

Personalized Machine Learning

Every day we interact with machine learning systems offering individualized predictions for our entertainment, social connections, purchases, or health. These involve several modalities of data, from sequences of clicks to text, images, and social interactions. This book introduces common principles and methods that underpin the design of personalized predictive models for a variety of settings and modalities.

The book begins by revising 'traditional' machine learning models, focusing on how to adapt them to settings involving user data; then presents techniques based on advanced principles such as matrix factorization, deep learning, and generative modeling; and concludes with a detailed study of the consequences and risks of deploying personalized predictive systems.

A series of case studies in domains ranging from e-commerce to health plus handson projects and code examples will give readers understanding and experience with large-scale real-world datasets and the ability to design models and systems for a wide range of applications.

JULIAN MCAULEY has been a Professor at the University of California San Diego since 2014. Personalized Machine Learning is the main research area of his lab, with applications ranging from personalized recommendation to dialog, health care, and fashion design. He regularly collaborates with industry on these topics, including Amazon, Facebook, Microsoft, Salesforce, and Etsy. His work has been selected for several awards including an NSF CAREER award, and faculty awards from Amazon, Salesforce, Facebook, and Qualcomm, among others.

Personalized Machine Learning

JULIAN MCAULEY
University of California San Diego

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New
Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 23846

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781316518908
DOI: 10.1017/9781009003971

© Julian McAuley 2022

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2022

A catalogue record for this publication is available from the British Library.

ISBN 978-1-316-51890-8 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Nota	tion	page ix
1	Introduction		1
	1.1	Purpose of This Book	2
	1.2	For Learners: What Is Covered, and What Is Not	3
	1.3	For Instructors: Course and Content Outline	5
	1.4	Online Resources	7
	1.5	About the Author	8
	1.6	Personalization in Everyday Life	9
	1.7	Techniques for Personalization	12
	1.8	The Ethics and Consequences of Personalization	14
	PAR	T ONE MACHINE LEARNING PRIMER	17
2	Regi	ression and Feature Engineering	19
	2.1	Linear Regression	21
	2.2	Evaluating Regression Models	26
	2.3	Feature Engineering	32
	2.4	Interpreting the Parameters of Linear Models	40
	2.5	Fitting Models with Gradient Descent	42
	2.6	Nonlinear Regression	43
	Exer	cises	46
	Proje	ect 1: Taxicab Tip Prediction (Part 1)	47
3	Clas	sification and the Learning Pipeline	49
	3.1	Logistic Regression	50
	3.2	Other Classification Techniques	52
	3.3	Evaluating Classification Models	54
	3.4	The Learning Pipeline	62

Vİ		Contents	
	3.5	Implementing the Learning Pipeline	72
	Exerc	eises	76
	Proje	ct 2: Taxicab Tip Prediction (Part 2)	77
	PAR	T TWO FUNDAMENTALS OF PERSONALIZED	
	MAC	CHINE LEARNING	79
4	Intro	duction to Recommender Systems	81
	4.1	Basic Setup and Problem Definition	82
	4.2	Representations for Interaction Data	84
	4.3	Memory-Based Approaches to Recommendation	86
	4.4	Random Walk Methods	97
	4.5	Case Study: Amazon.com Recommendations	100
	Exerc	cises	100
	Proje	ct 3: A Recommender System for Books (Part 1)	102
5	Mode	el-Based Approaches to Recommendation	104
	5.1	Matrix Factorization	106
	5.2	Implicit Feedback and Ranking Models	112
	5.3	'User-free' Model-Based Approaches	117
	5.4	Evaluating Recommender Systems	121
	5.5	Deep Learning for Recommendation	125
	5.6	Retrieval	131
	5.7	Online Updates	133
	5.8	Recommender Systems in Python with Surprise and	
		Implicit	134
	5.9	Beyond a 'Black-Box' View of Recommendation	138
	5.10	History and Emerging Directions	139
	Exerc	eises	141
	Proje	ct 4: A Recommender System for Books (Part 2)	142
6	Cont	ent and Structure in Recommender Systems	144
	6.1	The Factorization Machine	145
	6.2	Cold-Start Recommendation	149
	6.3	Multisided Recommendation	152
	6.4	Group- and Socially Aware Recommendation	155
	6.5	Price Dynamics in Recommender Systems	162
	6.6	Other Contextual Features in Recommendation	167
	6.7	Online Advertising	170
	Exercises		174
	Proje	Project 5: Cold-Start Recommendation on Amazon	

		Contents	vii
7	Tem	poral and Sequential Models	177
	7.1	Introduction to Regression with Time Series	178
	7.2	Temporal Dynamics in Recommender Systems	180
	7.3	Other Approaches to Temporal Dynamics	188
	7.4	Personalized Markov Chains	191
	7.5	Case Studies: Markov-Chain Models	
		for Recommendation	193
	7.6	Recurrent Networks	201
	7.7	Neural Network-Based Sequential Recommenders	204
	7.8	Case Study: Personalized Heart-Rate Modeling	210
	7.9	History of Personalized Temporal Models	211
	Exerc		212
	Proje	ct 6: Temporal and Sequential Dynamics in Business	
		Reviews	213
	PA R'	T THREE EMERGING DIRECTIONS IN PERSON	V-
		ZED MACHINE LEARNING	217
8	Perso	onalized Models of Text	219
	8.1	Basics of Text Modeling: The Bag-of-Words Model	220
	8.2	Distributed Word and Item Representations	230
	8.3	Personalized Sentiment and Recommendation	233
	8.4	Personalized Text Generation	237
	8.5	Case Study: Google's Smart Reply	247
	Exerc	cises	249
	Proje	ct 7: Personalized Document Retrieval	250
9	Perso	onalized Models of Visual Data	252
	9.1	Personalized Image Search and Retrieval	253
	9.2	Visually Aware Recommendation and Personalized	
		Ranking	254
	9.3	Case Studies: Visual and Fashion Compatibility	257
	9.4	Personalized Generative Models of Images	267
	Exerc		269
	Proje	ct 8: Generating Compatible Outfits	271
10	The	Consequences of Personalized Machine Learning	273
	10.1	Measuring Diversity	275
	10.2	Filter Bubbles, Diversity, and Extremification	277
	10.3	Diversification Techniques	279
	10.4	Implementing a Diverse Recommender	284

viii		Contents	
	10.5	Case Studies on Recommendation and Consumption	
		Diversity	286
	10.6	Other Metrics Beyond Accuracy	291
	10.7	Fairness	295
	10.8	Case Studies on Gender Bias in Recommendation	300
	Exerc	tises	303
	Proje	ct 9: Diverse and Fair Recommendations	305
	Refer	ences	306
	Index	•	322

vector of labels

Notation

Common Mathematical Symbols

Machine Learning

v	and in Containing
X	matrix of features
x_i	feature vector for the <i>i</i> th sample
$f(x_i)$	model prediction for the <i>i</i> th sample
r_i	residual (error) associated with the <i>i</i> th prediction, $r_i = (y_i - f(x_i))$
θ	vector of model parameters
σ	sigmoid function $\sigma(x) = \frac{1}{1+e^{-x}}$
$ x _p$	p -norm, $ x _p = (\sum_i x_i ^p)^{1/p}$
$\ell_1;\ell_2$	regularizers $\ \theta\ _1$ and $\ \theta\ _2$
λ	regularization hyperparameter
$\mathcal{L};\ell$	likelihood and log-likelihood
	Users and Items
$u \in U$	user u in user set U
$i \in I$	item i in item set I
I_u	set of items rated (or interacted with) by user u
U_i	set of users who have rated (or interacted with) item i
U ; $ I $	number of users and number of items
$R_{u,i}$	measurement (e.g., a rating) associated with an interaction
	between user u and item i
$x_{u,i}$	
$u_{i,l}$	model estimate of the compatibility between user u and item i
seu,i	
,	Recommender Systems
eta_u eta_i	

 $egin{array}{lll} x & Notation \\ egin{array}{lll} \gamma_u & ext{vector of parameters describing a single user } u \\ \gamma_i & ext{vector of parameters describing a single item } i \\ \gamma_U; \gamma_I & ext{parameters for all users } U ext{ or all items } I \\ K & ext{feature dimensionality (or number of latent factors)} \\ \end{array}$

Common Abbreviations

AUC area under the ROC curve (eq. (5.26)) BER balanced error rate (eq. (3.20)) BPR Bayesian personalized ranking (sec. 5.2.2) **CNN** convolutional neural network (sec. 5.5.4) **FVU** fraction of variance unexplained (eq. (2.32)) FN/FNR false negatives/false negative rate (sec. 3.3.1) FP/FPR false positives/false positive rate (sec. 3.3.1) **GAN** generative adversarial network (sec. 9.4) LSTM long short-term memory model (sec. 7.6) MAE mean absolute error (eq. (2.17)) MLE maximum likelihood estimation (sec. 2.2.3) MLP. multilayer perceptron (sec. 5.5.2) **MMR** maximal marginal relevance (sec. 10.3.1) MRR mean reciprocal rank (sec. 5.4.2) MSE mean squared error (sec. 2.2.1) **NDCG** normalized discounted cumulative gain (sec. 5.4.3) **RNN** recurrent neural network (sec. 7.6) ROC receiver-operating characteristic (sec. 3.3.3) **SVM** support vector machine (sec. 3.2) TF-IDF term frequency and inverse document frequency (eq. (8.8)) TN/TNR true negatives/true negative rate (sec. 3.3.1) TP/TPR true positives/true positive rate (sec. 3.3.1)