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Executive Summary

What exactly constitutes Data Science is not universally agreed upon, but it is

certainly inseparable from Machine Learning. Some would even consider Data

Science as a subfield of Machine Learning—its intersection with application

domains. This book adopts a different viewpoint: Data Science is seen as

incorporating the field of Machine Learning.

A necessarily incomplete outline of this vast field is presented in the first

of the book’s five parts. It starts by considering the scenario of supervised

learning, in which a to-be-learned function f is available only through point

values yi = f (x(i)) at datapoints x(1), . . . , x(m). In Statistical Learning Theory,

these datapoints are assumed to be realizations of some hidden random variable.

Chapter 1 introduces the main notions attached to this theory, in particular the

PAC-learning framework. Chapter 2 scrutinizes the concept of VC-dimension,

in anticipation of its connection to the problem of binary classification, where

the labels yi take only two values. Chapter 3, of a technical nature, makes this

connection precise by establishing the fundamental theorem of PAC-learning.

Chapter 4 continues to probe the problem of binary classification but drops

the statistical setting. It proposes some tools—in particular, support vector

machines—to separate datapoints and it also acquaints the readers with kernel

methods. Chapter 5 takes a careful look at the associated reproducing kernel

Hilbert spaces. Chapter 6 concludes the tour of supervised learning by way of a

few peeks at the regression problem, featuring real-valued labels yi. Chapter 7

turns to the scenario of unsupervised learning, in which the labels are absent:

the task examined there consists in exploiting similarity information about the

datapoints to cluster them in a meaningful way. Finally, Chapter 8 presents

common techniques to deal with the hindering high-dimensionality of data-

points.

Readers in search of a more detailed exposition to Machine Learning are

referred to the books by Shalev-Shwartz and Ben-David (2014) and Mohri

et al. (2018). For more targeted reading, they can also consult the books by

Hastie et al. (2009), Scholkopf and Smola (2001), and Vershynin (2018).
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Rudiments of Statistical Learning Theory

In the scenario considered in the next few chapters, data reach a learner in the

form

yi = f (x(i)), i ∈ [1 : m].

Both the instances x(i) ∈ X and the targets yi ∈ Y are known to the learner. It

is often the case that X ⊆ R
d is made of vectors containing d features, over-

looking here how these features are created, and that Y is a discrete set whose

elements represent certain classes, in which case the yi are called labels. The

postulate of statistical learning theory is that x(1), . . . , x(m) come as independent

realizations of a single random variable—whose distribution is not available to

the learner. The implicit assumption that the targets yi depend deterministically

on the instances x(i) via yi = f (x(i)) for some function f : X → Y could be

relaxed. It is indeed usual, although not examined in this book, to consider the

couples (x(i), yi) ∈ X×Y as independent realizations of a random variable (x, y)

with a distribution on X ×Y for which E[y|x] = f (x).

1.1 True and Empirical Risks

The learner’s objective is to exploit the data given through the training sample

S = ((x(1), y1), . . . , (x(m), ym)) and to produce a function hS : X → Y, called

a predictor, as a substitute for the unknown function f : X → Y. The map

∆ : S ∈ (X × Y)m �→ hS ∈ F(X,Y) does not need to be computationally

feasible at this point, so ∆ is referred to as a learning map rather than a learning

algorithm. The performance of a given predictor h ∈ F(X,Y) is assessed by

how small its risk is. The latter, also called the generalization error, is defined

relative to a loss function by

Risk f (h) := E[Loss(h(x), f (x))], (1.1)
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1.1 True and Empirical Risks 5

where the expectation is taken over a random variable x whose distribution is

the one that generated the x(i). The loss function, defined on Y ×Y and taking

values in [0,∞), should be small when its two inputs are close and large when

they are far. For binary classification, i.e., the situation where Y = {0, 1} or

Y = {−1,+1}, a popular choice is the 0/1-loss, given by

Loss0/1(y, y′) = ✶{y�y′} =

{
1 if y � y′,

0 if y = y′.

For regression, i.e., the situation where Y = R, a popular choice is the square

loss, given by

Losssq(y, y′) = (y − y′)2.

Notice that the learner does not have access to the true risk defined in (1.1),

since the distribution generating x(1), . . . , x(m) is not available. But the training

sample S = ((x(1), y1), . . . , (x(m), ym)) supplies an ersatz known as the empirical

risk, which is defined by

R̂iskS(h) :=
1

m

m∑

i=1

Loss(h(x(i)), yi).

Without constraint on h ∈ F(X,Y), minimizing the empirical risk is easy: one

can create a predictor hS yielding R̂iskS(hS) = 0 by forcing hS(x(i)) = yi for

each i ∈ [1 : m] and choosing hS(x) arbitrarily for x � {x(1), . . . , x(m)}, e.g. as a

constant there. However, such a predictor will not generalize well, in the sense

that the true risk (aka generalization error) will not be small.

This phenomenon is attenuated by calling upon a prior belief that realistic

predictors are close to functions from a certain hypothesis classH ⊆ F(X,Y).

Thus, with the constraint that h belongs toH , the empirical risk minimization

strategy offers the natural learning map defined by

∆erm
H

: S ∈ (X ×Y)m �→ argmin
h∈H

R̂iskS(h) ∈ H .

The risk of this empirical risk minimizer decomposes as

Risk f (∆
erm
H

(S)) = εapp + εest,

i.e., as the sum of the approximation error εapp ≥ 0 and the estimation error

εest ≥ 0, respectively given by

εapp := inf
h∈H

Risk f (h),

εest := Risk f (∆
erm
H

(S)) − inf
h∈H

Risk f (h).

The approximation error εapp is independent of the sample S and reflects how
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6 Rudiments of Statistical Learning Theory

well f can be approximated by elements from the given hypothesis class. The

estimation error εest is the object of the considerations that follow.

1.2 PAC-Learnability

In the probably approximately correct (PAC for short) framework, one attempts

to make εest smaller than a prescribed accuracy ε ∈ (0, 1) with a prescribed

confidence δ ∈ (0, 1). It is sometimes required to do so via an efficient learning

algorithm, i.e., an algorithm whose runtime is polynomial in ε−1, δ−1, and the

sizes of the problem. This is not enforced in the formal definition below, in

which the probability is taken over x(1), . . . , x(m), understood as independent

random variables.

Definition 1.1 A hypothesis classH ⊆ F(X,Y) is called PAC-learnable with

respect to a loss function Loss : Y ×Y → [0,∞) if there exists a learning map

∆ : S ∈ (X ×Y)m �→ hS ∈ H such that, for all f : X → Y and all ε, δ ∈ (0, 1),

P

[
Risk f (hS) − inf

h∈H
Risk f (h) ≤ ε

]
≥ 1 − δ,

independently of the probability distribution on X, provided that

m ≥ mH (ε, δ)

for some mH : (0, 1)2 → N
∗ growing at most polynomially in ε−1 and δ−1.

The smallest possible function mH appearing in this definition is referred to

as the sample complexity. For binary classification with the 0/1-loss, it would

have been equivalent to state the definition with ∆ specifically taken to be the

empirical risk minimization map. This will be revealed by the fundamental

theorem of PAC-learning in Chapter 3. As a prelude to this theorem, the next

result shows that a class of boolean functions that is finite is automatically

PAC-learnable for the 0/1-loss. This is an example of a distribution-free result,

since no assumption on the underlying probability distribution is made.

Proposition 1.2 Given a finite set H ⊆ F(X, {0, 1}) and a loss function with

values in [0, 1], the empirical risk minimization strategy provides a learning

mapS ∈ (X×Y)m �→ hS ∈ H such that, for all boolean functions f : X → {0,1}

and all ε, δ ∈ (0,1),

P

[
Risk f (hS) − inf

h∈H
Risk f (h) ≤ ε

]
≥ 1 − δ (1.2)
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1.2 PAC-Learnability 7

provided that

m ≥
2 ln(2|H|/δ)

ε2
. (1.3)

Proof The inequality (1.2) shall be established in the equivalent form

P := P
[
Risk f (hS) − Risk f (h∗) > ε

]
≤ δ, (1.4)

where h∗ ∈ H is chosen so that Risk f (h∗) is equal to infh∈H Risk f (h) (or is

arbitrarily close to it in case the infimum is not achieved). From the definition

of empirical risk minimization, one observes that R̂iskS(hS) ≤ R̂iskS(h∗) and,

in turn, that

Risk f (hS) − Risk f (h∗) =
(

Risk f (hS) − R̂iskS(hS)
)
+
(
R̂iskS(hS) − Risk f (h∗)

)

≤
(

Risk f (hS) − R̂iskS(hS)
)
+
(
R̂iskS(h∗) − Risk f (h∗)

)

≤ 2 sup
h∈H

|R̂iskS(h) − Risk f (h)|.

As a consequence, one has

P ≤ P

[
sup
h∈H

|R̂iskS(h) − Risk f (h)| >
ε

2

]

= P

[
|R̂iskS(h) − Risk f (h)| >

ε

2
for some h ∈ H

]
. (1.5)

For a fixed h ∈ H , the Hoeffding inequality (see Theorem B.6) yields

P

[
|R̂iskS(h) − Risk f (h)| >

ε

2

]

= P

[∣∣∣∣
1

m

m∑

i=1

Loss(h(x(i)), f (x(i))) − E[Loss( f (x), h(x))]
∣∣∣∣ >
ε

2

]

≤ 2 exp

(
−
ε2m

2

)
,

having used the fact that the random variables Loss(h(x(i)), f (x(i))) take values

in [0, 1]. A union bound in (1.5) now implies that

P ≤ 2|H| exp

(
−
ε2m

2

)
.

This is bounded above by δ exactly when m ≥ 2 ln(2|H|/δ)/ε2, i.e., when

Condition (1.3) is fulfilled. �
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8 Rudiments of Statistical Learning Theory

1.3 Validation

With m and δ being fixed, it is apparent from (1.3) that enlarging the class H

has the effect of increasing (a bound on) the estimation error εest. At the same

time, enlarging the classH has the effect of decreasing the approximation error

εapp. Thus, in order to keep the total error εapp + εest low, a compromise is to

be found for the size of H . This observation exemplifies the bias-complexity

tradeoff. In more general situations, it remains intuitive that a small hypothesis

class is not flexible enough to perform well on the sample (this phenomenon

is called underfitting), while a large hypothesis class can match the sample

perfectly but perform poorly on other datapoints (this phenomenon is called

overfitting); see Figure 1.1 for an illustration.

Figure 1.1 Data fitting with univariate polynomials results in underfitting when

the degree is low (left) and in overfitting when the degree is high (right).

Even after having decided on a hypothesis class H and a learning map ∆,

the learner will still find it difficult to evaluate the true risk of the predictor

h = ∆(S), as the definition (1.1) involves two unknown entities: the function f

and the distribution over which the expectation is taken. The natural ersatz

R̂iskS is not a reliable substitute for Risk f (h) because the learning map ∆

is designed to make this empirical risk small, yet its performance on unseen

datapoints remains uncertain. A heuristic workaround consists in partitioning

the sample S into a training set T and a validation setV. The training set T is

used to produce the predictor h = ∆(T ), whose performance is then assessed

by the empirical risk R̂iskV(h) relative to the validation setV. Cross-validation

actually consists in partitioning S into K groupsU1, . . . ,UK of roughly equal

size and to repeat, for each k ∈ [1 : K], the above procedure with S \ Uk and

Uk as training and validation sets, respectively.
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Exercises 9

Exercises

1.1 Given h ∈ F(X,Y), verify that the expectation of the empirical risk over

the independent random variables x(1), . . . , x(m) agrees with the true risk,

i.e., that E[R̂iskS(h)] = E[Loss(h(x), f (x))]. Verify also that its variance

satisfies V[R̂iskS(h)] = V[Loss(h(x), f (x))]/m.

1.2 LetH be the hypothesis class of affine functions on R
d, i.e., of functions

of the form

x ∈ Rd �→ a0 + a1x1 + · · · + ad xd ∈ R.

For the square loss, observe that the empirical risk minimization strategy

reduces to the least-squares problem of minimizing ‖y − Xa‖2
2

over all

a ∈ Rd+1 for some matrix X ∈ Rm×(d+1) to identify.

1.3 Let a sampleS be partitioned into a training setT and a validation setV.

Considering the hypothesis class of affine functions and the square loss,

let hT denote the empirical risk minimizer relative to T . Prove that the

expected empirical risk of hT is no larger on T than onV, i.e., that

E

[
R̂iskT (hT )

]
≤ E

[
R̂iskV(hT )

]
,

with expectation taken over all the independent random variables x(i).

1.4 When (x, y) is a random variable over X × Y, the risk of a predictor

h : X → Y is defined relative to a loss function via

Risk(h) := E[Loss(h(x), y)],

with expectation now taken jointly over x and y.

For regression with the square loss, defining f (x) := E[y|x] to be the

conditional probability of y given x, establish the identity

Risk(h) = Risk( f ) + E
[
(h(x) − f (x))2

]
,

showing that f is an optimal predictor.

For classification with the 0/1-loss, prove that an optimal predictor is

given by the Bayes predictor defined for x ∈ X by

f (x) =

{
1 if P[y = 1|x] ≥ P[y = 0|x],

0 otherwise.
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Vapnik–Chervonenkis Dimension

While the concept of dimension usually applies to sets, the concept of Vapnik–

Chervonenkis dimension, or VC-dimension for short, applies to families of

sets (as subsets of some bigger set X). Since one can identify a subset of

X with its indicator function via the correspondence between S ⊆ X and

✶S ∈ F(X, {0, 1}), the concept of VC-dimension applies in a similar way to

families of boolean functions. This is the viewpoint taken in Machine Learning,

where a family of boolean functions is thought of as a hypothesis class. The

fundamental theorem of PAC-learning, to be covered in the next chapter, will

reveal the importance of the concept of VC-dimension: a hypothesis class is

PAC-learnable if and only if it has a finite VC-dimension.

2.1 Definitions

Here is the formal definition of VC-dimension that adopts the viewpoint of

boolean functions.

Definition 2.1 Let H be a family of boolean functions defined on a set X.

A subset Y of X is said to be shattered by H if any g : Y → {0, 1} takes the

form g = h|Y for some h ∈ H . The VC-dimension ofH is the largest size of a

subset shattered byH . In short,

vc(H) = sup
{
m ∈ N∗ : τH (m) = 2m},

where the shatter function (aka growth function) is defined by

τH (m) = max
|Y|=m

∣∣∣{h|Y, h ∈ H
}∣∣∣ .

By adopting the viewpoint of sets rather than boolean functions, one can

repeat the definition of VC-dimension as the equivalent statement below, which
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