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1 Counting Processes

In this chapter we introduce the concept of a counting process. For references to the

literature on counting processes and more general point processes, see the Notes at the

end of the chapter.

1.1 Generalities and the Poisson Process

Our main objective is to study point processes on the real positive line, and the simplest

type of a point process is a counting process. The formal definition is as follows.

Definition 1.1 A random process {Nt ; t ∈ R+} is a counting process if it satisfies

the following conditions.

1. The trajectories of N are, with probability one, right continuous and piecewise

constant.

2. The process starts at zero, so

N0 = 0.

3. For each t

∆Nt = 0, or ∆Nt = 1.

with probability one. Here ∆Nt denotes the jump size of N at time t, or more formally

∆Nt = Nt − Nt−.

In more pedestrian terms, the process N starts at N0 = 0 and stays at the level 0 until

some random time T1 when it jumps to NT1
= 1. It then stays at level 1 until the another

random time T2 when it jumps to the value NT2
= 2 etc. We will refer to the random

times {Tn; n = 1,2, . . .} as the jump times of N . Counting processes are often used to

model situations where some sort of well-specified events are occurring randomly in

time. A typical example of an event could be the arrival of a new customer at a queue,

an earthquake in a well-specified geographical area, or a company going bankrupt. The

interpretation is then that Nt denotes the number of events that have occurred in the

time interval [0, t]. Thus Nt could be the number of customers who have arrived at

a certain queue during the interval [0, t] etc. With this interpretation, the jump times

{Tn; n = 1,2, . . .} are often also referred to as the event times of the process N .

Before we go on to the general theory of counting processes, we will study the Poisson
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4 Counting Processes

process in some detail. The Poisson process is the single most important of all counting

processes, and among counting processes it occupies very much the same place that the

Wiener process does among diffusion processes. We start with some elementary facts

concerning the Poisson distribution.

Definition 1.2 A random variable X is said to have a Poisson distribution with

parameter α if it takes values among the natural numbers, and the probability distribution

has the form

P (X = n) = e
−α α

n

n!
, n = 0,1,2, . . .

We will often write this as X ∼ Po(α).

We recall that, for any random variable X , its characteristic function φX is defined

by

φX (u) = E
[

e
iuX

]

, u ∈ R,

where i is the imaginary unit. We also recall that the distribution of X is completely

determined by φX . We will need the following well-known result concerning the Poisson

distribution.

Proposition 1.3 Let X be Po(α). Then the characteristic function is given by

φX (u) = e
α(eiu−1).

The mean and variance are given by

E [X] = α, Var(X) = α.

Proof This is left as an exercise. �

We now leave the Poisson distribution and go on to the Poisson process.

Definition 1.4 Let (Ω,F ,P) be a probability space with a given filtration F = {Ft }t≥0,

and let λ be a real number with λ > 0. A counting process N is a Poisson process with

intensity λ with respect to the filtration F if it satisfies the following conditions.

1. N is adapted to F.

2. For all s ≤ t the random variable Nt − Ns is independent of Fs .

3. For all s ≤ t, the conditional distribution of the increment Nt − Ns is given by

P (Nt − Ns = n |Fs ) = e
−λ(t−s) λ

n(t − s)n

n!
, n = 0,1,2, . . . (1.1)

In concrete terms this says that the increment Nt−Ns is Poisson with parameter λ(T−s)

and independent of Fs . In the definition above we encounter the somewhat forbidding

looking formula (1.1). As it turns out, there is another way of characterizing the Poisson

process, which is much easier to handle than distributional specification above. This

alternative characterization is done in terms of the “infinitesimal characteristics” of the

process, and we now go on to discuss this.
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1.2 Infinitesimal Characteristics 5

1.2 Infinitesimal Characteristics

One of the main ideas in modern process theory is that the “true nature” of a process

is revealed by its “infinitesimal characteristics”. For a diffusion process the infinitesimal

characteristics are the drift and the diffusion terms. For a counting process, the natural

infinitesimal object is the “predictable conditional jump probability per unit time”, and

informally we define this as

P (dNt = 1 |Ft− )

dt
.

The increment process dN is informally interpreted as

dNt = Nt − Nt−dt,

and the sigma algebra Ft− is defined by

Ft− =

∨

0≤s<t

Fs (1.2)

The reason why we define dNt as Nt − Nt−dt instead of Nt+dt − Nt is that we want the

increment process dN to be adapted. The term “predictable” will be very important later

on, and will be given a precise mathematical definition. We also note that the increment

dNt only takes two possible values, namely dNt = 0 or dNt = 1 depending on whether or

not an event has occurred at time t. We can thus write the conditional jump probability

as an expected value, namely as

P (dNt = 1 |Ft− ) = E
P [dNt | Ft−] .

Suppose now that N is a Poisson process with intensity λ, and that h is a small real

number. According to the definition we then have

P (Nt − Nt−h = 1 |Ft−h ) = e
−λhλh.

Expanding the exponential we thus have

P (Nt − Nt−h = 1 |Ft−h ) = λh

∞
∑

n=0

(−λh)n

n!
.

As h becomes “infinitesimally small” the higher-order terms can be neglected and as a

formal limit when h → dt we obtain

P (dNt = 1 |Ft− ) = λdt, (1.3)

or equivalently

E
P [dNt | Ft−] = λdt . (1.4)

This entire discussion has obviously been very informal, but nevertheless the formula

(1.4) has a great intuitive value. It says that we can interpret the parameter λ as the

conditional jump intensity. In other words, λ is the (conditional) expected number of

jumps per unit of time. The point of this is twofold.
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6 Counting Processes

• The concept of a conditional jump intensity is easy to interpret intuitively, and it can

also easily be generalized to a large class of counting processes.

• The distribution of a counting process is completely determined by its conditional

jump intensity, and equation (1.4) is much simpler than that equation (1.1).

The main project of this text is to develop a mathematically rigorous theory of counting

processes, building on the intuitively appealing concept of a conditional jump intensity.

As the archetypical example we will of course use the Poisson process, and to start

with we need to reformulate the nice but very informal relation (1.4) to something

more mathematically precise. To do this we start by noting (again informally) that if we

subtract the conditional expected number of jumps λdt from the actual number of jumps

dNt then the difference

dNt − λdt,

should have zero conditional mean. The implication of this is that we are led to conjecture

that if we define the process M by

{

dMt = dNt − λdt,

M0 = 0,

or, equivalently, on integrated form as

Mt = Nt − λt,

then M should be a martingale. This conjecture is in fact true.

Proposition 1.5 Assume that N is an F- Poisson process with intensity λ. Then the

process M , defined by

Mt = Nt − λt, (1.5)

is an F-martingale.

Proof We have to show that E [Nt − Ns | Fs] = λ(t − s). This however follows directly

from the fact that the conditional distribution of Nt − Ns , given Fs , is Poisson with

parameter λ(t − s). �

This somewhat trivial result is much more important than it looks like at first sight. It

is in fact the natural starting point of the “martingale approach” to counting processes.

Indeed, as we will see below, the martingale property of M above, is not only a con-

sequence of the fact that N is a Poisson process but, in fact, the martingale property

characterizes the Poisson process within the class of counting processes. More precisely,

we will show below that if N is an arbitrary counting process and if the process M , de-

fined above is a martingale, then this implies that N must be Poisson with intensity λ.

This is a huge technical step forward in the theory of counting processes, the reason

being that it is often relatively easy to check the martingale property of M , whereas it is

typically a very hard task to check that the conditional distribution of the increments of

N is given by (1.1).
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1.3 Notes 7

Furthermore, it turns out that a very big class of counting processes can be character-

ized by a corresponding martingale property and this fact, coupled with a (very simple

form of) stochastic differential calculus for counting processes, will provide us with

a very powerful toolbox for a fairly advanced study of counting processes on filtered

probability spaces.

To develop this theory we need to carry out the following program.

1. Assuming that a process A is of bounded variation, we need to develop a theory of

stochastic integrals of the form
∫

t

0

hsdAs,

where the integrand h should be required to have some nice measurability property.

2. In particular, if M is a martingale of bounded variation, we would like to know under

what conditions a process X of the form

Xt =

∫

t

0

hsdMs,

is a martingale. Is it for example enough that h is adapted? (Compare with the Wiener

case).

3. Develop a differential calculus for stochastic integrals of the type above. In particular

we would like to derive an extension of the Itô formula to the counting process case.

4. Use the theory to study general counting processes in terms of their martingale

properties.

5. Given a Wiener process W , we recall that there exists a powerful martingale rep-

resentation theorem which says that (for the internal filtration) every martingale X

can be written as Xt = X0 +

∫

t

o
hsdWs . Does there exist a corresponding theory for

counting processes?

6. Study how the conditional jump intensity will change under an absolutely continuous

change of measure. Does there exist a Girsanov theory for counting processes?

7. Finally we want to apply the theory above in order to study more concrete problems,

like optimal control, and arbitrage theory for economies where asset prices are driven

by jump diffusions.

1.3 Notes

The textbook Brémaud (1981) is a classic in the field. The monograph Last & Brandt

(1995) contains an almost encyclopedic study of (marked) point processes. In Cont

& Tankov (2003) the reader will find an in depth study of Lévy processes and their

applications to finance. For general semimartingale theory see Cohen & Elliott (2015),

Jacod & Shiryaev (1987), or Protter (2004).
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2 Stochastic Integrals and Differentials

2.1 Integrators of Bounded Variation

In this section, the main object is to develop a stochastic integration theory for integrals

of the form

∫

t

0

hsdAs,

where A is a process of bounded variation. In a typical application, the integrator A

could for example be given by

At = Nt − λt,

where N is a Poisson process with intensity λ, and in particular we will investigate under

what conditions the process X defined by

Xt =

∫

t

0

hs [dNs − λds] ,

is a martingale. Apart from this, we also need to develop a stochastic differential cal-

culus for processes of this kind, derive the relevant Itô formula, and to study stochastic

differential equations, driven by counting processes.

Before we embark on this program, the following two points are worth mentioning.

• Compared to the definition of the usual Itô integral for Wiener processes, the inte-

gration theory for point processes is quite simple. Since all integrators will be of

bounded variation, the integrals can be defined pathwise, as opposed to the Itô

integral which has to be defined as an L
2 limit.

• On the other hand, compared to the Itô integral, where the natural requirement is that

the integrands are adapted, the point-process integration theory requires much

more delicate measurability properties of the integrands. In particular we need to

understand the fundamental concept of a predictable process.

In order to get a feeling for the predictability concept, and its relation to martingale theory,

we will start by giving a brief recapitulation of discrete-time stochastic integration theory.
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2.2 Discrete-Time Stochastic Integrals 9

2.2 Discrete-Time Stochastic Integrals

In this section we briefly discuss the simplest type of stochastic integration, namely

integration of discrete-time processes. This will serve as an introduction to the more

complicated continuous-time theory later on, and it is also important in its own right.

We start by defining the discrete stochastic integral.

Definition 2.1 Consider a probability space (Ω,F ,P), equipped with a discrete-time

filtration F = {Fn}
∞
n=0.

• For any random process Y , the increment process ∆Y is defined by

(∆Y )n = Yn − Yn−1, (2.1)

with the convention Y−1 = 0. For simplicity of notation we will sometimes denote

(∆Y )n by ∆Yn.

• For any two processes X and Y , the discrete stochastic integral process X ⋆ Y is

defined by

(X ⋆Y )n =

n
∑

k=0

Xk(∆Y )k . (2.2)

Instead of (X ⋆Y )n we will sometimes write
∫

n

0
XsdYs .

The reason why we define∆Y by “backward increments” as (∆Y )n = Yn−Yn−1, instead

of “forward increments” (∆Y )n = Yn+1 − Yn, is that by using backwards increments the

process ∆Y is adapted whenever Y is adapted.

From standard Itô integration theory we recall that if W is a Wiener process and if h

is a square-integrable adapted process, then the integral process Z , given by

Zt =

∫

t

0

hsdWs,

is a martingale. It is therefore natural to expect that a similar result would hold for the

discrete-time integral, but this is not the case. Indeed, as we will see below, the correct

measurability concept is that of a predictable process rather than that of an adapted

process.

Definition 2.2

• A random process X is F-adapted if, for each n, Xn is Fn-measurable.

• A random process X is F-predictable if, for each n, Xn is Fn−1-measurable. Here we

use the convention F−1 = F0.

We note that a predictable process is “known one step ahead in time”.

The main result for stochastic integrals is that when you integrate a predictable process

X with respect to a martingale M , then the result is a new martingale.

Proposition 2.3 Assume that the filtered probability space (Ω,F ,P,F) carries the

processes X and M , where X is predictable, M is a martingale and Xn(∆M)n ∈ L
1 for

each n. Then the stochastic integral X ⋆M is a martingale.
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10 Stochastic Integrals and Differentials

Proof We recall that in discrete time, a process Z is a martingale if and only if

E [∆Zn | Fn−1] = 0, n = 0,1, . . .

Thus, defining Z as

Zn =

n
∑

k=0

Xk∆Mk,

it follows that

∆Zn = Xn∆Mn

and we obtain

E [∆Zn | Fn−1] = E [Xn∆Mn | Fn−1] = XnE [∆Mn | Fn−1] = 0.

In the second equality we used the fact that X is predictable, and in the third equality we

used the martingale property of M . �

2.3 Stochastic Integrals in Continuous Time

We now go back to continuous time and assume that we are given a filtered probability

space (Ω,F ,P,F). Before going on to define the new stochastic integral we need to

define a number of measurability properties for random processes, and in particular we

need to define the discrete-time version of the predictability concept.

Definition 2.4

• A random process X is said to be cadlag (continu à droite, limites à gauche) if the

trajectories are right continuous with left hand limits, with probability one.

• The class of adapted cadlag processes A with A0 = 0, such that the trajectories of A

are of finite variation on the interval [0,T] is denoted by VT . Such a process is

said to be of finite variation on [0,T], and will thus satisfy the condition

∫

T

0

|dAt | < ∞ P-a.s.

• We denote by AT the class of processes in VT such that

E

[∫

T

0

|dAt |

]

< ∞.

Such a process is said to be of integrable variation on [0,T].

• The class of processes belonging toVT for all T < ∞ is denoted byV. Such a process

is said to be of finite variation.

• The class of processes belonging to AT for all T < ∞ is denoted by A. Such a

process is said to be of integrable variation.

Remark Note that both the cadlag property, and the property of being adapted, are

parts of the definition of VT and AT .
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2.3 Stochastic Integrals in Continuous Time 11

We now come to the two main measurability properties of random processes. Before

we go on to the definitions, we recall that a random process X on the time interval R+ is

a mapping

X : Ω × R+ → R,

where the value of X at time t, for the elementary outcome ω ∈ Ω is denoted either by

X(t,ω) or by Xt (ω).

Definition 2.5 The optional σ-algebra on R+ × Ω is generated by all processes Y of

the form

Yt (ω) = Z(ω)I {r ≤ t < s} , (2.3)

where I is the indicator function, r and s are fixed real numbers, and Z is an Fr

measurable random variable. A process X which, viewed as a mapping X : Ω × R+ → R,

is measurable with respect to the optional σ-algebra is said to be an optional process.

The definition above is perhaps somewhat forbidding when you meet it the first time.

Note however, that every generator process Y above is adapted and cadlag, and we have

in fact the following result, the proof of which is nontrivial and omitted.

Proposition 2.6 The optional σ-algebra is generated by the class of adapted cadlag

processes.

In particular it is clear that every process of finite variation, and every adapted process

with continuous trajectories is optional. The optional measurability concept is in fact

“the correct one” instead of the usual concept of a process being adapted. The difference

between an adapted process and an optional one is that optionality for a process X implies

a joint measurability property in (t,ω), whereas X being adapted only implies that the

mapping Xt : Ω → R is Ft measurable in ω for each fixed t. For “practical” purposes,

the difference between an adapted process and an optional process is very small and

the reader may, without great risk, interpret the term “optional” as “adapted”. The main

point of the optionality property is the following result, which shows that optionality is

preserved under stochastic integration.

Proposition 2.7 Assume that A is of finite variation and that h is an optional process

satisfying the condition
∫

t

0

|hs | |dAs | < ∞, for all t .

Then the following assertions hold.

• The process X = h⋆ A defined, for each ω, by

Xt (ω) =

∫

t

0

hs(ω)dAs(ω),

is well defined, for almost each ω, as a Lebesgue–Stieltjes integral.

• The process X is cadlag and optional, so in particular it is adapted.
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12 Stochastic Integrals and Differentials

• If h also satisfies the condition

E

[∫

t

0

|hs | |dAs |

]

< ∞, for all t,

then X is of integrable variation.

Proof The proposition is easy to prove if h is generator process of the form (2.3). The

general case can then be proved by approximating h by a linear combination of generator

processes, or by using a monotone class argument. �

Remark Note again that since A is of finite variation it is, by definition, optional. If

we only require that h is adapted and A of finite variation (and thus adapted), then this

would not guarantee that X is adapted.

2.4 Stochastic Integrals and Martingales

Suppose that M is a martingale of integrable variation. We now turn to the question

under which conditions on the integrand h, a stochastic process of the form

Xt =

∫

t

0

hsdMs,

is itself a martingale. With the Wiener theory fresh in the memory, one is perhaps led to

conjecture that it is enough to require that h (apart from obvious integrability properties)

is adapted, or perhaps optional. This conjecture is, however, not correct and it is easy to

construct a counterexample.

Example Let Z be a non-trivial random variable with

E [Z] = 0, E
[

Z
2
]

< ∞,

and define the process M by

Mt =

{

0, 0 ≤ t < 1,

Z, t ≥ 1.

If we define the filtration F by Ft = σ {Ms; s ≤ t}, then it is easy to see that M is

a martingale of integrable variation. In particular, M is optional, so let us define the

integrand h as h = M . If we now define the process X by

Xt =

∫

t

0

MsdMs,

then it is clear that the integrator M has a point mass of size Z at t = 1. In particular we

have X1 = M1∆M1 = Z
2, and we immediately obtain

Xt =

{

0, 0 ≤ t < 1,

Z
2, t ≥ 1.

From this it is clear that X is a non-decreasing process, so in particular it is not a

martingale.
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