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In the past few decades, heuristic methods adopted by big tech companies have

complemented existing scientific disciplines to form the new field of Data Science.

This text provides deep and comprehensive coverage of the mathematical theory

supporting the field. Composed of 27 lecture-length chapters with exercises, it

embarks the readers on an engaging itinerary through key subjects in data science,

including machine learning, optimal recovery, compressive sensing (also known as

compressed sensing), optimization, and neural networks. While standard material is

covered, the book also includes distinctive presentations of topics such as reproducing

kernel Hilbert spaces, spectral clustering, optimal recovery, compressive sensing,

group testing, and applications of semidefinite programming. Students and data

scientists with less mathematical background will appreciate the appendices that

supply more details on some of the abstract concepts.

s imon foucart is Professor of Mathematics at Texas A&M University, where

he was named Presidential Impact Fellow in 2019. He has previously written, together

with Holger Rauhut, the influential book A Mathematical Introduction to Compressive

Sensing (2013).
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Preface

Traditional scientific disciplines have lately been complemented by heuristics

adopted in big tech companies to form the new field of Data Science. Now

making its way into university curricula, this loosely defined field immediately

brings computer science and statistics to mind. But mathematics, too, plays

a central role by laying foundations and developing new theories. This book

focuses on the subfield of Mathematical Data Science. Since its content is also

loosely defined, a selection of topics was made to provide summaries only of

Machine Learning, Optimal Recovery, Compressive Sensing (also known as

Compressed Sensing), Optimization, and Neural Networks.

Audience: This book is intended for mathematicians who wish to know bits

and pieces about Data Science. Ideally, it will convince them that there is some

elegant theory behind this trendy field. Although the book may also be valuable

for genuine data scientists in search of mathematical sophistication, it should

primarily serve as a resource for a graduate course on Data Science given in a

department of mathematics. In brief, the most important word of the title is the

first one.

Theme: The common thread throughout this book is the processing of data

given in the form

yi = f (x(i)), i ∈ [1 : m],

toward the ultimate goal of learning/approximating/recovering1 the unknown

function f . In PART ONE (Machine Learning), one mostly thinks of the x(i)

as independent realizations of a random variable and one targets results valid

in expectation or with high probability. In PART TWO (Optimal Recovery),

one thinks instead of the x(i) as fixed entities and one targets results valid

1 The favored terminology seems to depend on one’s inclination and training.

xiii
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xiv Preface

with certainty in a worst-case setting, given some side information about f .

In PART THREE (Compressive Sensing), this side information conveys e.g.

that f is a linear function depending on few variables. In this framework, it is

actually possible to recover f exactly. A shared concern in these first three parts

is complexity (sample or information complexity), i.e., the minimal number m

of data that makes the learning/approximation/recovery task possible. The task

almost invariably requires solving a minimization program, so PART FOUR

(Optimization) reviews the necessary material. Finally, PART FIVE (Neural

Networks) studies tools for the approximation of f that have recently proved

very effective in Deep Learning.

Machine Learning

Optimization

Neural Networks Compressive Sensing

Optimal
Recovery

Unexplored areas

Figure 0.1 Map of the exhibition.

Content: The field of Data Science is too vast to be covered in a single book.

As a matter of fact, each of the five parts picked out here is by itself worth a

whole book, if not more. The executive summaries for each of the five parts

suggest further readings that go into further detail. The selection of topics

was merely dictated by my personal taste and interests. The route through

the selected topics is metaphorically similar to an exhibition’s itinerary; see

Figure 0.1. Indeed, we enter through a hall (of Machine Learning) where the

brightest lights lead us; continuing our path, we stumble upon a vestibule (of

Optimal Recovery) filled with charming but neglected works, before arriving at

a chamber (of Compressive Sensing) that we are particularly fond of; pausing
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Preface xv

for a while, we realize that the previous rooms were all connected to the large

court (of Optimization) that we visit next; finally, as time runs out, we decide

to come back later to see some unexplored areas, but we cannot avoid a stop at

the most fashionable parlor (of Neural Networks).

Unexplored Areas: Many important topics are left out of this biased overview

of mathematical Data Science. They include data assimilation (Law et al.,

2015), data streams (Muthukrishnan, 2005), uncertainty quantification (Smith,

2013), reinforcement learning (Sutton and Barto, 2018), and topological data

analysis (Dey and Wang, 2022), among others.

Novelty: Some of the topics covered here can already be found in book form

in other places. This is particularly true for PART ONE, whose novelty lies

mostly in the presentation. Other topics are unlikely to appear elsewhere. For

instance, PART TWO is rather uncommon—the content of Chapter 10 there

is found only in research articles. PART THREE is original as its presentation

relies fully on a modified version of the standard restricted isometry property.

This property plays the central role in the exposition of One-Bit Compressive

Sensing offered in Chapter 17, which follows the survey article (Foucart, 2017).

Most of PART FOUR is rather standard, except Chapter 22 where semidefinite

programming techniques are applied to Optimal Recovery. The ingredients of

PART FIVE are currently scattered around the literature. Finally, a sizable

appendix is included in order to make the text almost self-contained, so that

outside references are not required in the main text (with the exception of a

few footnotes). It can serve as a toolkit for mathematical scientists who lack

a formal training in high-dimensional geometry, probability theory, functional

analysis, matrix analysis, or approximation theory. The results recalled in the

appendix are of course not new, but some proofs may be innovative (e.g. the

von Neumann trace inequality, the Birkhoff theorem). Some other results may

not be very familiar (e.g. the Korovkin theorem, the Kolmogorov theorem).

Computational illustrations: Arguably, the field of Data Science would be

inconsequential without computations. Although this book focuses on theory,

most of its chapters are accompanied by unpretentious implementations, both

in matlab and in Python. They can be found at

github.com/foucart/Mathematical Pictures at a Data Science Exhibition

Acknowledgment: This book originated from the lecture notes I wrote for a

graduate course entitled Topics in Mathematical Data Science and delivered
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xvi Preface

at Texas A&M University in Fall 2019 and in Fall 2020. Its completion was

eased by a course development grant from the Texas A&M Institute of Data

Science. The first bricks were actually laid while I was visiting the Institute for

Foundations of Data Science at the University of Wisconsin–Madison during

a sabbatical semester in Spring 2019. I am indebted to both these institutes

for their support. I am also grateful to be associated with various grants from

the NSF (DMS-1622134, DMS-1664803, CCF-1934904, DMS-2053172) and

from the ONR (N00014-20-1-2787). Finally, I wish to thank a few colleagues

for their feedback during the book’s development, namely Radu Balan, Albert

Cohen, Rémi Gribonval, Mark Iwen, Philipp Petersen, Sebastien Roch, Jan

Vybı́ral, and Stephan Wojtowytsch.
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Notation

Commonly Used Notation

[i : j] the set {i, i + 1, . . . , j} of integers from i to j

N the set {0, 1, 2, . . .} of natural numbers, including 0

N∗ the set {1, 2, 3, . . .} of natural numbers, excluding 0

Z the set of integers

Q the set of rational numbers

R the set of real numbers

C the set of complex numbers

i the imaginary unit
√
−1

A,S,X generic sets

Sc the complement of S (relative to X ⊇ S, i.e., X \ S)

SΔS′ the symmetric difference (S ∪ S′) \ (S ∩ S′) of S and S′
✶event the number equal to 1 if event is true and to 0 otherwise

✶S the indicator function of a set S (so that ✶S(x) = ✶{x∈S});

it can also represent a vector in {0, 1}n when S ⊆ [1 : n]

|S| the cardinality of a finite set S
F, X generic vector spaces

span(S) the linear subspace spanned by a set S ⊆ F

conv(S) the convex hull of a set S ⊆ F

Ex(S) the set of extreme points of a set S ⊆ F

cl(X) the closure of a set S ⊆ F

vol(S) the volume of a set S ⊆ F

H a Hilbert space

〈x, x′〉 the inner product between two vectors x, x′ ∈ H

S⊥ the linear space orthogonal to the set S ⊆ H

PV the orthogonal projector onto the linear subspaceV
T ∗ the adjoint of a linear operator T defined on H

xvii
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xviii Notation

‖x‖F the norm of a vector x ∈ F

distF(x,S) the distance from x ∈ F to a subset S of F

B(c, r) the ball centered at c ∈ F with radius r ≥ 0

BF the unit ball B(0, 1) of a normed space F

F∗ the dual space of a normed space F

ℓnp the space Rn or Cn normed with ‖x‖p =
[∑n

i=1 |xi|p
]1/p

Bn
p the unit ball of the space ℓnp

(e1, . . . , en) the canonical basis for Rn or Cn

[x1; . . . ; xn] a column vector with entries x1, x2, . . . , xn

F(X,Y) the space of functions from a set X to a set Y
C(X) the space of continuous functions from X to R

Ck(X) the space of k-times continuously differentiable functions

Lp(X) the space of functions with integrable pth power

Wk
p(X) the Sobolev space of functions with kth derivative in Lp(X)

KLip the set of functions f with Lipschitz constant | f |Lip ≤ 1

δx the evaluation functional at a point x ∈ X
μ, ν generic Borel measures

M(X) the set of Borel measures on X
M+(X) the set of nonnegative Borel measures on X
Pn the space of algebraic polynomials of degree ≤ n

Tn the space of trigonometric polynomials of degree ≤ n

A, B, X generic matrices

Ai, j the entry of a matrix A on the ith row and jth column

A∗ the adjoint of a matrix A, defined by A∗
i, j
= A j,i

A⊤ the transpose of a matrix A, defined by A⊤
i, j
= A j,i

A−⊤ the matrix (A−1)⊤ = (A⊤)−1

diag[x1; . . . ; xn] a diagonal matrix with diagonal entries x1, x2, . . . , xn

λ j(A) the jth eigenvalue of A (in nonincreasing order)

σ j(A) the jth singular value of A (in nonincreasing order)

A � 0 means that the matrix A is positive semidefinite

〈A, B〉F the Frobenius inner product between A, B ∈ Rm×n

‖A‖F the Frobenius norm of A ∈ Rm×n

‖A‖2→2 the operator norm of A ∈ Rm×n, i.e., σ1(A)

‖A‖∗ the nuclear norm A ∈ Rm×n, i.e.,
∑m

i=1 σi(A)

ker(A) the null space of (a matrix or linear map) A

ran(A) the range of (a matrix or linear map) A

u ∗ v the (discrete or continuous) convolution product of u and v

log2(x) the logarithm in base 2 of x ∈ (0,+∞)

ln(x) the natural logarithm (in base e) of x ∈ (0,+∞)

exp(x) the exponential of x ∈ R
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Notation xix

⌊x⌋ the floor of x ∈ R, i.e., the integer satisfying x − 1 < ⌊x⌋ ≤ x

⌈x⌉ the ceiling of x ∈ R, i.e., the integer satisfying x ≤ ⌈x⌉ < x + 1

P[E] the probability of an event E
E[Z] the expectation of a random variable Z

V[Z] the variance of a random variable Z

N(0, σ2) the normal distribution with mean zero and variance σ2

g a standard gaussian random variable, i.e., g ∼ N(0, 1)

Machine-Learning-Specific Notation

X the set where the instances x(i) (aka datapoints) live

Y the set where the targets yi (aka observations) live,

often Y = R, Y = {0, 1}, or Y = {−1,+1}
H a hypothesis class, i.e., a subset of F(X,Y)

Loss a function from Y ×Y into [0,+∞) such that L(y, y) = 0

Risk f (h) the risk of a predictor h ∈ H given f ∈ F(X,Y)

S an element of (X ×Y)m representing a sample

R̂iskS(h) the empirical risk of h ∈ H relative to S
εapp the approximation error

εest the estimation error

mH (ε, δ) the sample complexity

vc(H) the Vapnik–Chervonenkis dimension ofH ⊆ F(X, {0, 1})
K a kernel, i.e., a symmetric function defined on X × X

Optimal-Recovery-Specific Notation

K the model set

Q a quantity of interest, typically a linear map

λi the ith observation functional, often equal to δx(i)

Λ the observation map

Δ a recovery map

ErrK ,Q(Λ,Δ) the worst-case error of Δ (for Q over K given Λ)

Err∗K ,Q(Λ) the intrinsic error (for Q over K given Λ)

Err0
K ,Q(Λ) the null error (for Q over K given Λ)

Err∗K ,Q(m) the mth minimal intrinsic error (for Q over K)

mK ,Q(ε, d) the information complexity

VarHK( f ) the variation of f (in the sense of Hardy and Krause)

Disc∗(X) the star discrepancy of a finite set X
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xx Notation

Compressive-Sensing-Specific Notation

ΣN
s the set of s-sparse vectors in RN or CN

supp(x) the support of a vector x in RN or CN

S an index set, i.e., a subset of [1 : N]

xS the vector x whose entries outside of S are zeroed out

Hs the hard thresholding operator with parameter s

A an m × N observation matrix

AS the submatrix of A with columns indexed by S c removed

A an observation map (defined on a space of matrices)

μ the coherence of a matrix

δ ℓ1-restricted isometry constant of a matrix or linear map

α lower ℓ1-restricted isometry constant of a matrix or linear map

β upper ℓ1-restricted isometry constant of a matrix or linear map

Δ a recovery map

dm(K , F) the mth Gelfand width of a set K in a space F

χ(v) the binary vector with ith entry given by ✶{vi>0}

Optimization-Specific Notation

(
xt
)
t≥0 a sequence of vectors produced by some iterative algorithm

∇ f the gradient of a multivariate function f

L the Lagrangian of a minimization program

λ, ν the dual optimization variables, aka Lagrange mutipliers

C∗ the dual cone of a set C
Toep∞(u) the infinite symmetric Toeplitz matrix built from (un)n≥0

ToepN+1(u) the finite symmetric Toeplitz matrix built from (un)N
n=0

Neural-Networks-Specific notation

φ a generic activation function

ReLU the rectified linear unit defined by ReLU(x) = max{x, 0}
nℓ the width of the ℓth layer

x[ℓ] the state vector at the ℓth layer

W [ℓ] the weight matrix (in Rnℓ×nℓ−1 ) producing the ℓth layer

b[ℓ] the bias vector (in Rnℓ ) producing the ℓth layer

Nφ the linear space of functions generated by shallow networks

Nn
φ the set of functions generated by width-n shallow networks

Nn,L
φ

the set of functions generated by width-n, depth-L networks
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