SAMPLING IN JUDGMENT AND DECISION Making

Sampling approaches to judgment and decision making are distinct from traditional accounts in psychology and neuroscience. While these traditional accounts focus on limitations of the human mind as a major source of bounded rationality, the sampling approach originates in a broader cognitive-ecological perspective. It starts from the fundamental assumption that in order to understand intrapsychic cognitive processes one first has to understand the distributions of, and the biases built into, the environmental information that provides input to all cognitive processes. Both the biases and restriction, but also the assets and capacities of the human mind often reflect, to a considerable degree, the irrational and rational features of the information environment and its manifestations in the literature, the Internet, and collective memory. Sampling approaches to judgment and decision making constitute a prime example of theorydriven research that promises to help behavioral scientists cope with the challenges of replicability and practical usefulness.

KLAUS FIEDLER is a Full Professor at Heidelberg University, Germany. He is a member of the German National Academy of Sciences Leopoldina, and a recipient of several science awards. Currently, he is chief editor of *Perspectives on Psychological Science*. His recent research has concentrated on judgment and decision making from a cognitive-ecological perspective.

PETER JUSLIN is Professor of Psychology at Uppsala University, Sweden, and a member of the Royal Swedish Academy of Sciences. His research primarily concerns judgment and decision making. He has published extensively in prominent psychology journals on topics related to subjective probability judgment, overconfidence, multiplecue judgment, and risky decision making.

JERKER DENRELL is Professor of Behavioral Science at Warwick Business School, University of Warwick, UK. He previously held positions at the University of Oxford, UK, and Stanford University, USA. His work focuses on how the biased experiences available to people lead to systematic biases in choices and judgment. He has published numerous articles in *Science, Proceedings of the National Academy of Sciences (PNAS)*, and *Psychological Review*.

SAMPLING IN JUDGMENT AND DECISION MAKING

EDITED BY KLAUS FIEDLER University of Heidelberg PETER JUSLIN Uppsala University JERKER DENRELL University of Warwick

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, v1C 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781316518656

DOI: 10.1017/9781009002042

© Cambridge University Press & Assessment 2023

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2023

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data NAMES: Fiedler, Klaus, 1951- editor. | Juslin, Peter, editor. | Denrell, Jerker, editor. TITLE: Sampling in judgment and decision making / edited by Klaus Fiedler, University of Heidelberg, Peter Juslin, Uppsala Universitet, Sweden, Jerker Denrell, University of Warwick. DESCRIPTION: 1 Edition. | New York, NY : Cambridge University Press, 2023. | Includes bibliographical references and index. IDENTIFIERS: LCCN 2022031341 (print) | LCCN 2022031342 (ebook) | ISBN 9781316518656 (hardback) | ISBN 9781009009867 (paperback) | ISBN 9781009002042 (epub) SUBJECTS: LCSH: Judgment-Psychological aspects. | Cognition. | Decision making. CLASSIFICATION: LCC BF447 .\$36 2023 (print) | LCC BF447 (ebook) | DDC 153.4/6-dc23/eng/20220830 LC record available at https://lccn.loc.gov/2022031341 LC ebook record available at https://lccn.loc.gov/2022031342 15BN 978-1-316-51865-6 Hardback ISBN 978-1-009-00986-7 Paperback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

List	of Figures pa	<i>age</i> viii
List	of Tables	xvi
List	of Contributors	xviii
PAR ANI	T I HISTORICAL REVIEW OF SAMPLING PERSPECTIVES D MAJOR PARADIGMS	
I	The Theoretical Beauty and Fertility of Sampling Approaches A Historical and Meta-Theoretical Review <i>Klaus Fiedler, Peter Juslin, and Jerker Denrell</i>	: 3
2	<i>Homo Ordinalus</i> and Sampling Models: The Past, Present, and Future of Decision by Sampling <i>Gordon D. A. Brown and Lukasz Walasek</i>	d 35
3	In Decisions from Experience What You See Is Up to Your Sampling of the World <i>Timothy J. Pleskac and Ralph Hertwig</i>	66
4	The Hot Stove Effect Jerker Denrell and Gaël Le Mens	90
PAR	T II SAMPLING MECHANISMS	
5	The J/DM Separation Paradox and the Reliance on the Small Samples Hypothesis <i>Ido Erev and Ori Plonsky</i>	115
6	Sampling as Preparedness in Evaluative Learning <i>Mandy Hütter and Zachary Adolph Niese</i>	131

vi	Contents	
7	The Dog That Didn't Bark: Bayesian Approaches to Reasoning from Censored Data Brett K. Hayes, Saoirse Connor Desai, Keith Ransom, and Charles Kemp	153
8	Unpacking Intuitive and Analytic Memory Sampling in Multiple-Cue Judgment <i>August Collsiöö, Joakim Sundh, and Peter Juslin</i>	177
PAR	T III CONSEQUENCES OF SELECTIVE SAMPLING	
9	Biased Preferences through Exploitation Chris Harris and Ruud Custers	207
10	Evaluative Consequences of Sampling Distinct Information <i>Hans Alves, Alex Koch, and Christian Unkelbach</i>	222
II	Information Sampling in Contingency Learning: Sampling Strategies and Their Consequences for (Pseudo-) Contingency Inferences <i>Franziska M. Bott and Thorsten Meiser</i>	245
12	The Collective Hot Stove Effect Gaël Le Mens, Balázs Kovács, Judith Avrahami, and Yaakov Kareev	266
PAR	T IV TRUNCATION AND STOPPING RULES	
13	Sequential Decisions from Sampling: Inductive Generation of Stopping Decisions Using Instance-Based Learning Theory <i>Cleotilde Gonzalez and Palvi Aggarwal</i>	289
14	Thurstonian Uncertainty in Self-Determined Judgment and Decision Making <i>Johannes Prager, Klaus Fiedler, and Linda McCaughey</i>	311
15	The Information Cost–Benefit Trade-Off as a Sampling Problem in Information Search <i>Linda McCaughey, Johannes Prager, and Klaus Fiedler</i>	334

		Contents	vii
PART V SAMPLING AS A TOOL IN SOCIAL ENVIRONMENTS			
	16	Heuristic Social Sampling Thorsten Pachur and Christin Schulze	359
	17	Social Sampling for Judgments and Predictions of Societal Trends <i>Henrik Olsson, Mirta Galesic, and Wändi Bruine de Bruin</i>	385
	18	Group-Motivated Sampling: From Skewed Experiences to Biased Evaluations <i>Yrian Derreumaux, Robin Bergh, Marcus Lindskog,</i> <i>and Brent Hughes</i>	417
	19	Opinion Homogenization and Polarization: Three Sampling Models <i>Elizaveta Konovalova and Gaël Le Mens</i>	436
	PAR	T VI COMPUTATIONAL APPROACHES	
	20	An Introduction to Psychologically Plausible Sampling Schemes for Approximating Bayesian Inference Jian-Qiao Zhu, Nick Chater, Pablo León-Villagrá, Jake Spicer, Joakim Sundh, and Adam Sanborn	467
	21	Approximating Bayesian Inference through Internal Sampling Joakim Sundh, Adam Sanborn, Jian-Qiao Zhu, Jake Spicer, Pablo León-Villagrá, and Nick Chater	490
	22	Sampling Data, Beliefs, and Actions Erik Brockbank, Cameron Holdaway, Daniel Acosta-Kane, and Edward Vul	513
	Inde	ex -	549

Figures

1.1	Two stages of information transmission from a	
	cognitive-ecological perspective.	page 4
1.2	Expected (population) probability p as a function	
	of observed sample proportion P, at two sample	
	sizes n , 5 and 20 (assuming a uniform prior for p).	
	An agent that myopically reports the sample proportion	
	P as their estimate of probability p will make too extreme	
	estimates, as identified by the deviation from the	
	identity line. An agent who takes the sample size into	
	account dampens the observed proportion according to <i>n</i> .	I 2
1.3	Increasing likelihood of sampling at $t + 1$ as a function	
	of valence experienced at <i>t</i> .	15
2.1	Illustration of relative rank effects in valuation.	
	Panel A: Two distributions of quantities (of bags	
	of mixed sweets). Panel B: Amounts willing to pay	
	(normalised).	37
2.2	Histogram of incomes (left panel) and theoretically	
	predicted rank-based evaluation of incomes from the same	
	distribution (right panel).	39
2.3	Left panel: probability weighting function. Right panel:	
	cumulative distribution of relative subjective frequencies.	41
3.1	(a) Experimental conditions and prices of stocks in	
	thousands of euros (i.e., index fund) across 172 monthly	
	periods. At the bottom of the panel, there are four arrows.	
	Solid arrow segments indicate periods of investment.	
	Dotted arrow segments indicate periods of learning	
	from descriptive sources. The four conditions were	
	compared over the evaluation window from period	
	100 to period 172. (b) Percentages invested in stocks	
	by condition. Dots indicate individuals' allocations.	

viii

The think lines show the mean percentages; the thicker lines show the data smoothed by local polynomial regression fitting.785.1 Examples of studies of judgment and decisions making with and without J/DM separation.1165.2 Example of studies of decisions from sampling without and with explicit presentation of the rare outcomes.1185.3 The list of stimuli used by Erev, Shimonowitch, et al. (2008).1195.4 A thought experiment (following Plonsky et al., 2015).1235.5 Illustration of the experimental task, and main results, in the study of decisions from description with feedback conducted by Erev et al. (2017).1256.1 Evaluative shift as a function of US valence, autonomy, and number of samples.1387.1 Property generalization ratings demonstrating the "frames effect." Test items S1–S2 were small rocks drawn from the training sample. T1–T4 are novel rocks of increasing size. A Bayesian mixed-model analysis of variance (N = 114) found strong evidence of an effect of sampling frame, BF10 = 292.811.1597.2 The generalization space (A) and property generalization results (B) for the environmental contamination study with category and property framing. A Bayesian analysis of variance (N = 120) found strong evidence of an effect of sampling frames, BF10 = 18.01.1647.3 Property generalization with a consistent category frame (No Switch) and a combination of category and property frames (Switch). S1–S2 were small rocks drawn from the training sample. T1–T4 are nevel rocks drawn from the training sample.164
 regression fitting. 78 5.1 Examples of studies of judgment and decisions making with and without J/DM separation. 116 5.2 Example of studies of decisions from sampling without and with explicit presentation of the rare outcomes. 118 5.3 The list of stimuli used by Erev, Shimonowitch, et al. (2008). 119 5.4 A thought experiment (following Plonsky et al., 2015). 123 5.5 Illustration of the experimental task, and main results, in the study of decisions from description with feedback conducted by Erev et al. (2017). 125 6.1 Evaluative shift as a function of US valence, autonomy, and number of samples. 138 7.1 Property generalization ratings demonstrating the "frames effect." Test items S1–S2 were small rocks drawn from the training sample. T1–T4 are novel rocks of increasing size. A Bayesian mixed-model analysis of variance (N = 114) found strong evidence of an effect of sampling frame, BF₁₀ = 292.811. 159 7.2 The generalization space (A) and property generalization results (B) for the environmental contamination study with category and property framing. A Bayesian analysis of variance (N = 120) found strong evidence of an effect of an effect of an effect of sampling frame, BF₁₀ = 120, found strong evidence of an effect of sampling frames, BF₁₀ = 18.01. 164 7.3 Property generalization with a consistent category frame (No Switch) and a combination of category and property frames (Switch). S1–S2 were small rocks drawn from the training sample. T1–T4 are noted rocks drawn from the training sample. T1–T4 are noted rocks drawn from the training sample. T1–T4 are noted rocks drawn from the training sample. T1–T4 are noted rocks drawn from the training sample. T1–T4 are noted rocks drawn from the training sample. T1–T4 are noted rocks drawn from the training sample. T1–T4 are noted rocks drawn from the training sample. T1–T4 are noted rocks drawn from the training sample. T1–T
making with and without J/DM separation.1165.2 Example of studies of decisions from sampling without and with explicit presentation of the rare outcomes.1185.3 The list of stimuli used by Erev, Shimonowitch, et al. (2008).1195.4 A thought experiment (following Plonsky et al., 2015).1235.5 Illustration of the experimental task, and main results, in the study of decisions from description with feedback conducted by Erev et al. (2017).1256.1 Evaluative shift as a function of US valence, autonomy, and number of samples.1387.1 Property generalization ratings demonstrating the "frames effect." Test items S1–S2 were small rocks drawn from the training sample. T1–T4 are novel rocks of increasing size. A Bayesian mixed-model analysis of variance (N = 114) found strong evidence of an effect of sampling frame, BF ₁₀ = 292.811.1597.2 The generalization results (B) for the environmental contamination study with category and property framing. A Bayesian analysis of variance (N = 120) found strong evidence of an effect of an effect of sampling frames, BF ₁₀ = 18.01.1647.3 Property generalization with a consistent category frame (No Switch) and a combination of category and property frames (Switch). S1–S2 were small rocks drawn from the training sample. T1–T4 are newed and proberty frame and a combination of category and property frame (Switch). S1–S2 were small rocks drawn from the training sample. T1–T4 are newed and a combination of category and property frames (Switch). S1–S2 were small rocks drawn from the training sample. T1–T4 are newed and a combination of category and property frames (Switch). S1–S2 were small rocks drawn from the training sample. T1–T4 are newed and a combinat
 5.2 Example of studies of decisions from sampling without and with explicit presentation of the rare outcomes. 118 5.3 The list of stimuli used by Erev, Shimonowitch, et al. (2008). 119 5.4 A thought experiment (following Plonsky et al., 2015). 123 5.5 Illustration of the experimental task, and main results, in the study of decisions from description with feedback conducted by Erev et al. (2017). 125 6.1 Evaluative shift as a function of US valence, autonomy, and number of samples. 138 7.1 Property generalization ratings demonstrating the "frames effect." Test items S1–S2 were small rocks drawn from the training sample. T1–T4 are novel rocks of increasing size. A Bayesian mixed-model analysis of variance (N = 114) found strong evidence of an effect of sampling frame, BF₁₀ = 292.811. 159 7.2 The generalization space (A) and property generalization results (B) for the environmental contamination study with category and property framing. A Bayesian analysis of variance (N = 120) found strong evidence of an effect of sampling frame, BF₁₀ = 120) found strong evidence of an effect of sampling frames, BF₁₀ = 18.01. 164 7.3 Property generalization with a consistent category frame (No Switch) and a combination of category and property frames (Switch). S1–S2 were small rocks drawn from the training sample. T1–T4 are novel
 without and with explicit presentation of the fare outcomes. 118 5.3 The list of stimuli used by Erev, Shimonowitch, et al. (2008). 119 5.4 A thought experiment (following Plonsky et al., 2015). 123 5.5 Illustration of the experimental task, and main results, in the study of decisions from description with feedback conducted by Erev et al. (2017). 125 6.1 Evaluative shift as a function of US valence, autonomy, and number of samples. 138 7.1 Property generalization ratings demonstrating the "frames effect." Test items S1–S2 were small rocks drawn from the training sample. T1–T4 are novel rocks of increasing size. A Bayesian mixed-model analysis of variance (N = 114) found strong evidence of an effect of sampling frame, BF₁₀ = 292.811. 159 7.2 The generalization space (A) and property generalization results (B) for the environmental contamination study with category and property framing. A Bayesian analysis of variance (N = 120) found strong evidence of an effect of an effect of an effect of sampling frame, BF₁₀ = 120) found strong evidence of an effect of sampling frames, BF₁₀ = 18.01. 164 7.3 Property generalization with a consistent category frame (No Switch) and a combination of category and property frames (Switch). S1–S2 were small rocks drawn from the training sample. T1–T4 are noted rocks drawn from the training sample. T1–T4 are noted rocks drawn from the training sample. T1–T4 are noted rocks drawn from the training sample. T1–T4 are noted rocks drawn from the training sample. T1–T4 are noted rocks drawn from the training sample. T1–T4 are noted rocks drawn from the training sample. T1–T4 are noted rocks drawn from the training sample. T1–T4 are noted rocks drawn from the training sample. T1–T4 are noted rocks drawn from the training sample. T1–T4 are noted rocks drawn from the training sample. T1–T4 are
 (2008). 119 5.4 A thought experiment (following Plonsky et al., 2015). 123 5.5 Illustration of the experimental task, and main results, in the study of decisions from description with feedback conducted by Erev et al. (2017). 125 6.1 Evaluative shift as a function of US valence, autonomy, and number of samples. 138 7.1 Property generalization ratings demonstrating the "frames effect." Test items S1–S2 were small rocks drawn from the training sample. T1–T4 are novel rocks of increasing size. A Bayesian mixed-model analysis of variance (N = 114) found strong evidence of an effect of sampling frame, BF₁₀ = 292.811. 159 7.2 The generalization space (A) and property generalization results (B) for the environmental contamination study with category and property framing. A Bayesian analysis of variance (N = 120) found strong evidence of an effect of an effect of sampling frames, BF₁₀ = 18.01. 164 7.3 Property generalization with a consistent category frame (No Switch) and a combination of category and property frames (Switch). S1–S2 were small rocks drawn from the training sample. T1–T4 are roused rocks drawn from the training sample. T1–T4 are roused rocks drawn from the training sample. T1–T4 are roused rocks drawn from the training sample. T1–T4 are roused rocks drawn from the training sample. T1–T4 are roused rocks drawn from the training sample. T1–T4 are roused rocks drawn from the training sample. T1–T4 are roused rocks drawn from the training sample. T1–T4 are roused rocks drawn from the training sample. T1–T4 are roused rocks drawn from the training sample. T1–T4 are roused rocks drawn from the training sample. T1–T4 are roused rocks drawn from the training sample. T1–T4 are roused rocks drawn from the training sample. T1–T4 are roused rocks drawn from the training sample. T1–T4 are roused rocks drawn from the training sample. T1–T4 are roused rocks drawn from the training sample. T1–T4 are roused rocks drawn from the training sample. T1–T4 ar
 5.4 A thought experiment (following Plonsky et al., 2015). 5.5 Illustration of the experimental task, and main results, in the study of decisions from description with feedback conducted by Erev et al. (2017). 6.1 Evaluative shift as a function of US valence, autonomy, and number of samples. 7.1 Property generalization ratings demonstrating the "frames effect." Test items S1–S2 were small rocks drawn from the training sample. T1–T4 are novel rocks of increasing size. A Bayesian mixed-model analysis of variance (N = 114) found strong evidence of an effect of sampling frame, BF₁₀ = 292.811. 7.2 The generalization space (A) and property generalization results (B) for the environmental contamination study with category and property framing. A Bayesian analysis of variance (N = 120) found strong evidence of an effect of an effect of an effect of sampling frame, BF₁₀ = 18.01. 7.3 Property generalization with a consistent category frame (No Switch) and a combination of category and property frames (Switch). S1–S2 were small rocks drawn from the training sample. T1–T4 are novel rocks drawn from the training sample. T1–T4 are proved raded
conducted by Erev et al. (2017). 125 6.1 Evaluative shift as a function of US valence, autonomy, and number of samples. 138 7.1 Property generalization ratings demonstrating the "frames effect." Test items S1–S2 were small rocks drawn from the training sample. T1–T4 are novel rocks of increasing size. A Bayesian mixed-model analysis of variance (N = 114) found strong evidence of an effect of sampling frame, BF ₁₀ = 292.811. 159 7.2 The generalization space (A) and property generalization results (B) for the environmental contamination study with category and property framing. A Bayesian analysis of variance (N = 120) found strong evidence of an effect of sampling frames, BF ₁₀ = 18.01. 164 7.3 Property generalization with a consistent category frame (No Switch) and a combination of category and property frames (Switch). S1–S2 were small rocks drawn from the training sample. T1–T4 are rocks of a finance of a propertion mixed model
 6.1 Evaluative shift as a function of US valence, autonomy, and number of samples. 7.1 Property generalization ratings demonstrating the "frames effect." Test items S1–S2 were small rocks drawn from the training sample. T1–T4 are novel rocks of increasing size. A Bayesian mixed-model analysis of variance (N = 114) found strong evidence of an effect of sampling frame, BF₁₀ = 292.811. 7.2 The generalization space (A) and property generalization results (B) for the environmental contamination study with category and property framing. A Bayesian analysis of variance (N = 120) found strong evidence of an effect of an effect of an effect of sampling frames, BF₁₀ = 18.01. 7.3 Property generalization with a consistent category frame (No Switch) and a combination of category and property frames (Switch). S1–S2 were small rocks drawn from the training sample. T1–T4 are neural model
 autonomy, and number of samples. 138 7.1 Property generalization ratings demonstrating the "frames effect." Test items S1–S2 were small rocks drawn from the training sample. T1–T4 are novel rocks of increasing size. A Bayesian mixed-model analysis of variance (N = 114) found strong evidence of an effect of sampling frame, BF₁₀ = 292.811. 159 7.2 The generalization space (A) and property generalization results (B) for the environmental contamination study with category and property framing. A Bayesian analysis of variance (N = 120) found strong evidence of an effect of an effect of sampling frames, BF₁₀ = 18.01. 164 7.3 Property generalization with a consistent category frame (No Switch) and a combination of category and property frames (Switch). S1–S2 were small rocks drawn from the training sample. T1–T4 are neural model
 7.1 Property generalization ratings demonstrating the "frames effect." Test items S1–S2 were small rocks drawn from the training sample. T1–T4 are novel rocks of increasing size. A Bayesian mixed-model analysis of variance (N = 114) found strong evidence of an effect of sampling frame, BF₁₀ = 292.811. 159 7.2 The generalization space (A) and property generalization results (B) for the environmental contamination study with category and property framing. A Bayesian analysis of variance (N = 120) found strong evidence of an effect of sampling frames, BF₁₀ = 18.01. 164 7.3 Property generalization with a consistent category frame (No Switch) and a combination of category and property frames (Switch). S1–S2 were small rocks drawn from the training sample. T1–T4 are neural model
 the "frames effect." Test items S1–S2 were small rocks drawn from the training sample. T1–T4 are novel rocks of increasing size. A Bayesian mixed-model analysis of variance (N = 114) found strong evidence of an effect of sampling frame, BF₁₀ = 292.811. 7.2 The generalization space (A) and property generalization results (B) for the environmental contamination study with category and property framing. A Bayesian analysis of variance (N = 120) found strong evidence of an effect of sampling frames, BF₁₀ = 18.01. 7.3 Property generalization with a consistent category frame (No Switch) and a combination of category and property frames (Switch). S1–S2 were small rocks drawn from the training sample. T1–T4 are proved rocks of increasing size A Pawesian mixed model
drawn from the training sample. $11-14$ are novel rocks of increasing size. A Bayesian mixed-model analysis of variance (N = 114) found strong evidence of an effect of sampling frame, $BF_{10} = 292.811$. 159 7.2 The generalization space (A) and property generalization results (B) for the environmental contamination study with category and property framing. A Bayesian analysis of variance (N = 120) found strong evidence of an effect of sampling frames, $BF_{10} = 18.01$. 164 7.3 Property generalization with a consistent category frame (No Switch) and a combination of category and property frames (Switch). S1–S2 were small rocks drawn from the training sample. $T1-T4$ are
 rocks of increasing size. A Bayesian mixed-model analysis of variance (N = 114) found strong evidence of an effect of sampling frame, BF₁₀ = 292.811. 7.2 The generalization space (A) and property generalization results (B) for the environmental contamination study with category and property framing. A Bayesian analysis of variance (N = 120) found strong evidence of an effect of sampling frames, BF₁₀ = 18.01. 7.3 Property generalization with a consistent category frame (No Switch) and a combination of category and property frames (Switch). S1–S2 were small rocks drawn from the training sample. T1–T4 are pound model
analysis of variance $(N = 114)$ found strong evidence of an effect of sampling frame, $BF_{10} = 292.811$. 159 7.2 The generalization space (A) and property generalization results (B) for the environmental contamination study with category and property framing. A Bayesian analysis of variance (N = 120) found strong evidence of an effect of sampling frames, $BF_{10} = 18.01$. 164 7.3 Property generalization with a consistent category frame (No Switch) and a combination of category and property frames (Switch). S1–S2 were small rocks drawn from the training sample. T1–T4 are
 7.2 The generalization space (A) and property generalization results (B) for the environmental contamination study with category and property framing. A Bayesian analysis of variance (N = 120) found strong evidence of an effect of sampling frames, BF₁₀ = 18.01. 7.3 Property generalization with a consistent category frame (No Switch) and a combination of category and property frames (Switch). S1–S2 were small rocks drawn from the training sample. T1–T4 are pound model
 9.12 The generalization space (1) and property generalization results (B) for the environmental contamination study with category and property framing. A Bayesian analysis of variance (N = 120) found strong evidence of an effect of sampling frames, BF₁₀ = 18.01. 7.3 Property generalization with a consistent category frame (No Switch) and a combination of category and property frames (Switch). S1–S2 were small rocks drawn from the training sample. T1–T4 are pound model
 contamination results (D) for the christian contamination study with category and property framing. A Bayesian analysis of variance (N = 120) found strong evidence of an effect of sampling frames, BF₁₀ = 18.01. 7.3 Property generalization with a consistent category frame (No Switch) and a combination of category and property frames (Switch). S1–S2 were small rocks drawn from the training sample. T1–T4 are pound model
 framing. A Bayesian analysis of variance (N = 120) found strong evidence of an effect of sampling frames, BF₁₀ = 18.01. 7.3 Property generalization with a consistent category frame (No Switch) and a combination of category and property frames (Switch). S1–S2 were small rocks drawn from the training sample. T1–T4 are pound model
found strong evidence of an effect of sampling frames, $BF_{10} = 18.01.$ 164 7.3 Property generalization with a consistent category frame (No Switch) and a combination of category and property frames (Switch). S1–S2 were small rocks drawn from the training sample. T1–T4 are neural model
 BF₁₀ = 18.01. 7.3 Property generalization with a consistent category frame (No Switch) and a combination of category and property frames (Switch). S1–S2 were small rocks drawn from the training sample. T1–T4 are pound model
7.3 Property generalization with a consistent category frame (No Switch) and a combination of category and property frames (Switch). S1–S2 were small rocks drawn from the training sample. T1–T4 are neural rocks of increasing size A Payseign mixed model
frame (No Switch) and a combination of category and property frames (Switch). S1–S2 were small rocks drawn from the training sample. T1–T4 are
and property frames (Switch). S1–S2 were small rocks drawn from the training sample. T1–T4 are
rocks drawn from the training sample. T_1-T_4 are
norrol no also of in anonsing size. A Parrosian mirrod model
nover rocks of increasing size. A bayesian mixed-model
analysis of variance (N = 114) found moderate evidence
of a difference between no-switch and switch
conditions, $BF_{10} = 3.87$. 165
8.1 The characteristic quantitative predictions
summarized in Table 8 t. The identity lines in the
araphy represent correct judgments and the rectangles
in the left-most panels identify the rare but potentially

x

List of Figures

8.2	larger errors that are predicted by Analysis(B). The predictions in the graphs are stylized examples of error-free predictions by the models that have either been perturbed by a few larger errors (left-side panels for Analysis(B)) or perturbed by a ubiquitous Gaussian noise (right-side panels for Intuition(B)). The error distributions from simulations with adaptations of the Generalized Context Model when applied to a multiple-cue judgment task with a continuous criterion. From left to right, a GCM applied to a continuous criterion with extremely high specificity parameter that makes	180
8 2	a judgment by sampling the 10 most similar exemplars from memory, sampling only the most similar exemplar. Distributions of lambda (λ) for participants best fit	189
0.3	by an exemplar-based memory model, EBM (right side panels) and a cue-abstraction model, CAM (left side panels) performing an additive	
8.4	task (top panels) or a nonadditive task (bottom panels). The responses by ID 125 in an additive multiple-cue learning task (squares) and the prediction by a standard multiple regression model (the solid line) plotted against the correct criterion value. Predictions by the PNP model implementing a cue-abstraction model coincide with the dotted identity line ($x = y$).	194
8.5	Multiple data points overlap. The responses by ID 443 in a nonadditive multiple-cue learning task (squares) and the prediction by a standard multiple regression model (the solid line) plotted against the criterion value. Predictions by the PNP model implementing a cue-abstraction model coincide with the dotted identity line ($x = y$).	196
8.6	Multiple data points overlap. The responses (squares) by participant ID 140 and ID 33 both best fitted by an EBM model. The exemplars that are new in the test phase and require extrapolation are the filled symbols. Except for the extrapolation items, the predictions of the PNP model coincide with the dotted identity line ($x = y$).	196
	Multiple data points overlap.	197

	List of Figures	xi
8.7	Distribution of lambda (λ) for participants receiving deterministic (left panel) or probabilistic (right panel)	
9.1	feedback, best fit by CAM (top row) or EBM (bottom row). Percentage of participants sampling the frequent option	198
-	per trial (left: Experiment 2a, right: Experiment 2b).	211
9.2	Percentage of participants sampling the frequent option	
10.1	Degrees of distinctiveness among features and entities.	213
10.2	Distinctiveness of positive and negative features and entities.	232
12.1	Experiment: Scatterplot and regression lines of the	-
	errors in average ratings as a function of the number	
	of ratings received by a picture. The black dots correspond	
	to the pictures for which the final score is outside $\int dt = \frac{1}{2} \int dt = \frac{1}$	
	of the 95% CI for the quality q_i (because our measure of quality is based on a finite number of ratings	
	it approximates the true quality and thus we computed	
	the 95% CI on the true quality). The grey dots	
	correspond to the pictures for which the final score	
	is within the 95% CI for quality.	276
12.2	Scatterplot and regression line of the association	
	between number of judgments and collective	
	evaluation in the two-country data set. Each circle	
	graph is based on observations such	
	that $-2 \le \Lambda P_i \le 2$ ($N = 768$).	2.81
13.1	The distribution of sample sizes from the human	201
5	data and IBL model for (a) all problems;	
	(b) Risky–Risky and Risky–Safe problems;	
	(c) Gains, Losses, and Mixed domain problems.	300
13.2	Correlation for each of the 1,041 paper-problem	
	pairs as predicted by the IBL model and the observed	
	(b) Dialay Dialay and Dialay Safa problems;	
	(c) Gains Losses and Mixed domain problems	202
13.3	An example of the marginal value δGap in human	902
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	and model data up to 21 samples; (a) for all problems;	
	(b) Risky–Risky and Risky–Safe problems;	
	(c) Gain, Loss, and Mixed domain problems.	304
14.1	Empirically observed judgment strength J plotted	
	against sample size <i>n</i> for (a) externally determined	

xii

List of Figures

	sample size (truncation was determined by the software),	
	(b) for self-truncated sampling and (c) yoked controls	
	who received exactly the samples of (b). Judgment	
	strength denotes the extremity of the likability judgment	
	towards the population direction (i.e., likability as it	
	is judged for predominantly positive targets and	
	likability judgments with reversed sign for	
	predominantly negative targets). Thin grey lines	
	connect individual averages per sample size and	
	the solid black line averages per sample size of	
	these individual averages of judgment	
	strength <i>J</i> , error bars indicate corresponding standard errors.	319
14.2	Schematic diagram of the self-other yoked	•
	controls design. The time axis is vertically oriented	
	from top to bottom.	321
14.3	Empirically observed judgment strength / plotted	
	against sample size n for (A) self-truncated sampling	
	in a first block, (B) yoked controls who received their	
	own samples in a second block, and (C) yoked controls	
	who received samples that were truncated by other	
	participants, with yoked control participants of	
	both (B) and (C) receiving samples from (A).	322
15.1	Graphical illustration of a fund-investment choice	
	task to investigate speed-accuracy trade-offs in sample-based	
	choice tasks.	341
15.2	Simulation results of the proportion of correct	
	decisions as a function of mean sample size n	
	based on an algorithm that always	
	samples <i>n</i> observations.	342
15.3	Schematic illustration of one of the sequences	
	of cost parameters used in the sample-based decision	
	task for Blocks 1 to 4, with displayed information	
	costs and payoff in the middle row and the	
	standardised ratio in the bottom row.	348
15.4	Graph indicating participants' mean sample	
	sizes (grey squares with dashed bars) and	
	corresponding mean optimal sample size	
	(black points) for each cost ratio. Bars indicate standard	
	deviations.	351
16.1	Illustration of the distribution of subjective	
	value x. The two shaded areas under the curve	

	List of Figures	xiii
	represent the probabilities that event A or event B, respectively, are judged to be more frequent; in both cases, search is stopped and	
	no further circles are inspected. The nonshaded	
	area under the curve represents the case in which	
	discriminate between the events: in this case	
	another circle is selected for inspection	365
16.2	Illustration of some possible trajectories that	<u> </u>
	social sampling with the social-circle model can take when	
	sequentially inspecting in memory a person's social circles.	368
16.3	Domain specificity of social sampling (Panel a)	
	and available social information (Panel b). Panel a:	
	Proportion of adult participants whose circle weight parameter	'S
	indicated that the self, family, friends or acquaintance	
	circle was most likely to be probed first across	
	three different judgment domains. Panel D:	
	sports and first names) for which participants	
	recalled at least one instance across the self family friends	
	or acquaintance circle and for each of three	
	iudgment domains.	375
16.4	Environmental properties manipulated in the	577
•	computer simulations: frequency distribution	
	(Panel a) and spatial clustering (Panel b); and	
	the resulting average sample size (Panel c) and	
	accuracy (Panel d) achieved by exhaustive and	
	heuristic sampling.	379
17.1	(a) Simulated example of the social sampling	
	process when the population includes two levels of the target	
	characteristic (voters of red and blue parties)	
	and two levels of homophily. Left (right) panel	
	by high (low) homophily. (b) Empirical examples	
	of the social sampling process for populations	
	characterized by right-skewed, left-skewed, and symmetrical	
	distributions.	390
17.2	(a) Average of social-circle estimates tracks	JJ -
,	population distributions of different attributes	
	well, and better than the average of people's	

xiv

List of Figures

	population estimates. Absolute errors in brackets. (b) Social-circle question produced better predictions of elections in France ($N = 1,003$), Netherlands ($N = 1,726$), and Sweden ($N = 2,025$) than own-intention and (in the Netherlands) election-winner questions Absolute errors in brackets. (c) The social-circle question produced overall the lowest error of predictions in three recent US elections, across several	
	survey waves $(N > 2,000)$.	395
18.1	A visual schema of where motivations may	
	influence information processing. First,	
	motivations constrain samples by guiding	
	attention toward goal relevant information	
	(Path A) Second, group-based motivation	
	may lead to motivated interpretations of the	
	sampled information (Path B). Finally, people	
	may employ different sampling strategies over	
_	time that capitalize on skewed experiences (Path C).	419
18.2	A visual representation of how information	
	was sampled over time. Below the arrow is a	
	generic representation of the paradigm flow.	
	Above the arrow is a representation of how	
0	information was sampled in Studies 6 and 7.	423
18.3	Evaluations of ingroups and outgroups as a	
	function of valence of initial impressions	
	(Panels a and b) or real-group differences	
	(Panels c and d) in the political context and	
	minimal group context. Worse, Same and	
	Better is stated in reference to the ingroup.	
-0.	Probability of any line from the increase	427
18.4	Probability of sampling from the ingroup	
	line denotes even line as a function of a next in function of a	
	whereas the solid line denotes compline as a	
	function of a positive first cample. First hars	
	denote standard error of the mean	400
10.1	Social network structures analyzed in the simulations:	429
19.1	a) network of two agents: b) network of two groups	
	a) network of two agents, b) network of two groups,	
	of two groups is agents each with a between group links	
	or two groups, y agents cach, with r between-group link;	

	List of Figures	XV
20.1	d) network of two groups, 5 agents each, with 5 between- group links; e) network of two groups with distinct identities, 5 agents each, with 5 between-group links. A "family tree" of sampling algorithms where parent nodes represent more generalized	442
21.1	concepts for specific algorithms in the leaf nodes. Circled algorithms require global or approximate global knowledge while squared ones require local knowledge. Schematic illustration of the internal sampling process: Information is sampled from the environment, which shapes an internal distribution. Inferences are based on a small number of samples	471
22 T	drawn from the internal distribution. The expected utility framework for sample-based models	492
22.1	in decision making.	518

Tables

3.1	The original and reversed fourfold pattern.	<i>ige</i> 68
5.1	Maximization rate in studies that examine	-
	a choice between "3 with certainty" and "4	
	with $p = .8$, o otherwise" under different conditions.	119
8.1	Four cognitive processes that can be identified	
	by the experimental design and the modeling	
	reported in Chapter 8 (the central four cells	
	of Table 8.1). The cognitive algorithm employed	
	is either rule-based or exemplar-memory based,	
	as identified by extrapolation beyond the training range and the	ne
	processing may either involve an Analysis(B) or an Intuition(B	3)
	process as identified by the judgment error distributions.	185
8.2	Compilation of factors that are varied across	
	the experiments in the database used for the	
	presented analyses.	191
8.3	Number of participants best fitted by	
	exemplar-based memory (EBM) and rule-based cue-abstraction	n
	models (CAM), as well as number of noncategorized	
	participants and participants best fitted by the null model.	
	Additionally, median BIC-difference to the 2nd best	
	fitting model and median lambda (λ) for participants	
	best fitted by each model.	193
11.1	Example contingency table with joint frequencies	
	and marginal frequencies of the variables option	
	and outcome.	246
11.2	Possible joint frequencies (a, b, c, d) and	
	associations (φ) given the marginal frequencies	
	of the example in Table 11.1.	249

	List of Tables	xvii
11.3	Example trivariate contingency table with joint	
	frequencies and marginal frequencies of the	
	variables option and outcome per time.	250
12.1	Experiment results.	275
13.1	PMax in sampling and final choice phases	
	for human and model data.	305
18.1	Overview of sample information for all 7 empirical studies.	424
20.1	Sampling algorithms and their statistical and	
	psychological implications.	470
21.1	Examples of how various psychological phenomena	
	are explained either by a prior on responses or	
	alternative sampling algorithms.	495

Contributors

Daniel Acosta-Kane, University of California at San Diego, USA Palvi Aggarwal, The University of Texas at El Paso, USA Hans Alves, Ruhr-University Bochum, Germany Judith Avrahami, The Hebrew University of Jerusalem, Israel Robin Bergh, Uppsala University, Sweden Franziska M. Bott, University of Mannheim, Germany Erik Brockbank, University of California at San Diego, USA Gordon D. A. Brown, University of Warwick, UK Wändi Bruine de Bruin, University of Southern California, USA Nick Chater, University of Warwick, UK August Collsiöö, Uppsala University, Sweden Ruud Custers, Utrecht University, The Netherlands Jerker Denrell, Warwick Business School, University of Warwick, UK. Yrian Derreumaux, University of California at Riverside, USA Saoirse Connor Desai, University of New South Wales, Australia Ido Erev, Technion, Israel Mirta Galesic, Santa Fe Institute, USA Cleotilde Gonzalez, Carnegie Mellon University, USA Chris Harris, Utrecht University, The Netherlands Brett K. Hayes, University of New South Wales, Australia

xviii

List of Contributors xix Ralph Hertwig, Max Planck Institute for Human Development, Germany Cameron Holdaway, University of California at San Diego, USA Brent Hughes, University of California at Riverside, USA Mandy Hütter, Eberhard Karl University of Tübingen, Germany Yaakov Kareev, The Hebrew University of Jerusalem, Israel Charles Kemp, University of Melbourne, Australia Alex Koch, University of Chicago, USA Elizaveta Konovalova, University of Warwick, UK Balázs Kovács, Yale University, USA Gaël Le Mens, Pompeu Fabra University, Spain Pablo León-Villagrá, Brown University, USA Marcus Lindskog, Uppsala University, Sweden Linda McCaughey, Heidelberg University, Germany Thorsten Meiser, University of Manheim, Germany Zachary Adolph Niese, Eberhard Karl University of Tübingen, Germany Henrik Olsson, Santa Fe Institute, USA Thorsten Pachur, Max Planck Institute for Human Development, Germany Timothy J. Pleskac, University of Kansas, USA Ori Plonsky, Technion, Israel Johannes Prager, Heidelberg University, Germany Keith Ransom, University of Melbourne, Australia Adam Sanborn, University of Warwick, UK Christin Schulze, Max Planck Institute for Human Development, Germany Jake Spicer, University of Warwick, UK Joakim Sundh, Uppsala University, Sweden

xx

List of Contributors

Christian Unkelbach, University of Cologne, France Edward Vul, University of California at San Diego, USA Lukasz Walasek, University of Warwick, UK Jian-Qiao Zhu, University of Warwick, UK