

There are several integral representations of the Gamma function established in this

chapter. Most of them appear in the collection of integrals by Gradshetyn and Ryzhik [258].

The first one, due to Euler, is

Γ(z) =
∫ ∞

0

tz−1e−t dt,

valid for Re z > 0. This may be transformed to the logarithmic scale

Γ(z) =
∫ 1

0

(

log
1

x

)z−1

dx.
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There is also a presentation of Hankel’s contour integral

Γ(z) = − 1

2i sin πz

∫

C

(−t)z−1e−t dt, z < Z

where C is a thin contour enclosing the positive real axis.

The chapter also contains a discussion of two functions related to Γ: its logarithm log Γ(z)
and the digamma function, ψ(z) = Γ′(z)/Γ(z) = (log Γ(z))′. Integral representations for ψ(z)
include

ψ(z) =
∫ ∞

0

(

e−t

t
− e−zt

1 − e−t

)

dt

=

∫ ∞

0

(

e−x − 1

(1 + x)z

)

dx

x
;

the first one is due to Gauss and the second one to Dirichlet. The chapter also contains a

multi-dimensional integral due to Dirichlet that can be reduced to a single variable problem:
∫

R
n
+

f (t1 + · · · + tn)ta1−1

1
· · · tan−1

n dt1 · · · dtn

=

Γ(a1) · · · Γ(an)
Γ(a1 + · · · + an)

∫ 1

0

f (τ)τa1+· · ·+an−1 dτ.

Other multi-dimensional integrals appear in the modern literature. For a description of a

remarkable example due to Selberg, the reader is referred to [214].

The properties of log Γ(z) presented in this chapter include a proof of the identity

d2

dz2
log Γ(z + 1) =

∞
∑

k=1

1

(z + k)2 ,

showing that Γ(z+1) is log-convex. This property, the functional equation and the value Γ(1) =
1 characterize the Gamma function. The reader will also find two integral representations

due to Binet

log Γ(z) =
(

z − 1

2

)

log z − z +
1

2
log 2π +

∫ ∞

0

(

1

2
− 1

t
+

1

et − 1

)

e−tz

t
dt

and

log Γ(z) =
(

z − 1

2

)

log z − z +
1

2
log 2π + 2

∫ ∞

0

tan−1( t
z
)

e2πt − 1
dt .

Integrals involving log Γ(z) present interesting challenges. The value

∫ 1

0

log Γ(z) dz = log
√

2π

due to Euler, may be obtained from the reflection formula for Γ(z). The generalization of the

previous evaluation to

Ln =

∫ 1

0

(log Γ(z))n dz

is discussed next. The value of L2 is presented in [196] as an expression involving the
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Riemann zeta function and its derivatives. The values of L3 and L4 were obtained in [38] and

they involve more advanced objects: multiple zeta values. At the present time an evaluation

of Ln, for n ≥ 5, is an open question.

The chapter also contains a discussion of the asymptotic behavior of log Γ(z), as a gener-

alization of Stirling’s formula for factorials and also a proof of the expression for the Fourier

series of log Γ(z) due to Kummer. The Barnes G-function, an important generalization of

Γ(z), appears in the exercises at the end of this chapter. A detailed presentation of these and

other topics may be found in [20].

Chapter 13. The Zeta-Function of Riemann. For s = σ + it ∈ C, the function

ζ(s) =
∞
∑

n=1

1

ns

is the Riemann zeta function. This had been considered by Euler for s ∈ R. For δ > 0, the

series defines an analytic function of s on the half-plane σ = Re s ≥ 1 + δ. The function

admits the integral representation

ζ(s) = 1

Γ(s)

∫ ∞

0

xs−1e−x

1 − e−x
dx.

Euler produced the infinite product

ζ(s) =
∏

p

(1 − p−s)−1

where the product extends over all prime numbers. This formula shows that ζ(s) has no zeros

in the open half-plane Re s > 1. The auxiliary function

ξ(s) = 1

2
π−s/2s(s − 1)Γ

( s

2

)

ζ(s)

is analytic and satisfies the identity ξ(s) = ξ(1 − s). This function now shows that ζ(s) has

no zeros for Re s < 0, aside for the so-called trivial zeros at s = −2, −4, −6, . . . coming from

the poles of Γ(s/2). Thus all the non-trivial zeros lie on the strip 0 ≤ Re s ≤ 1. The Riemann

hypothesis states that all the roots of ζ(s) = 0 are on the critical line Re s = 1
2
. At the end of

§13.3 the authors state that:

It was conjectured by Riemann, but it has not yet been proved, that all the zeros of ζ(s) in this

strip lie on the line σ = 1
2
; while it has quite recently been proved by Hardy [279] that an

infinity of zeros of ζ(s) actually lie on σ = 1
2
. It is highly probable that Riemann’s conjecture

is correct, and the proof of it would have far-reaching consequences in the theory of Prime

Numbers.

The reader will find in [93, 153, 458] more information about the Riemann hypothesis. In

a remarkable new connection, it seems that the distribution of the zeros of ζ(s) is related to

the eigenvalues of random matrices [367, 369].

This chapter establishes the identity

ζ(2n) = (−1)n−1B2n(2π)2n
2 (2n)!

where n ∈ N and B2n is the Bernoulli number. This is a generalization of the so-called Basel
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problem ζ(2) = π2/6. The solution of this problem won the young Euler instant fame. It

follows that ζ(2n) is a rational multiple of π2n, therefore this is a transcendental number.

The arithmetic properties of the odd zeta values are more difficult to obtain. Apéry proved

in 1979 that ζ(3) is not a rational number; see [27, 72, 689]. It is still unknown whether

ζ(5) is irrational, but Zudilin [688] proved that one of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is

irrational. It is conjectured that all odd zeta values are irrational.

The literature contains a large variety of extensions of the Riemann zeta function. The

chapter contains information about some of them: the Hurwitz zeta function

ζ(s,a) =
∞
∑

n=0

1

(n + a)s , with 0 < a ≤ 1

with integral representation

ζ(s,a) = 1

Γ(s)

∫ ∞

0

xs−1 e−ax

1 − e−x
dx.

The chapter establishes the values of ζ(−m,a) in terms of derivatives of the Bernoulli

polynomials and presents a proof of Lerch’s theorem

d

ds
ζ(s,a)

�

�

�

s=0
= log

(

Γ(a)
√

2π

)

.

The chapter mentions two further generalizations: one introduced by Lerch (see [414] for

details)

φ(x,a; s) =
∞
∑

n=0

e2πinx

(n + a)s ,

and another one by Barnes [43, 44, 45, 46]

ζN (s,w | a1, . . . ,aN ) =
∑

n1 ,...,nN

1

(w + n1a1 + · · · + nNaN )s
.

The reader will find in [566] more recent information on this function.

Chapter 14. The Hypergeometric Function. This function is defined by the series

F(a, b; c, z) =
∞
∑

n=0

(a)n(b)n
(c)nn!

zn,

provided c is not a negative integer. Here (u)n = Γ(u + n)/Γ(u) is the Pochhammer symbol.

The series converges for |z | < 1 and on the unit circle |z | = 1 if Re (c − a − b) > 0. Many

elementary functions can be expressed in hypergeometric form, for instance

F(1,1; 1; z) = 1

1 − z
and ez = lim

b→∞
F

(

1, b; 1;
z

b

)

.

The chapter begins with Gauss’ evaluation F(a, b; c; 1) in the form

F(a, b; c; 1) = Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b) .
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The function F satisfies the differential equation

z(1 − z)d2u

dz2
+ [c − (a + b + 1)z] du

dz
− abu = 0.

This equation has 0, 1, ∞ as regular singular points and every other point is ordinary. The

generalization to singular points at a, b, c with exponents given by {α,α′}, {β, β′}, {γ, γ ′},
respectively, is the Riemann differential equation

d2
w

dz2
+

[

1 − α − α′

z − a
+

1 − β − β′

z − b
+

1 − γ − γ ′

z − c

]

dw

dz

+

[

αα′(a − b)(a − c)
z − a

+

ββ′(b − c)(b − a)
z − b

+

γγ ′(c − a)(c − b)
z − c

]

w

(z − a)(z − b)(z − c) = 0.

It is shown that
(

z − a

z − b

)α (

z − c

z − b

)γ

F(α + β + γ,α + β′ + γ; 1 + α − α′); (z − a)(c − b)
(z − b)(c − a)

solves the Riemann differential equation. Using the invariance of this equation with respect

to some permutations of the parameters (for example, the exchange of α and α′) produces

from F(a, b; c; z) Kummer’s 24 new solutions of Riemann’s equation, for example

(1 − z)−aF

(

a, c − b; c;
z

z − 1

)

and (1 − z)−bF

(

c − a, b; c;
z

z − 1

)

.

Since the solutions of a second-order differential equation form a two dimensional vector

space, this type of transformation can be used to generate identities among hypergeomet-

ric series. The reader will find in [20, 339, 534, 641] more details on these ideas. The

corresponding equation with four regular singular points at 0, 1, ∞, a is called the Heun

equation

d2u

dx2
+

[

γ

x
+

δ

x − 1
+

ε

x − a

]

du

dx
+

[

αβx − q

x(x − 1)(x − a)

]

u = 0.

The corresponding process on the symmetries of the equation now gives 192 solutions. These

are described in [452]. The reader will find in [190] an example of the appearance of Heun’s

equation in integrable systems.

The chapter also contains a presentation of Barnes’ integral representation

F(a, b; c; z) = 1

2πi

∫ i∞

−i∞

Γ(a + s)Γ(b + s)Γ(−s)
Γ(c + s) (−z)s ds

and its use in producing an analytic continuation of the hypergeometric series. Finally, the

identities of Clausen

[

F(a, b; a + b + 1
2
; x)

]2
= 3F2(2a,a + b,2b; a + b + 1

2
,2a + 2b; x)

where 3F2 is the analog of the hypergeometric series, now with three Pochhammer symbols

on top and two in the bottom of the summand and Kummer’s quadratic transformation

F(2a,2b; a + b + 1
2
; x) = F(a, b; a + b + 1

2
; 4x(1 − x))
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appear as exercises in this chapter. The reader will find in [20] a detailed analysis of these

topics.

Chapter 15. Legendre Functions. This chapter discusses Legendre polynomials Pn(z) and

some of their extensions. These days, the usual starting point for these functions is defining

them as orthogonal polynomials on the interval (−1,1); that is,

∫ 1

−1

Pn(z)Pm(z) dz = 0 if n , m,

plus some normalization in the case n = m. The starting point in this chapter is the generating

function

(1 − 2zh + h2)−1/2
=

∞
∑

n=0

Pn(z)hn.

It is established from here that

Pn(z) =

⌊

n
2

⌋

∑

r=0

(−1)r (2n − 2r)!
2nr!(n − r)!(n − 2r)! zn−2r

showing that Pn(z) is a polynomial of degree n with leading coefficient 2−n (2n
n

)

.

The properties of these polynomials established in this chapter include

Rodriguez formula

Pn(z) =
1

2n n!

(

d

dz

)n

(z2 − 1)n.

Legendre’s differential equation The polynomials Pn(z) are solutions of the differential

equation

(1 − z2)d2u

dz2
− 2z

du

dz
+ n(n + 1)u = 0.

In the new scale x = z2, this equation takes its hypergeometric form

x(1 − x)d2
y

dx2
+

1

2
(1 − 3x)du

dx
+

1

4
n(n + 1)u = 0.

The (more convenient) hypergeometric form Pn(z) = 2F1(n + 1,−n; 1; 1
2
(1 − z) is

also established.

Recurrences The chapter presents proofs of the recurrences

(n + 1)Pn+1(z) − (2n + 1)zPn(z)zPn(z) − nzPn(z) = 0

and

P′
n+1(z) − zP′

n(z) − (n + 1)Pn(z) = 0.

Integral representations A variety of integral representations for the Legendre polynomials

are presented:
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• Schläfli:

Pn(z) =
1

2πi

∮

C

(t2 − 1)n
2n(t − z)n+1

dt

where C is a contour enclosing z. This is then used to prove the orthogonality

relation
∫ 1

−1

Pn(z)Pm(z) dz =

{

0 if n , m

2/(2n + 1) if n = m.

• Laplace:

Pn(z) =
1

π

∫ π

0

[

z + (z2 − 1)1/2 cos θ
]n

dθ

• Mehler–Dirichlet:

Pn(cos θ) = 1

π

∫ θ

−θ

e(n+
1
2
)iϕ

(2 cos ϕ − 2 cos θ)1/2 dϕ.

The formula of Schläfli given above is then used to extend the definition of Pn(z) for n < N.

In order to obtain a single-valued function, the authors introduce a cut from −1 to −∞ in the

domain of integration.

Since the differential equation for the Legendre polynomials is of second order, it has a

second solution independent of Pn(z). This is called the Legendre function of degree n of the

second type. It is denoted by Qn(z). The chapter discusses integral representations and other

properties similar to those described for Pn(z). For example, one has the hypergeometric

expression

Qn(z) =
√
πΓ(n + 1)

2n+1Γ
(

n + 3
2

)

1

zn+1
F

(

n + 1

2
,
n

2
+ 1; n +

3

2
; z−2

)

.

One obtains from here

Q0(z) =
1

2
log

z + 1

z − 1

Q1(z) =
1

2
z log

z + 1

z − 1
− 1.

In general Qn(z) = An(z) + Bn(z) log z+1
z−1

for polynomials An, Bn.

The chapter also includes further generalizations of the Legendre functions introduced by

Ferrer and Hobson. These are called associated Legendre functions. Some of their properties

are presented. There is also a discussion of the addition theorem for Legendre polynomial,

as well as a short section on the Gegenbauer function. The reader will find in the Digital

Library of Mathematical Functions developed at NIST [443] more information about these

functions.

Chapter 16. The Confluent Hypergeometric Function. This chapter discusses the second-order

differential equation with singularities at {0,∞, c} and corresponding exponents
{

{ 1
2
+ m, 1

2
− m}, {−c,0}, {c − k, k}

}

in the limiting situation c → ∞. This is the case

of confluent singularities (the limiting equation now has only two singularities: 0 and ∞,
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with 0 remaining regular and∞ becomes an irregular singularity). After a change of variables

to eliminate the first derivative term, the limiting equation becomes

d2W

dz2
+

(

−1

4
+

k

z
+

1
4
− m2

z2

)

W = 0.

This is called Whittaker equation.

The authors introduce the functions

Mk ,m(z) = z1/2+me−z/2

(

1 +

1
2
+ m − k

1! (2m + 1) z +
( 1

2
+ m − k)( 3

2
+ m − k)

2! (2m + 1)(2m + 2) z2
+ · · ·

)

and show that, when 2m < N, the functions Mk ,m(z) and Mk ,−m(z) form a fundamental set of

solutions.

It turns out that it is more convenient to work with the functions Wk ,m(z) defined by the

integral representation

Wk ,m(z) =
zke−k/2

Γ( 1
2
− k + m)

∫ ∞

0

t−k−1/2+m
(

1 +
t

z

)k−1/2+m

e−t dt .

The reader is referred to [59, Chapter 6] for a readable description of the basic properties of

these functions, called Whittaker functions in the literature.

The chapter also presents a selection of special functions that can be expressed in terms

of Wk ,m(z). This includes the incomplete gamma function

γ(a, x) =
∫ x

0

ta−1e−t dt

that can be expressed as

γ(a, x) = Γ(a) − x(a−1)/2e−x/2W 1
2
(a−1), 1

2
a
(x),

as well as the logarithmic integral function, defined by

li(z) =
∫ x

0

dt

log t
= −(− log z)−1/2z1/2W

− 1
2
,0
(− log z).

This function appears in the description of the asymptotic behavior of the function

π(x) = number of primes p ≤ x.

The prime number theorem may be written as π(x) ∼ li(x) as x → ∞. See [191] for details.

The final example is the function

Dn(z) = 2n/2+1/4z−1/2W n
2
+

1
4
,− 1

4

(

z2

2

)

,

related in a simple manner to the Hermite polynomials, defined by

Hn(z) = (−1)nez
2/2

(

d

dz

)n

e−z
2/2.

See [20] for information on this class of orthogonal polynomials.

www.cambridge.org/9781316518939
www.cambridge.org


Cambridge University Press
978-1-316-51893-9 — A Course of Modern Analysis
E. T. Whittaker , G. N. Watson , Edited by Victor H. Moll 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction xlv

Chapter 17. Bessel Functions. This chapter discusses the Bessel functions defined, for n ∈ Z,

by the expansion

exp

(

z

2

(

t − 1

t

))

=

∞
∑

n=−∞
Jn(z)tn.

Some elementary properties of Jn(z) are derived directly from this definition, such as J−n(z) =
(−1)nJn(z), the series

Jn(z) =
∞
∑

r=0

(−1)r
r! (n + r)!

( z

2

)n+2r

,

and the addition theorem

Jn(y + z) =
∞
∑

m=−∞
Jm(y)Jn−m(z).

The Cauchy integral formula is then used to produce the representation

Jn(z) =
1

2πi

( z

2

)n
∮

C

t−n−1et−z
2/4t dt,

where C is a closed contour enclosing the origin. From here it is possible to extend the

definition of Jn(z) to values n < Z and produce the series representation

Jn(z) =
∞
∑

r=0

(−1)r zn+2r

2n+2rr!Γ(n + r + 1) .

This function is called the Bessel function of the first kind of order n. The integral repre-

sentation of Jn(z) is then used to show that y(z) = Jn(z) is a solution of the differential

equation

d2
y

dz2
+

1

z

dy

dz
+

(

1 − n2

z2

)

y = 0,

called the Bessel equation. In the case n < Z, the functions Jn(z) and J−n(z) form a basis for

the space of solutions. In the case n ∈ Z a second solution, independent of Jn(z), is given by

Yn(z) = lim
ε→0

2πeπi(n+ε)
(

Jn+ε(z) cos(π(n + ε)) − J−(n+ε)(z)
sin(2π(n + ε))

)

.

The functions Yn(z) are called the Bessel functions of the second kind.

This chapter also contains some information on some variations of the Bessel function

such as

In(z) = i−nJn(iz) and Kn(z) =
π

2
[I−n(z) − In(z)] cot(πn).

Among the results presented here one finds

Recurrences such as

Jn−1(z) + Jn+1(z) =
2n

z
Jn(z),

J ′
n(z) =

n

z
Jn(z) − Jn+1(z)
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and

z−n−1Jn+1(z) = −1

z

d

dz
[z−nJn(z)]

which produces relations of Bessel functions of consecutive indices.

Zeros of Bessel functions it is shown that between any two non-zero consecutive roots of

Jn(z) = 0 there is a unique root of Jn+1(z) = 0.

Integral representations such as

Jn(z) =
1

π

∫ π

0

cos(nθ − z sin θ) dθ − sin πn

π

∫ ∞

0

e−nθ−z sinh θ dθ,

where, for n ∈ Z, the second term vanishes.

Hankel representation in the form

Jn(z) =
Γ( 1

2
− n)

2πi
√
π

( z

2

)n
∫

C

(t2 − 1)n−1/2 cos(zt) dt

where C is a semi-infinite contour on the real line.

Evaluation of definite integrals such as one due to Mahler

K0(x) =
∫ ∞

0

t

1 + t2
J0(t x) dt

and an example due to Sonine giving an expression for

∫ ∞

0

x1−mJm(ax)Jm(bx)Jm(cx) dx.

A large selection of integrals involving Bessel functions may be found in [105],

[258] and [544].

Series expansion The chapter also contains information about expansions of a function f (z)
in a series of the form

f (z) =
∞
∑

n=0

anJn(z) or f (z) =
∞
∑

n=0

anJ0(nz).

The reader will find in [20] and [59] more information on these functions at the level

discussed in this chapter. Much more appears in the volume [653].

There are many problems whose solutions involve the Bessel functions. As a current

problem of interest, consider the symmetric group SN of permutations π of N symbols.

An increasing sequence of length k is a collection of indices 1 ≤ i1 < · · · < ik ≤ N such

that π(i1) < π(i2) < · · · < π(ik). Define on SN a uniform probability distribution; that is,

P(π) = 1/N! for each permutation π. Then the maximal length of an increasing subsequence

of π is a random variable, denoted by ℓN (π), and its distribution is of interest. This is the

Ulam problem. Introduce the centered and scaled function

χN (π) =
ℓN (π) − 2

√
N

N1/6 .
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Baik–Deift–Johannson [36] proved that lim
N→∞
P(χN (π) ≤ x) = F(x),where F(x), the so-called

Tracy–Widom distribution, is given by

F(x) = exp

(

−
∫ ∞

x

(y − x)u2(y) dy

)

.

Here u(x) is the solution of the Painlevé PII equation u′′(x) = 2u3(x) + xu(x), with

asymptotic behavior u(x) ∼ Ai(x) as x → ∞. The Airy function Ai(x) is defined by

Ai(x) =
√

xK1/3

(

2
3

x3/2
)

/π
√

3. The reader will find in [37] an introduction to this fasci-

nating problem.

Chapter 18. The Equations of Mathematical Physics. This chapter contains a brief description

of methods of solutions for the basic equations encountered in Mathematical Physics. The

results are given for Laplace’s equation

∆V =
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2

on a domain Ω ⊂ R3. The chapter has a presentation on the physical problems modeled by

this equation.

The results include the integral representation of the solution

V(x, y, z) =
∫ π

−π
f (z + ix cos u + iy sin u,u) du

as the 3-dimensional analog of the form V(x, y) = f (x + iy) + g(x − iy) valid in the 2-

dimensional case as well as an expression for V(x, y, z) as a series with terms of the form

∫ π

−π
(z + ix cos u + iy sin u)n

(

cos mu

sin mu

)

du.

This series is then converted into one of the form

V =

∞
∑

n=0

rn

{

AnPn(cos θ) +
∞
∑

m=1

(

A(m)
n cos mφ + B(m)

n sin mφ
)

Pm
n (cos θ)

}

where Pm
n is Ferrer’s version of the associated Legendre function.

The chapter also contains similar results for Laplace’s equation on a sphere. For this type

of domain, the authors obtain the formula

V(r, θ, φ) = a(a2 − r2)
4π

∫ π

−π

∫ π

0

f (θ ′, φ′) sin θ ′ dθ ′ dφ′

[r2 − 2ar{cos θ cos θ ′ + sin θ sin θ ′ cos(φ − φ′)} + a2]3/2 ,

and refer to Thompson and Tait [628] for further discussions on the theory of Green’s

functions. A similar analysis for an equation on a cylinder also appears in this chapter. In

that case the Legendre functions are replaced by Bessel functions. Some of the material

discussed in this chapter has become standard in basic textbooks in Mathematical Physics;

see for instance [476].

Chapter 19. Mathieu Functions. This chapter discusses the wave equation Vtt = c2
∆V and

assuming a special form V(x, y, t) = u(x, y) cos(pt + ε) of the unknown V in a special system
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xlviii Introduction

of coordinates (ξ, η) (introduced by Lamé) yields an equation for u(x, y). Using the classical

method of separation of variables (u ∗ x, y) = F(ξ)G(η) produces the equation

d2
y

dz2
+ (a + 16q cos(2z)) y = 0.

This is called Mathieu’s equation. The value of a is determined by the periodicity condition

G(η+2π) = G(η) and q is determined by a vanishing condition at the boundary. This type of

equation is now called Hill’s equation, considered by Hill [306] in a study on lunar motion.

Details about this equation appear in [451] and connections to integrable systems appear in

[459, 462, 463].

The authors show that G(η) satisfies the integral equation

G(η) = λ
∫ π

−π
ek cosη cos θG(θ) dθ

and this λ must be a characteristic value as described in Chapter 11.

A sequence of functions, named Mathieu functions, are introduced from the study of

Mathieu’s equation. In the case q = 0, the solutions are {1,cos nz, sin nz}n∈N, and via Fourier

series the authors introduce functions {ce0(z,q), cen(z,q), sen(z,q)}n∈N, reducing to the pre-

vious set as q → 0. Some expressions for the first coefficients in the Fourier series of these

functions are produced (it looks complicated to obtain exact expressions for them).

The authors present basic aspects of Floquet theory (more details appear in [451]). One

looks for solution of Mathieu’s equation in the form y(z) = eµzφ(z), with φ periodic. The

values of µ producing such solutions are obtained in terms of a determinant (called the Hill

determinant). The modern theory yields these values in terms of a discriminant attached

to the equation. The chapter also discusses results of Lindemann, transforming Mathieu’s

equation into the form

4ξ(1 − ξ)u′′
+ 2(1 − 2ξ)u′

+ (a − 16q + 32qξ)u = 0.

This equation is not of hypergeometric type: the points 0, 1 are regular, but ∞ is an irregular

singular point. Finally, the chapter includes some description of the asymptotic behavior of

Mathieu functions. More details appear in [34] and [509].

Chapter 20. Elliptic Functions. General Theorems and the Weierstrassian Functions. Con-

sider two complex numbers ω1, ω2 with non-real ratio. An elliptic function is a doubly-

periodic functions: f (z+2ω1) = f (z+2ω2) = f (z) where its singularities are at worst poles.

The chapter discusses basic properties of the class E of elliptic functions. It is simple to

verify that E is closed under differentiation and that the values of f ∈ E are determined by

its values on the parallelogram with vertices 0, 2ω1, 2ω1 + 2ω2, 2ω2. (Observe the factor

of 2 in the periods.) This is called a fundamental cell and is denoted by L. One may always

assume that there are no poles of the function on the boundary of the cell. The first type of

results deal with basic properties of an elliptic function:

(1) the number of poles is always finite; the same is true for the number of solutions of

f (z) = c. This is independent of c ∈ C and is called the degree of the function f .

(2) any elliptic function without poles must be constant.
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This result is used throughout the chapter to establish a large number of identities. The

fundamental example

℘(z) = 1

z2
+

∑

(

1

(z − ω)2 − 1

ω2

)

where the sum runs over all non-zero ω = 2nω1 + 2mω2, was introduced by Weierstrass. It

is an elliptic function of order 2. It has a double pole at z = 0. It is an even function, so its

zeros in the fundamental cell are of the form ±z0 mod L. A remarkably recent formula for z0

is given by Eichler and Zagier [192]. The ℘ function satisfies a differential equation

(

d℘(z)
dz

)2

= 4℘(z)3 − g2℘(z) − g3,

where g2, g3 are the so-called invariants of the lattice L. This function is then used to

parametrize the algebraic curve y
2
= 4x3

+ ax + b, for a, b ∈ C with a3
+ 27b2

, 0. The

subject is also connected to differential equation by showing that if y = ℘(z), then the inverse

z = ℘−1(y) (given by an elliptic integral) can be written as the quotient of two solutions of

d2
v

dy2
+

(

3

16

3
∑

r=1

(y − er )−2 − 3

8
y

3
∏

r=1

(y − er )−1

)

v = 0.

Here er are the roots of the cubic polynomial appearing in the differential equation for ℘(z).
The addition theorem

℘(z + y) = 1

4

[

℘′(z) − ℘′(y)
℘(z) − ℘(y)

]2

− ℘(z) − ℘(y)

is established by a variety of methods. One presented by Abel deals with the intersection

of the cubic curve y
2
= 4x3

+ ax + b and a line and it is the basis for an addition on

the elliptic curve, as the modern language states. Take two points a, b on the curve and

compute the line joining them. This line intersects the cubic at three points: the third is

declared −a ⊕ b. The points on the curve now form an abelian group: this is expected since

the cubic may be identified with a torus C/L. The remarkable fact is that the addition of

points preserves points with rational coordinates, so this set is also an abelian group. A

theorem of Mordell and Weil states that this group is finitely generated. More information

about the arithmetic of elliptic curves may be found in [331, 461, 592, 593]. The chapter

also contains some information about two additional functions: the Weierstrass ζ-function,

defined by ζ ′(z) = −℘(z) with lim
z→0

ζ(z) − 1/z = 0 and the Weierstrass σ-function, defined

by (logσ(z))′ = ζ(z) with lim
z→0

σ(z)/z = 1. These are the elliptic analogs of the cotangent

and sine functions. The chapter contains some identities for them, for instance one due to

Stickelberger: if x + y + z = 0, then

[ζ(x) + ζ(y) + ζ(z)]2 + ζ ′(x) + ζ ′(y) + ζ ′(z) = 0,

as well as the identity

℘(z) − ℘(y) = −σ(z + y)σ(z − y)
σ2(z)σ2(y) ,
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just to cite two of many. Among the many important results established in this chapter, we

select three:

(1) any elliptic function f can be written in the form R1(℘)+R2(℘)℘′(z), with R1, R2 rational

functions;

(2) every elliptic function f satisfies an algebraic differential equation;

(3) any curve of genus 1 can be parametrized by elliptic functions.

The chapter contains a brief discussion on the uniformization of curves of higher genus. This

problem is discussed in detail in [7, 12, 477].

Chapter 21. The Theta-Functions. The study of the function

ϑ(z,q) =
∞
∑

n=−∞
(−1)nqn2

e2niz

with q = exp(πiτ) and Im τ > 0 was initiated by Euler and perfected by Jacobi in [349]. This

is an example of a theta function. It is a non-constant analytic function of z ∈ C, so it cannot

be elliptic, but it has a simple transformation rule under z 7→ z+ τ. This chapter considers ϑ,

relabelled as ϑ1 as well as three other companion functions ϑ2, ϑ3 and ϑ4. These functions

have a single zero in the fundamental cell L and since they transform in a predictable manner

under the elements of L, it is easy to produce elliptic functions from them. This leads to a

remarkable series of identities such as

ϑ3(z,q) = ϑ3(2z,q4) + ϑ2(2z,q4)

and

ϑ4
2(0,q) + ϑ4

4(0,q) = ϑ4
3(0,q)

that represents a parametrization of the Fermat projective curve x4
+ y

4
= z4. The chapter

also discusses the addition theorem

ϑ3(z + y)ϑ3(z − y)ϑ2
3(0) = ϑ2

3(y)ϑ2
3(z) + ϑ2

1(y)ϑ2
1(z)

(where the second variable q has been omitted) as well as an identity of Jacobi

ϑ′
1(0) = ϑ2(0)ϑ3(0)ϑ4(0).

This corresponds to the triple product identity, written as

∞
∏

n=1

(1 − q2n)(1 + q2n−1p2)(1 + q2m−1p−2) =
∞
∑

n=−∞
qn2

p2n,

using the representation of theta functions as infinite products. The literature contains a

variety of proofs of this fundamental identity; see Andrews [19] for a relatively simple one,

Lewis [433] and Wright [683] for enumerative proofs and [311] for more general information

on the so-called q-series. The chapter also shows that a quotient of theta functions ξ satisfies

the differential equation

(

dξ

dτ

)2

=

(

ϑ2
2(0) − ξ2ϑ2

3(0)
) (

ϑ2
3(0) − ξ2ϑ2

2(0)
)

.
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This is Jacobi’s version of the differential equation satisfied by the Weierstrass ℘-function.

The properties of solutions of this equation form the subject of the next chapter.

The reader will find in Baker [39, 40] a large amount of information on these functions

from the point of view of the 19th century, Mumford [478, 479, 480] for a more modern point

of view and [208, 209] for their connections to Riemann surfaces. Theta functions appeared

scattered in the magnificent collection by Berndt [60, 61, 62, 63, 64] and Andrews–Berndt

[21, 22, 23, 24, 25] on the formulas stated by Ramanujan.

Chapter 22. The Jacobian Elliptic Functions. Each elliptic function f has a degree attached

to it. This is defined as the number of solutions to f (z) = c in a fundamental cell. Constants

have degree 0 and there are no functions of degree 1. A function of degree 2 either has

a double pole (say at the origin) or two simple poles. The first case corresponds to the

Weierstrass ℘ function described in Chapter 20. The second case is discussed in this chapter.

The starting point is to show that any such function y = y(u) may be written as a quotient of

theta functions. From here the authors show that y must satisfy the equation

(

dy

du

)2

=

(

1 − y
2
) (

1 − k2
y

2
)

where k ∈ C is the modulus. An expression for k as a ratio of null-values of theta functions

is provided. Then y = y(u) is seen to come from the inversion of the relation

u =

∫ y

0

(

1 − t2
)−1/2 (

1 − k2t2
)−1/2

dt

and, following Jacobi, the function y is called the sinus amplitudinus and is denoted by

y = sn(u, k). This function becomes the trigonometrical y = sin u when k → 0. Two

companion functions cn(u, k) and dn(u, k) are also introduced. These functions satisfy a

system of nonlinear differential equations

ÛX = Y Z, ÛY = −Z X, ÛZ = −k2XY,

and they are shown to parametrize the curve ξ2
= (1 − η2)(1 − k2η2).

The chapter also contains an addition theorem for these functions, such as

sn(u + v) = sn u cn v dn v + sn v cn u dnu

1 − k2 sn2 u sn2v

and other similar expressions.

The complete elliptic integral of the first kind K(k) (and the complementary one K ′(k))
appears here from sn(K(k), k) = 1. The authors establish an expression for K(k) in terms of

theta values, prove Legendre’s identity

d

dk

(

k(k ′)2 dK

dk

)

= kK,

and present a discussion of the periods of the (Jacobian elliptic) functions sn, cn, dn in terms

of elliptic integrals. The reader will find details of these properties in [90, 461]. Other results

appearing here include product representations of Jacobi functions, the Landen transforma-

tion and several definite integrals involving these functions. There is also a discussion on

the so-called singular values: these are special values of the modulus k such that the ratio
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K ′(k)/K(k) has the form (a + b
√

n)/(c + d
√

n) with a, b, c, d and n ∈ Z. These values of

k satisfy polynomial equations with integer coefficients. The authors state that the study of

these equation lies beyond the scope of this book. The reader will find information about

these equations in [90].

Chapter 23. Ellipsoidal Harmonics and Lamé’s Equation. This chapter presents the basic

theory of ellipsoidal harmonics. It begins with the expression

Θp =
x2

a2
+ θp

+

y
2

b2
+ θp

+

z2

c2
+ θp

− 1

where a > b > c are the semi-axis of the ellipsoid Θp = 0. A function of the form

Πm(Θ) = Θ1 · · ·Θm is called an ellipsoidal harmonic of the first species. The chapter de-

scribes harmonic functions (that is, one satisfying ∆u = 0) of this form. It turns out that

every such function (with n even) has the form

n/2
∏

p=1

(

x2

a2
+ θp

+

y
2

b2
+ θp

+

z2

c2
+ θp

− 1

)

where θ1, . . . , θn/2 are zeros of a polynomial Λ(θ) of degree n/2. This polynomial solves the

Lamé equation

4
√

(a2
+ θ)(b2

+ θ)(c2
+ θ) d

dθ

[

√

(a2
+ θ)(b2

+ θ)(c2
+ θ)dΛ

dθ

]

= [n(n + 1)θ + C]Λ(θ).

The value C is constant and it is shown that there are 1
2
n+1 possible choices. There are three

other types of ellipsoidal harmonics with a similar theory behind them.

The chapter contains many versions of Lamé’s equation: the algebraic form

d2
Λ

dλ2
+

1

2

(

1

a2
+ λ
+

1

b2
+ λ
+

1

c2
+ λ

)

dΛ

dλ
=

[n(n + 1)λ + C]Λ
4(a2
+ λ)(b2

+ λ)(c2
+ λ)

as well as the Weierstrass elliptic form

d2
Λ

du2
= [n(n + 1)℘(u) + B]Λ

and finally the Jacobi elliptic form

d2
Λ

dα2
=

[

n(n + 1)k2sn2α + A
]

Λ.

These equations are used to introduce Lamé functions. These are used to show that there are

2n + 1 ellipsoidal harmonics that form a fundamental system of the harmonic functions of

degree n.

The chapter contains a brief comment on work by Heun [300, 301] mentioning the study

of an equation with four singular points. The reader will find in Ronveaux [563] more

information about this equation.

www.cambridge.org/9781316518939
www.cambridge.org

