Contents

Preface ix
Acknowledgments xii

1 Introduction 1
1.1 Discrete, Phase Retrieval Problems 8
1.2 Conditioning and Ill-Posedness of the Discrete, Classical, Phase Retrieval Problem 13
1.3 Algorithms for Finding Intersections of Sets 16
1.4 Numerical Experiments 21
1.5 Comparison to the Continuum Phase Retrieval Problem 28
1.6 Outline of the Book 31
1.A Appendix: Factoring Polynomials in Several Variables 31
1.B Appendix: The Condition Number of a Problem 33

PART I THEORETICAL FOUNDATIONS 37

2 The Geometry Near an Intersection 39
2.1 The Tangent Space to the Magnitude Torus 42
2.2 The Intersection of the Tangent Bundle and the Support Constraint 48
2.3 Numerical Examples 54
2.A Appendix: The Tangent and Normal Bundles for Submanifolds of \(\mathbb{R}^N \) 60
2.B Appendix: Fast Projections onto the Tangent and Normal Bundles 63

3 Well-Posedness 65
3.1 Conditioning and Transversality 68
3.2 Examples of Ill-Posedness 76
Table of Contents

4 **Uniqueness and the Nonnegativity Constraint** 85
 4.1 Support and the Autocorrelation Image 87
 4.2 Uniqueness for Nonnegative Images 90
 4.3 Nonnegative Images and the 1-Norm 93
 4.4 The 1-Norm on the Tangent Space 94
 4.5 Transversality of $\mathcal{A}_a \cap \partial B_+$ and $\mathcal{A}_a \cap \partial B_1^1$ 97

5 **Some Preliminary Conclusions** 103

PART II ANALYSIS OF ALGORITHMS FOR PHASE RETRIEVAL

6 **Introduction to Part II** 109

7 **Algorithms for Phase Retrieval** 115
 7.1 Classical Alternating Projection 116
 7.2 Hybrid Iterative Maps 118
 7.3 Nonlinear Submanifolds 129
 7.4 A Noniterative Approach to Phase Retrieval 134
 7.4 Appendix: Alternating Projection and Gradient Flows 140

8 **The Discrete, Classical, Phase Retrieval Problem** 147
 8.1 Hybrid Iterative Maps in Model Problems 149
 8.2 Linearization of Hybrid Iterative Maps Along the Center Manifold 165
 8.3 Further Numerical Examples 170

9 **Phase Retrieval with the Nonnegativity Constraint** 191
 9.1 Hybrid Iterative Maps Using Nonnegativity 192
 9.2 Numerical Examples 194
 9.3 Algorithms Based on Minimization in the 1-Norm 199
 9.A Appendix: An Efficient Method for Projection onto a Ball in the 1-Norm 203

10 **Asymptotics of Hybrid Iterative Maps** 205
 10.1 Stagnation 206
 10.2 Numerical Examples 211

PART III FURTHER PROPERTIES OF HYBRID ITERATIVE ALGORITHMS AND SUGGESTIONS FOR IMPROVEMENT

11 **Introduction to Part III** 223

12 **Statistics of Algorithms** 226
 12.1 Statistics of Phases 228
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2 Statistics of Ensembles</td>
<td>230</td>
</tr>
<tr>
<td>12.3 Averaging to Improve Reconstructions</td>
<td>239</td>
</tr>
<tr>
<td>12.4 Some Conclusions</td>
<td>247</td>
</tr>
<tr>
<td>13 Suggestions for Improvements</td>
<td>249</td>
</tr>
<tr>
<td>13.1 Use of a Sharp Cutoffs</td>
<td>250</td>
</tr>
<tr>
<td>13.2 External Holography</td>
<td>255</td>
</tr>
<tr>
<td>13.3 A Geometric Newton’s Method for Phase Retrieval</td>
<td>264</td>
</tr>
<tr>
<td>13.4 Implementation of the Holographic Hilbert Transform Method</td>
<td>269</td>
</tr>
<tr>
<td>13.A Appendix: Proof of Theorem 13.6</td>
<td>289</td>
</tr>
<tr>
<td>14 Concluding Remarks</td>
<td>292</td>
</tr>
<tr>
<td>15 Notational Conventions</td>
<td>297</td>
</tr>
<tr>
<td>References</td>
<td>300</td>
</tr>
<tr>
<td>Index</td>
<td>305</td>
</tr>
</tbody>
</table>