

Index

3J symbols, see vector-coupling coefficients	automorphism
6 <i>J</i> symbols, 536–538, 540	generators and complex conjugates, 149
9 <i>J</i> symbols, 538–540	identifying, 149
·	inner, 15, 22
abelian invariant subgroup, 25, 26, 120, 152	axis-angle parameterization, 119
215, 218	
absolute derivative, 455	Baker-Campbell-Hausdorff (BCH) formula, 63
accidental degeneracy, 19, 174, 521	balls (open or closed), see topology
adiabatic continuity, see Fermi liquid	band insulators, 81, 82, 560
adjoint representation	band theory of solids, 81, 82
construction of, 52	baryon, definition, 326
for isospin, 58	BCS, see superconductivity
generated by structure constants, 44	Berry phase
SU(2), 52	and adiabatic curvature, 490
affine connection, see connection coefficients	and gauge invariance, 471, 472
Aharonov–Bohm effect	and topology of Brillouin zone, 495
and 4-vector potential, 464	Berry connection, 470, 471, 507, 508
and gauge invariance, 466, 467	Berry curvature, 472, 474
experimental setup, 464	Berry flux, 474
magnetic fields, 465	Berry potential, 471
phase of electron wavefunction, 465	fast and slow degrees of freedom, 468, 470
topological origin, 468	geometrical origin, 473
alpha-string, see Lie algebras	•
	in integer quantum Hall effect, 490
ammonia molecule, 84, 87, 88	physical reality, 474
Anderson localization, 486, 488	spin-1/2 in a magnetic field, 474, 475
angular momentum	beta-string, see Lie algebras
adjoint representation, 45	Bloch's theorem, 79, 80, 92, 486
and SU(2), 19, 45	Bragg planes, 77, 78
fundamental representation, 45	braid groups
Lie algebra, 43	definition, 526
operators as spherical tensors, 114, 116	multiplication rule, 526, 528
orbital angular momentum operator, 176, 177	Brillouin zone
recoupling of four angular momenta, 538–540	and Bloch's theorem, 80
recoupling of three angular momenta, 535-537	and Chern numbers, 496
vector-coupling coefficients, 109-112	and lattice wavefunctions, 78, 496
anholonomy, see holonomy	definition, 77, 78
anomalies in quantum field theory, 301, 585,	first Brillouin zone, 78
586	magnetic, 491
antisymmetric rank-3 tensor, 46	topology of, 495, 496
anyons	bulk-boundary correspondence, 498, 512, 522
abelian, 528	bundle, see fiber bundle
and fractional statistics, 500, 525	
in fractional quantum Hall states, 500	Cartan matrix, 138, 139
irreps of the braid group, 528	Cartan subalgebra, 47, 126
non-abelian, 528	Cartan–Dynkin method, 126
asymptotic freedom, see QCD	and SU(2), 48, 49
atlas, see manifolds	and SU(3), 49, 50
•	

617

Cartan–Dynkin method (Cont.)	for SU(2), 50, 51
Cartan subalgebra, 47	for SU(3), 156
Casimir operators, 47	product of SU(3) adjoint representations, 156
classification of algebras, 126	Clifford algebra, 248, 249
multiplicity of weights, 47	coherent states
roots, 47, 48	and dynamical symmetry, 369, 372, 373
weight diagram, 48	atoms interacting with radiation, 373–375
weight space, 49	coset space, 371
weight vectors, 48	definition, 368, 369
weights, 47	electromagnetic, 369
Cartan–Killing form, see Lie algebras	extremal state, 370
Casimir operator SU(2), 47	fermionic, 375, 376 generalized algorithm, 371
E ₂ , 214	Glauber, 368, 369
Lie groups, 130	stability subgroup, 370
Poincaré group, 266	color degree of freedom, <i>see</i> QCD
SU(3), 145	compactness
Cayley's theorem, 36, 65	and invariant integration, 103
center of group, see abelian invariant subgroup	and semisimplicity for Lie algebras, 130
character tables, 34, 35	and the Heine–Borel theorem, 425
charge conjugation (C)	and the metric tensor for Lie algebras, 130
definition, 260	as topological invariant, 427
for spinors, 257, 260	topological definition, 424, 425
charge independence hypothesis, <i>see</i> isospin	composition, 7, 99
chart, see manifolds	Condon–Shortley phase convention, 106
Chern insulators, 513	conduction band, 81, 82
Chern numbers	confinement, see QCD
and Berry curvature, 475, 476	conjugate classes, 22, 23
and level crossings, 495	conjugate representation, 149
and time-reversal symmetry, 508, 509	connectedness
and topology of Brillouin zone, 495, 496,	as topological invariant, 427
509, 511	for SU(2) and SO(3), 119, 120
Chern theorem, 493, 494	intuitive definition, 101
generalization of Gauss–Bonnet theorem, 491	simply connected spaces, 432
in the integer quantum Hall effect, 491–493,	topological definition, 426
495–498	connection coefficients, 453, 454
TKNN invariant, 489	conservation laws, 5, 6
Chern theorem, 464, 476, 493, 494	conserved vector current (CVC), see current algebra
chiral invariance	Cooper instability, 414
and current algebra, 578	in conventional superconductors, 557, 559
and helicity, 250, 252, 253	of a Fermi liquid, 557, 559
and interactions, 254	of doped AF Mott insulator, 573, 574
and weak interactions, 259	Cooper pairs
chiral edge states, 488, 500, 501, 513	as instability of Fermi liquid, 557, 559
explicit breaking of, 582	charge carriers for superconductivity, 318
projection operators for chiral fermions,	in doped Mott insulators, 573
252	topologically non-trivial, 524
classes	coordinate systems
conjugate, 22, 23	anholonomic, 451
rotation group, 119	holonomic, 451
Clebsch–Gordan coefficients, see vector-coupling	cosets
coefficients	and factor groups, 26–29
Clebsch-Gordan series	and generalized coherent states, 29
and outer product of permutation group, 156, 157	and partitioning of group elements, 22
and representation characters, 71	left, 27–29
and Young diagrams for $SU(N)$, 156, 157	multiplication law, 28
for SO(3), 109	right, 27–29

cotangent bundle, see fiber bundle	Weyl equation for massless fermions, 248
covariant derivative	Weyl representation, 245
and minimal substitution, 288	Dirac mass, see neutrinos
for electromagnetic coupling, 288	Dirac notation, see second quantization
in general relativity, 454	direct product
covering group, see universal covering group	and $SU(N)$ Young diagrams, 156
covering operations, see symmetry	of representations, 31
Coxeter matrix, see Cartan matrix	of SO(3) representations, 109
CP symmetry	of $SU(N)$ representations, 156
θ -vacuum and the strong CP problem, 448	of SU(2) representations, 51
and Weyl spinors, 259	representations of direct product group, 31, 152
conserved by $V - A$ interaction, 260	direct product group, 29, 30
definition, 260	direct sum
in weak interactions, 260	multiplicity of irreps, 51
CPT symmetry, 260	of irreps, 19, 109
critical dynamical symmetry, see dynamical symmetry	directional derivative, 451
critical exponent, see phase transitions	divergence theorem, 297
crystal momentum, 96	Drude model, 502
current algebra	dynamical Pauli effect, see fermion dynamical
$SU(2)_L \times SU(2)_R$, 578	symmetry model (FDSM)
$SU(3)_L \times SU(3)_R$, 578	dynamical symmetry
and chiral symmetry, 578	and dynamics, 59, 60, 277, 343, 560
and parity, 579	and local gauge invariance, 560
conserved vector current (CVC), 578	as a microscopic method, 340–343
explicit breaking of chiral symmetry, 582	as Hilbert space truncation, 340–343, 365
partially conserved axial current (PCAC), 578,	coset space, 373
579	critical dynamical symmetry, 355, 359-361, 549
curvature	567, 568, 575
and parallel transport, 450, 454, 490	dimensionality constraint, 362–364
Berry, 472, 474	effective interaction, 342, 343
extrinsic, 454	FDSM, 543, 546, 547
intrinsic, 454	generalized coherent states, 370–373
cyclotron frequency, 481	Ginocchio model, 543, 547
	graphene in strong magnetic field, 343–361
D-matrices, 106–108, 605	maximum stability subgroup, 373
d'Alembertian operator, 242, 276, 282	solution algorithm, 341, 342
Debye frequency, 557, 559	topological and algebraic constraints, 362–364
Dirac equation	universality of emergent states, 361
and chirality, 252, 253	validity, 342
and Dirac 4-spinors, 237, 244	Dynkin diagrams, 608
and helicity, 252	and Cartan matrix, 138, 139
and positrons, 252	and Lie algebras, 141
and the Lorentz group, 243	constructing all roots from, 139
as wave equation, 276	constructing Lie algebras from, 139-141
bilinear covariants, 245–249	construction of, 138
chiral invariance, 250	definition, 137, 138
Clifford algebra, 248, 249	
covariance properties, 246–249	eigenoperators, 128
Dirac matrices, 245	Einstein summation convention, see summation
in condensed matter, 347, 523	convention (repeated index)
in graphene, 345, 347, 348	Elliott model
Lorentz-boosted spinors, 244	and nuclear collective motion, 181, 187
negative-energy states, 252	and nuclear shell model, 183
Pauli-Dirac representation, 245, 251, 252	angular momentum content, 186
quaternions, 248, 249	band terminations, 206
single-particle interpretation, 252	classification of nuclear states, 179, 181-185

Elliott model (cont.)	Fermi velocity, 345, 521, 523
electromagnetic transitions, 204	fermion dynamical symmetry model (FDSM)
group-theoretical solution, 188, 189	and nuclear structure physics, 546, 547
Hamiltonian, 187	and the Ginocchio model, 543
SO(3) subgroups, 184	as shell model truncation, 543
spectrum, 189	corroboration by projected shell model, 552
SU(2) groups, 185	dynamical Pauli effect, 551, 552
weight space operators, 185, 186	dynamical symmetries, 548, 549
emergent states	general assumptions, 181, 546, 547
and adiabatic continuity, 341, 505	generators, 547
and dynamical symmetry, 340, 341	irreducible representations, 549-551
and quantum phases, 341, 355	Lie algebra, 548
and spontaneous symmetry breaking, 341	matrix elements, 550, 551
and universality, 141, 361, 362	quantitative calculations, 551
definition, 341	SO(5) dynamical symmetry, 549
dynamical symmetry algorithm, 341	SO(6) dynamical symmetry, 548
fermion dynamical symmetry model, 543	SO(7) critical dynamical symmetry, 549
graphene in a magnetic field, 349	SU(2) dynamical symmetry, 548
Lie group universality, 414	SU(3) dynamical symmetry, 548
topological and algebraic constraints, 362	Feynman diagrams
endomorphism, 15	and Feynman rules, 282
entanglement, 342, 530	definition, 257
equivalence classes	non-abelian gauge bosons, 294
and topological invariants, 426	Feynman slash notation, see quantum field theory
conjugate classes, 22	fiber bundle
definition and examples, 23	base space, 457
for homotopies, 429	cotangent bundle, 456
for topological spaces, 426	fiber space, 457
essential degeneracy, 521	for S^1 , 457, 458
euclidean groups	for a Möbius strip, 457, 458
as group of motion, 213	in general relativity, 456
definition, 212	locally a product of two spaces, 457
E ₂ , 212, 214	tangent bundle, 456, 457
E ₃ , 212	trivial and non-trivial, 457
invariant subgroup of translations, 215	flavor oscillations, see neutrinos
semidirect product, 213–215	fractional quantum Hall effect, see quantum Hall
Euler angles, 105, 106, 381, 383	effect
Euler characteristic, 492	fractional statistics (anyons), 500, 525
Euler–Lagrange equations, 283	fractionalization of quantum numbers
	in Luttinger liquids, 501, 522
factor groups, 26–29	in Majorana quasiparticles, 524
faithful representations, 16, 45, 59, 92, 101,	function, see maps
126	fundamental group, see homotopies
FDSM, see fermion dynamical symmetry model	
Fermi liquid	gauge fields
adiabatic continuity, 504, 505, 558	QCD, 332
and quasiparticles, 558	running coupling, 332, 335–337
Cooper instability, 559	Standard Electroweak Model, 324
definition, 557	gauge hierarchy problem, 588
departures from, 501, 558	gauge invariance
precursor to conventional superconductors, 557	Aharonov–Bohm effect, 466, 467
Fermi surface	and conservation of charge, 505
and Pauli principle, 558	and conserved particle number, 390, 391
definition, 81	and longitudinal polarization, 320, 321
role in Cooper mechanism, 559	and photon mass, 289, 290
scattering at, 558	and quantum field theory, 280

covariant derivatives, 292	Berry phase, 468-471, 473
dynamical content for local invariance, 290	gerade, 91
gauge bosons, 290	Ginocchio model
gauge charges, 255	<i>k</i> − <i>i</i> coupling scheme, 543
gauging the symmetry, 290	and symmetry dictated truncation, 545
global, 290, 390, 391	basis for FDSM coupling scheme, 547
in lattice QCD, 459	dynamical symmetry of, 543
in quantum mechanics, 287–289	Ginzburg-Landau theory
local, 59, 60, 290	and broken symmetry phases, 506
minimal substitution, 287–289, 465, 471	order parameters, 506
non-abelian (Yang–Mills fields), 291–295	gluons, see QCD
path-dependent representations, 458, 459	Goldstone bosons, see spontaneous symmetry
spontaneous symmetry breaking, 295	breaking
gauge transformations	Goldstone theorem
Coulomb gauge, 242	and breaking of continuous global symmetry, 307
covariant notation, 242	and Goldstone modes, 308
in Maxwell equations, 241, 242	and massless scalars, 309
Landau gauge, 481	and spontaneous symmetry breaking, 308
Lorenz gauge, 241	Higgs loophole, 311, 312
radiation gauge, 242	limitations of, 311, 312
symmetric gauge, 481	grand unified theories (GUTs)
to unitary gauge, 330	and evolution of coupling constants, 584
Gauss' law, 520	and the Standard Model, 338
Gauss–Bonnet theorem	anomaly-free representations, 585, 586
definition, 491, 492	extensions of SU(5), 588
generalization to Chern numbers, 491	gauge hierarchy problem, 588
Gauss–Bonnet–Chern theorem, see Chern theorem	leptoquark bosons X and Y, 586–588
Gaussian curvature	minimal criteria, 585
formula, 462	proton decay, 586
is intrinsic, 454, 462	quantization of electrical charge, 586,
special case of Riemann curvature, 454	587
Gell-Mann, Okubo mass formula	SO(10), 588
masses in the baryon decuplet, 201, 202	SU(5), 295, 586–588
masses in the nucleon octet, 201	supersymmetric, 588
physical motivation, 200	symmetry breaking hierarchy, 587
prediction of the Ω^- particle, 202	violation of baryon number, 586
generalized coherent states, see coherent states	violation of lepton number, 586
generator coordinate method	Weinberg angle, 332
and the variational principle, 379	graphene in magnetic field
definition, 378, 379	coherent states, 355–359
generating functions, 378, 379	Dirac points, 345
generator coordinates, 378, 379	dispersion, 344
Hill–Wheeler equation, 379, 381	dynamical symmetry of, 343
weight function, 379	energy surfaces, 357–359
generators	Landau levels, 345, 347, 348
of continuous groups, 22	massless Dirac equation, 345, 347, 348
of groups, 21	order parameters, 352, 353
of permutation group S_3 , 21	pair states, 351, 352
of SU(3), 143	quantum Hall effects, 346
of translations, 22	quantum phase transitions, 359–361
genus, see topology	real space lattice, 344
geometrical phase	SO(8) collective subspace, 353
Aharonov–Bohm effect, 464–468	SO(8) dynamical symmetries, 353–355
Berry connection, 470, 471, 473	sublattice pseudospin, 344
Berry curvature, 472, 474	valley isospin, 345, 349, 351
Berry flux, 474	Grassmann variables, 443
Deliy Hua, T/T	Grassmann variables, 773

group integration, see invariant group integration	SU(N), 143
groups	subgroups, 12, 13
4-group (D ₂), 36	symplectic, 21
abelian, 10	translational, 9, 215
abstract nature of, 9	two-element group, 9
additive group of integers, 8	unitary, 20
and tensors, 112–114	GUTs, see grand unified theories (GUTs)
braid groups, 526	
C _{3v} , 88–92	Haar measure, 103
$C_2, 9, 29$	hadron, definition, 326
$C_3, 29$	Hamilton's principle, 283
C ₆ , 29	Hartree–Fock approximation, 395, 396
C ₂ , 167	Hausdorff space, see topology
C ₃ , 167	Heine–Borel theorem, 425
C ₆ , 167	helical states in topological insulators, 510
compact semisimple, 144	helicity
continuous, 10	and chirality, 252, 253, 259
cosets, 26–29	and conservation of parity, 249
cyclic, 9, 25, 28–30, 80, 83, 167	and Dirac Hamiltonian, 252, 253
definition, 7	definition, 249
dihedral, 36	for massless particles, 215, 273
direct product, 29, 30	not mixed for massless fermions, 249
euclidean, 212, 213	operator, 250
examples of matrix, 20	states for fermions, 250, 251
factor groups, 26–29	Higgs mechanism
generators, 21, 22, 40, 42	abelian Higgs model, 312–315
inner automorphism, 22	and long-range fields, 319
invariant integration, 103, 104	and longitudinal polarization, 320, 321
invariant subgroups, 24, 25, 28, 29	and vacuum screening currents, 315–318
irreducible representations, 68	circumventing the Goldstone theorem,
irrep labels for point groups, 91	311, 312
isometry, 267	effect on particle spectrum, 315
Lagrange's theorem, 27	gauge invariance and mass, 315, 316
Lie, 10, 40	Higgs boson, 321, 322
linear, 20	physical understanding, 314, 315
Lorentz, 220	Standard Electroweak Model, 329
non-abelian, 10	highest-weight algorithm, 51, 187
non-compact, 209	Hill-Wheeler equation, see generator coordinate
number of parameters, 10	method
order of, 10	Hofstadter butterfly, see quantum Hall effect
orthogonal, 21, 97	holonomy
orthogonality and completeness, 104	and anholonomy, 469
permutations, 11, 12	Berry phase, 469
point groups, 82–84, 87, 88	classical, 469
relation to semigroups, 365	definition, 469
representations, 15–17	for parallel transport, 469
restriction to subgroups, 13	geometrical, 469, 475, 476
rotational, 9, 97	quantum, 469
Schoenflies notation for point groups, 83, 84	topological, 469, 475, 476
Schrödinger, 18, 19	holons, 501
semidirect product, 213-215	homeomorphism, see topology
semisimple, 25, 44, 129	homomorphism
simple, 25, 43, 44, 585	and factor groups, 28
simply reducible, 51, 109, 117, 125	and isomorphism, 13-15
SO(3), 105	and universal covering groups, 120
SO(3,1), 212	kernel of, 29, 120
space groups, 93	maps, 13, 14

homotopies	isometry group of sphere, 267
and topological solitons, 443, 444	isometry groups, 267
definition, 429	isomorphism, 13–17
equivalence classes of, 429, 430	isoscalar factors, 195–197, 199
first homotopy group, 430	isospin
fundamental group, 431	adjoint representation, 58
group structure, 430	analogy with angular momentum, 55
higher homotopy groups, 433	and isospace, 56
homotopy classes as topological invariants, 429,	charge independence hypothesis, 56
430	group structure, 54, 55
hook rule, see Young diagrams	multiplets, 57
Hubbard model, 395–397	neutron–proton system, 53, 57
Hund's rules, 182	pions, 58
,	isotopic spin, see isospin
IBM, see interacting boson model (IBM)	
incompressible states, 81, 485	Jacobi identity, 44
induced representations	•
for E ₂ , 215–218	Killing vectors, see isometries
for Poincaré group, 269	Klein-Gordon equation, 276, 439
steps of method, 216–218	Kramers' theorem, 514
induced transformation, 15	Kronecker product, see representations
inertial frames, 224	
instantons	laboratory coordinate system, 377, 378
and the QCD θ -vacuum, 448	Lagrange's theorem, 27
and the strong CP problem, 448	Lagrangian density
boundary conditions, 446, 447	and the classical action, 280
finite-action euclidean solutions, 445, 447	and the Euler-Lagrange equation, 283
physical interpretation, 447, 449	and the Lagrangian, 280
topological classification, 447	for complex scalar or pseudoscalar field, 282
insulator, 81, 82	for Dirac field, 281, 282
integer quantum Hall effect, see quantum Hall effect	for free fields, 281
interacting boson model (IBM)	for linear σ -model, 580
and nuclear structure physics, 554	for massive vector field, 283
and Pauli effect, 555	for massless vector field, 283
general assumptions, 181	for scalar or pseudoscalar field, 282
intrinsic coordinate system, 377, 378	mass terms, 282
intrinsic states, 185, 377, 378, 383	Landau levels
invariant group integration	clean limit, 482, 487
Haar measure, 103	cyclotron frequency, 481
integration measure, 103, 104	cyclotron radius, 482
Lorentz-invariant measure, 262	degeneracy, 482
orthogonality and completeness, 104	density of states, 482
rearrangement lemma, 9, 103	energy gaps, 482
weight function, 103	filling factor, 482
invariant subgroups	for non-relativistic electrons, 480
abelian, 218	gauge choice, 481
and conjugate subgroups, 24	guiding center, 482
and method of induced representations, 218	magnetic length, 481
for cyclic group C ₄ , 25	non-relativistic Schrödinger equation, 481
translation group, 215	physical origin, 482
trivial and non-trivial, 24	quantization condition, 482
Ising model, 404, 408–411	with impurity scattering, 482, 487
isobaric spin, see isospin	Landau paradigm in condensed matter
isometries	and topology, 506
and Killing vectors, 267	broken by fractional quantum Hall effect, 506
generators of, 267	definition, 506
isometry group of Minkowski space 267	lattice gauge theory 459

Laughlin gauge argument, see quantum Hall effect	Lorentz force, 287, 465, 478, 487, 509
Legendre transformation, 440, 449	Lorentz group
lepton, definition, 326	and SL(2, C), 230
Lie algebras	and SO(3, 1), 220
adjoint representation, 44	and space inversion (parity), 233–236
alpha-string, 136	commutation algebra, 226
and Lie groups, 43	Dirac representation, 237
beta-string, 136	general properties, 229
Cartan condition for semisimplicity, 129	higher-dimensional representations, 237
Cartan subalgebra, 126	invariant integration measure, 262
Cartan–Dynkin method, 126	leaves invariant $t^2 - x^2 - y^2 - z^2$, 212
Cartan-Weyl basis, 129	Lorentz covariance of Maxwell equations, 240, 241
classification, 126-141, 608	Lorentz transformations, 220, 224
compact, 130	Lorentz-covariant fields, 240
compact algebras are semisimple, 130	non-unitary representations, 238
definition, 42	parity and 4-spinors, 236
Dynkin diagrams, 137-141, 608	Poincaré and Lorentz representations, 274-277
invariant subalgebras, 43	self-conjugate representations, 235, 236
Jacobi identity, 44	$SU(2) \times SU(2)$ representations, 232
metric tensor (Cartan-Killing form), 129	two inequivalent spinor representations, 232
rank, 47	Weyl representations, 233
rank of abelian, 47	Lorentz transformations
rank of $SU(N)$, 47	and spinors, 231
root diagrams, 132	and Thomas precession, 230
root space, 130, 131	and Thomas spin-orbit coupling, 230
root vectors, 131, 132	boost generators, 225
roots, 126, 129	boosts, 224, 225
semisimple, 44, 129	classification, 227
simple, 43, 44	covariant notation, 220
structure constants, 42, 129	homogeneous, 227
SU(2) Cartan–Weyl basis, 129	improper, 228
using same symbols as for Lie groups, 43	inhomogeneous, 227
weights, 126	orthochronous, 227
Lie bracket, 42, 462	proper, 227
Lie groups	rotation generators, 225
and Lie algebras, 43	rotations, 225
compact, 42	tensors and transformation laws, 222
definition, 40	Luttinger liquids
fundamental representation, 45	distinction from Fermi liquids, 501
generators, 40, 42	fractionalization of quantum numbers, 501, 522
importance in physics, 58	left movers, 501
Lie group universality, 414	right movers, 501
unitary representations, 42	right movers, 501
using same symbols as for Lie algebras, 43	M-theory, 588
lightcone	Möbius strip
and null world lines, 228	and topological holonomy, 476
and spacelike world lines, 228	connectedness, 476
and timelike world lines, 228	fiber bundle, 457, 458
classification of Minkowski vectors, 228	global nature of topology, 506
linear σ -model	orientability, 476
and PCAC, 580	magnetic charge
explicit breaking of chiral symmetry, 582	•
	in emergent states, 474
Lagrangian density, 580–582	in Maxwell equations, 474
particle spectrum, 580–582	magnetic length, 481
symmetry breaking in Goldstone mode, 580–582	magnetic monopoles
symmetry breaking in Wigner mode, 580, 581	as emergent states, 474
little group, 217, 269, 272, 273	in Maxwell equations, 474

Majorana equation	manifestly covariant form, 242, 243
definition, 254	scalar potential, 241
Majorana representation, 254	vector potential, 241
Majorana mass, see neutrinos	Maxwell wave equation, 276
Majorana particles	Meissner effect, see vacuum screening currents
and electron fractionalization, 524	metal, 81
and linear dispersion, 524	metric
and topological protection, 524	indefinite, 210, 211
for condensed matter quasiparticles, 523	negative definite, 210
in relativistic quantum field theory, 254, 255	positive definite, 210, 211
in superconductors, 523, 524	signature, 210
in topological matter, 522, 524	metric spaces, see manifolds
Majorana representation, see Majorana equation	minimal substitution, see gauge invariance
manifolds	modular arithmetic, 38
are locally euclidean, 435	
•	Mott insulators, 81, 559, 560
atlas, 435, 494	N
chart, 435, 494	Nambu–Goldstone mode, <i>see</i> spontaneous symmetry
compactness, 424, 425	breaking
connectedness, 426	natural units, 48, 64, 603, 604
definition, 435	neutrinos
differentiable, 434, 435	Dirac, 255
global versus local properties, 419	flavor oscillations, 255
metric spaces, 434, 437	flavors in Standard Model, 326
orientable, 475, 494	Majorana, 255
smoothness, 434	mass of, 255, 258, 330
maps	seesaw mechanism, 258
bijective, 14	Weyl, 255
codomain, 14	Noether's theorem, 255, 284–286
definition, 14	non-abelian statistics, 524
domain, 14	non-compact groups
homomorphic, 13–15	Lorentz group, 220, 229, 238
image, 14	parameter space, 211
injective ("into"), 14	Poincaré group, 264
inverse image, 14	SO(l, m), 211
invertible, 14	SU(1,1), 210, 211
isomorphic, 13–15	normal subgroup, see invariant subgroups
notation, 14	8
relationship to functions, 14	occupation number representation, see second
surjective ("onto"), 14	quantization
matrix representations	Ohm's law, see resistivity
ammonia molecule point group, 87,	orientable, see manifolds
88	orientable, see manifolds
and isomorphism, 16, 17	parallel transport
and linear vector spaces, 17	and curvature, 450, 490
character, 24, 31–35, 108	in charge space, 455
character tables, 34, 35	on curved surfaces, 450, 490
determinant, 24	parity (P)
	1 2 4 7
dimensionality, 16, 17 eigenvalues, 24	and Lorentz representations, 228, 234
8	and O(3) space inversion, 98
faithful, 16, 45, 59, 92, 101	broken by octupole deformation, 393
homomorphism to abstract group, 15	commutation with Hamiltonian, 178, 394
invariants, 24	for spinors, 257, 259
similarity transforms, 18, 19	intrinsic, 235, 236
special (unit determinant) matrices, 97	of the vacuum, 581
Maxwell equations	projection of, 392–395
gauge transformations, 241, 242	spontaneously broken, 393-395
Lorentz covariance, 240, 241	violation in weak interactions, 234, 259

partition function	point groups, see groups
definition, 406	Pontryagin index, see solitons
factorization of classical, 406	Proca (massive vector) field, 276
relation to quantum propagator, 406	projected shell model, 552
Wick rotation and euclidean space, 406	projection
passive transformation, 223	of angular momentum, 381-385
Pauli matrices, 46	of chirality, 252
PCAC, see current algebra	of electron momentum, 395-397
periodic lattices	of electron spin, 395–397
and symmetry, 75	of parity, 392–395
Bloch's theorem, 79, 80, 92, 486	of particle number, 385–392
Bragg zones, 77, 78	operators (properties of), 252
Brevais lattice, 75, 76	to restore symmetry, 377
Brillouin zones, 77, 78	
direct lattice, 75	QCD
lattice vector, 76	and color singlet states, 333
reciprocal lattice, 76, 77	and quark masses, 334, 335
Wigner–Seitz cell, 76	and SU(3) color symmetry, 162, 295, 332, 333
permutation groups	asymptotic freedom, 336, 337
and nuclear SD shells, 182	chiral symmetry, 334, 335
and Young diagrams, 65-67	color confinement, 333, 336, 337
associate representations, 182	color degree of freedom, 332
basis vectors for irreps, 69	comparison with QED, 336, 337
direct (inner) product, 70	constituent quark masses, 334, 335
multiplication law, 11	coupling strength, 295
outer product, 70	current quark masses, 334, 335
S_3 , 11, 12	exotic hadrons, 336
phase transitions	gauge bosons, 295, 332, 333
classical, 400, 401	gauge coupling strength, 335-337
classical versus quantum, 407–411	glueballs, 336
classification, 401–403	gluons, 332, 333
critical dynamical symmetry, 355, 359–361, 549,	Lagrangian density, 333, 334
567, 568, 575	Pauli problems without color symmetry, 332
critical exponent, 402–405	running coupling, 335–337
Curie point, 402	scale parameter Λ , 335, 336
dimensional crossover, 407	symmetries of Lagrangian density, 334
first-order, 401, 402	vacuum polarization, 337
interplay of classical and quantum, 405	QED
order parameter, 506	abelian U(1) gauge symmetry, 291
quantum, 400, 401	comparison with QCD, 336, 337
quantum critical point, 411, 412	extension to non-abelian symmetry, 291
scaling hypothesis, 403–405	gauge coupling strength, 336, 337
second-order, 401, 402	running coupling, 335–337
superconducting, 505	vacuum polarization, 337
universality, 403–405	quantum 3D oscillator
Poincaré group	and nuclear shell model, 178–180
Casimir operators, 266, 268	eigenvalues, 174
classification of states, 268, 269	group structure, 178
commutators, 266	Hamiltonian, 174
generators, 265, 266	many-body operators, 178
group multiplication rule, 264, 265	reduced matrix elements, 202, 204
little group, 269, 272, 273	unitary symmetry, 175, 176, 178
Pauli-Lubanski pseudovector, 268	wavefunctions, 175
Poincaré and Lorentz representations, 274–277	quantum chromodynamics, see QCD
representation theory, 266	quantum computers
representations for massive particles, 269-271, 274	basic principles, 528
representations for massless particles 272–274	decoherence problem 530

627 Index

error correction, 530, 531 contrasted with classical phase transitions, 400, 401 exponentially more powerful than classical, 530 dynamical critical exponent, 406 fault tolerance, 530, 531 for graphene in magnetic field, 359-361 qubits, 528-530 Ising spins in a transverse field, 408-411 topological protection, 531 quantum spin Hall effect, see topological matter quantum critical point, see quantum phase transitions quantum statistics anyons, 525 quantum cryptography, 528 quantum electrodynamics, see QED Bose-Einstein, 525, 526 exotic in topological matter, 525 quantum field theory Fermi-Dirac, 525, 526 and gauge invariance, 280 anomalies, 301, 585 fractional, 525 conserved currents and charges, 255, 284-286 quantum teleportation, 528 covariant derivatives, 292 quarks Euler-Lagrange equations, 283 and isospin symmetry, 58, 162, 170 Feynman slash notation, 283 and SU(3) flavor symmetry, 161-164 and SU(6) flavor-spin symmetry, 171 gauge bosons, 290 global gauge invariance, 289, 290 color symmetry, 162, 332 Lagrangian densities, 281-283 flavors in Standard Model, 326 local gauge invariance, 289, 290 in mesons and baryons, 58, 165 Noether's theorem, 255, 284-286 mass of, 162, 170 partially conserved currents, 287 quantum numbers, 162, 163 quantization of classical fields, 280, 281 SU(3) weights, 165 quantum electrodynamics, 289, 290 quasiparticles relativistic quantum fields, 280 and Fermi liquids, 557 spontaneous symmetry breaking, 295 as dressed particles, 387, 389 symmetries for interacting fields, 286 Bogoliubov quasiparticles, 387, 389, 390 the classical action, 280, 281 Ising model with transverse field, 409 Yang-Mills fields, 291-295 Majoranas as Bogoliubov quasiparticles, 524 quantum Hall effect quasispin model, 181, 555, 556 and Berry phases, 491-493, 495 quaternions, 248, 249 and topology, 489 qubits, see quantum computers anyons, 500 Chern numbers, 491-493, 495, 497 Racah coefficients, 536, 537 Chern-Simons theory, 500 Racah factorization lemma, 197 classical Hall effect, 478, 479 Racah seniority, see seniority edge states and conduction, 487, 489, 500 rearrangement lemma, see invariant group integration extended states, 485 reduced matrix elements, 116-118 for graphene, 346, 348 renormalization, 291 fractional, 478, 479 renormalization group, 365 representations Hofstadter butterfly, 497 incompressible states, 484, 485 adjoint, 45 integer, 478, 479, 482-485 completely reducible, 18 Laughlin gauge argument, 490 direct product, 31 Laughlin liquid quasiparticles, 500 direct sum, 19 level crossings in the IQHE, 495 fundamental, 45 localized states, 485 in function spaces, 15 maintenance of the resistance standard, 484 irreducible, 18, 33, 34 irreps of SO(3), 111, 112 measurement of the fine-structure constant, 484 mobility gap, 485 preserve group multiplication, 15 phases of, 497 real and complex, 149, 585 quantum Hall ferromagnetism in graphene, 348 reducible, 18, 33, 34 TKNN invariant, 489, 512 resistivity quantum information processing, 529 and Ohm's law, 478, 480 and resistance in Hall experiment, 480 quantum phase transitions and dynamical symmetries, 412-414 rotational invariance and quantum critical behavior, 400, 401, 405, 406 and conservation of angular momentum, 6 and quantum critical points, 400, 401, 405, 406 restoration by projection, 381-385

rotations	and Fourier series, 104
D-matrices, 106–108, 605	expansion of functions in irreps, 104
3D, 97	generators, 98, 99
active, 105	group manifold, 99–101
and SO(3), 105–107, 605	irreducible representations, 104
and tensors, 114, 116	subgroup of angular momentum SO(3), 98
Euler angles, 105, 106	topology of manifold, 100, 101
matrix elements of rotation operator, 105–108,	SO(3)
605	D-matrices, 106–108, 605
passive, 105	and Euler angles, 105, 106
running coupling constants, 332, 335–337	and O(3), 98
running coupling consums, 222, 222 227	axis—angle parameterization, 119
Schoenflies notation, see groups	basis and rotation matrix elements, 105, 106
Schur's lemma, 47, 56	characters, 108
second quantization	direct product of representations, 109
basis transformations, 598, 599	generators, 105
creation and annihilation operators, 597, 598	highest-weight algorithm, 186
Dirac notation, 593–596	irreducible multiplets, 111, 112, 605
motivation, 591	relationship with SU(2), 119, 120
occupation number representation, 595–602	subgroups of Elliott SU(3), 186
one-body operators, 600, 601	tensor operators, 197
particle number operator, 599, 600	topology of manifold, 120
two-body operators, 601	vector-coupling coefficients, 109–111
semiconductor, 81	solitons
semidirect product groups, 213–215, 264, 265	and dispersion, 439
	* '
semigroup, 365 semimetal, 81, 344	instantons, 445–447, 449 kink solution, 442
	,
semisimple groups, see groups	magnetic monopoles, 444
seniority, 556	Pontryagin index, 444
sets	superconducting vortex solutions, 444
cardinality, 7	topological, 439
closed, 7, 422	topological charge, 441
definition of, 7	space groups
equivalence of, 7	generic form, 93
intersection of, 7	glide plane, 93
membership in, 7	screw axis, 93
null set, 7	spherical harmonics
open, 7, 422	addition theorem as Clebsch–Gordan series, 50
set-builder notation, 7	and deformed shapes, 393
subsets, 7	parity of, 394
union of, 7	proof of addition theorem, 123
Venn diagrams, 7	reduced matrix element, 118, 123
shell model (nuclear)	relation to <i>D</i> -functions, 108
and collective motion in the SD shell, 187	table of, 605
and dynamical symmetry approximations, 545	spin
and Elliott model, 179–185	for massive particles, 269–271, 274
and SU(3) symmetry, 178, 179	for massless particles, 272–274
classification of SD shell states, 179-185	spin filtering (locking) in topological insulators,
magic numbers (shell gaps), 180, 544	510
normal- and abnormal-parity orbits, 545	spin-orbit coupling
orbital symmetry, 181	and Lorentz invariance, 230, 512
spin-isospin symmetry, 181	in Dirac equation, 230
similarity transform, 18	in topological matter, 512
simple groups, see groups	in Weyl semimetals, 520
simply reducible, see groups	spin-statistics theorem, 526
SO(2)	spinons, 501

spinors	and harmonic oscillator potential, 178, 179
Dirac, 236, 244, 245, 257	and nuclear shell model, 178, 179
Majorana, 257	Casimir operators, 145
SL(2,C) Lorentz, 231, 232	classification of SD shell, 179-185
SO(3) Pauli, 45, 120, 232, 257	Clebsch-Gordan coefficients, 191, 192, 194
Weyl, 248, 257	Clebsch-Gordan series, 156, 192
spintronics, 510	color symmetry and QCD, 162, 332
spontaneous symmetry breaking	conjugate representation, 149
and dynamical symmetry, 343	dimensionality of irreps, 146
and the vacuum, 302	flavor multiplets, 163–165
continuous symmetry, 305–309	flavor symmetry and quarks, 161–165
definition, 301	generators, 143
discrete symmetry, 303–305	graphical construction of direct products, 158
Goldstone modes, 307–309	irreducible representations, 146
	irreps of direct products, 152
in the Standard Electroweak Model, 329	* * *
is actually hidden symmetry, 505	isoscalar factors, 195–197
little group, 308	isospin subgroups, 166, 167
multiple fields, 308	matrix elements, 191
of Z ₂ , 409	matrix elements for a^{\dagger} and a , 203
restoring symmetry by projection, 381–392	matrix elements of generators, 195
stability subgroup, 308, 309	oscillator angular momentum subgroups,
superconducting transition, 505	176, 177
Standard Electroweak Model	product of fundamental and conjugate reps, 194
gauge group, 326, 327	product of fundamental reps, 192
Higgs field, 329	quark structure for mesons and baryons, 165
Lagrangian density, 327	raising and lowering operators, 145
particle spectrum, 330	real and complex representations, 149
running coupling constants, 332	reduced matrix elements, 199, 200
spontaneous symmetry breaking, 329	spherical operators, 202
unitary gauge, 330	structure constants, 144
weak hypercharge, 327	structure of matrix elements, 199
weak isospin, 326	SU(2) subgroups in Elliott model, 185
Weinberg angle, 295, 331, 332	weight diagrams, 148
Yukawa fermion coupling, 329	weight diagrams and subgroups, 167
Standard Model	weight space, 50, 145
and electroweak interactions, 324-332	weights from Young diagrams, 157
and grand unification, 338, 584	Wigner–Eckart theorem, 198
and strong interactions, 332–334, 336, 338	Young diagrams, 150, 151
gauge symmetry group, 338	Young diagrams and subgroups, 168
	SU(4) model of superconductivity
particles of, 326	algebra, 561–563
statistics, see quantum statistics	and dynamics, 560, 561
Stokes' theorem	Casimir, 565, 566
and the Berry phase, 466, 494, 508	coherent state energy surfaces, 571–573
• • • • • • • • • • • • • • • • • • • •	
definition, 467	collective subspace, 564, 565
structure constants, 42, 44, 144	dynamical symmetries, 566–569
SU(2)	gap and phase diagrams, 570, 571
and angular momentum, 19	generalized AF instability, 574
center Z_2 , 120	generalized Cooper instability, 573, 574
conjugate representation, 149	Hamiltonian, 565, 566
relationship with SO(3), 119, 120	high critical temperatures, 574–576
topology of manifold, 120	no double occupancy, 569, 570
universal covering group, 120	universality, 576
	SU(6) flavor–spin symmetry
and 3D quantum oscillator, 174-176	classification of baryons and mesons, 171
and fundamental quark representations, 162	Clebsch–Gordan series, 171

SU(6) flavor–spin symmetry (Cont.)	under group transformations, 112–114
motivation, 171	Wigner–Eckart theorem, 116–118
shortcomings of SU(6) model, 172	Thomas precession, 230
subgroups, 12, 13	time-reversal invariant momenta (TRIM), 514
summation convention (repeated index), 40, 220	time-reversal symmetry (T)
superconductivity	and Chern numbers, 509
and dynamical symmetry, 557	and Kramers' theorem, 514
and screening currents, 319	and magnetic fields, 509
and superfluidity, 385	antiunitary, 514
BCS theory, 385–390, 557	conserved by $V - A$ interaction, 260
conventional, 557	for Lorentz group, 233
Cooper instability, 557, 559	implemented by antilinear operators, 233
Cooper pairs, 318	in weak interactions, 260
Meissner effect, 318, 319	Kramers doublets, 514
SU(4) model, 412–414, 560–576	TKNN invariant, see quantum Hall effect
unconventional, 557	topological defects
superfluidity, see superconductivity	disclinations, 489
superstrings, 588	dislocations, 489
supersymmetry	vortices, 489
and dark matter, 588	topological matter, 504
and the gauge hierarchy problem, 588	and discrete symmetries, 508, 509
broken, 589	and quantum computers, 528
evidence for, 588, 589	and spintronics, 510
	*
fermion–boson partners, 589	and time-reversal symmetry, 508, 509
in GUTs, 588	bulk-boundary correspondence, 512
in string theories, 588	helical states, 510
introduction, 589	Majorana particles, 522, 524
symmetry	quantum Hall effect, 489
and conservation laws, 5	quantum spin Hall effect, 509–512
and invariance, 5	spin filtering (locking), 510
and quantum operators, 5	topological insulators, 509-512
breaking by anomalies, 301	topological protection, 491, 504
breaking explicitly (Wigner mode), 301–303	topological superconductors, 524
breaking in the Higgs mode, 301, 302	Weyl points (Weyl nodes), 518, 520
breaking in the Wigner mode, 301	Weyl semimetals, 518, 520
covering operations, 5, 82	Z ₂ classification, 512
dynamical symmetries, 59, 60, 277, 301, 343	topological protection
essence of, 5	and Majorana particles, 524
non-abelian gauge, 162	and topological matter, 504
of the classical action, 281	for quantum computers, 531
restoration by projection, 377	topology
spontaneously broken, 185, 301–309, 343	Aharonov–Bohm effect, 468
SU(3) flavor, 161–165	and the Brillouin zone, 495, 496, 507, 508
50(5) 114(61, 101 105	and the condensed matter paradigm, 504
tangent bundle, see fiber bundle	basic concepts, 419
tensors	Chern theorem, 493
as geometrical objects, 223	closed balls, 422
for the rotation group, 114–116	coffee cups and doughnuts, 433
Lorentz, 222, 223	compactness, 424, 425
matrix element of scalar product, 540, 541	compactness as topological invariant, 427
matrix elements of tensor products, 537, 539	connectedness, 101, 426
raising and lowering indices, 222	connectedness as topological invariant, 427
reduced matrix elements, 116–118	continuity, 421, 423, 434
SO(3) tensor products, 114, 116	continuous map, 423
spacetime, 223	definition for set, 423
spherical, 114, 116	difference for SU(2) and SO(3), 101, 119, 120
tensor fields, 223	dimensionality as topological invariant, 427, 428

631 Index

discrete nature, 419	and massive photons, 318
equivalence classes, 426, 427	and the Higgs mechanism, 315
Euler characteristic, 492	diamagnetic atomic screening, 317, 318
first homotopy (fundamental) group, 430–433	Meissner effect, 318
Gauss–Bonnet theorem, 492	valence band, 81, 82
genus, 420, 492	variational principle, 379, 380
global versus local properties, 419	vector representation, <i>see</i> adjoint representation
Hausdorff space, 423, 424	vector representation, see autom representation vector space, 41
higher homotopy groups, 433, 434	vector-space, 41 vector-coupling coefficients
homeomorphism, 426, 427, 517	3J symbols, 111
homotopies, 429–434	Clebsch–Gordan coefficients for SO(3), 110, 111
metric spaces, 437	Condon–Shortley phase convention, 110
neighborhoods, 421	for SO(3), 109–112
of Möbius strip, 457, 475, 506	for SU(3), 191, 192, 194
of SO(2) manifold, 100, 101	symmetries, 111
open balls, 421, 422	triangle inequality, 110
open sets, 422, 423	unitarity of transformation, 110
qualitative nature, 419	
relationship to geometry, 419	weak hypercharge, 327
simply connected spaces, 431	weak interactions
simply-connected spaces, 431–433	V – A current, 259, 325, 327
the discrete topology, 423	double β -decay, 256
the indiscrete topology, 423	Fermi current-current theory, 325
topological invariants, 427, 428	intermediate vector bosons, 325
topological matter, 504	neutral current, 327
topological protection, 492, 504	neutrinoless double β -decay, 256
topological spaces, 421, 423	parity violation, 234, 259
winding number, 420, 432–434, 495	violation of unitarity in Fermi theory, 325
translation group	weak isospin, see Standard Electroweak Model
and space groups, 93	Weinberg angle, see Standard Electroweak Model
as abelian invariant subgroup, 215	Weyl equations
translational invariance, 6, 9, 82	definition, 248
TRIM, see time-reversal invariant momenta (TRIM)	describe massless fermions, 248, 521
	for neutrinos, 255
ungerade, 91	in Weyl semimetals, 518
unitary symmetry	linear dispersion, 518
conjugate representations, 154	Weyl spinors, 248
dimensionality of representations, 155	Weyl group, 133
direct product of $SU(N)$ representations, 156,	Weyl hyperplanes, 133
157	Weyl points or Weyl nodes, see topological matter
fundamental representations, 154	Weyl reflections, 133
relationship of $SU(N)$ and $U(N)$, 152	Weyl semimetals, see topological matter
review of compact group $SU(N)$, 209	Wigner coefficients, see vector-coupling coefficients
Young diagrams, 150	Wigner supermultiplet theory, 181
universal covering group	Wigner-Eckart theorem
for SO(3), 101	and selection rules, 118
for SO(3,1), 231	for SO(3), 117, 118
for SU(2), 120	for SU(3), 198
unique and singly connected, 101	reduced matrix elements, 116
universality, 403–405	Wigner–Seitz cell, 76
	winding number, see topology
vacuum polarization	
Feynman diagrams, 336, 337	Yang–Mills fields
for abelian gauge theories, 336, 337	and anomalies, 295
for non-abelian gauge theories, 336, 337	and mass terms, 295
vacuum screening currents	as generalization of QED, 293

instantons, 445-447, 449

and effective mass, 316

632 Index

Yang–Mills fields (Cont.)
non-abelian gauge fields, 291–293
non-linearities of, 294
properties of, 293
QCD, 295
standard electroweak theory, 295
topology of euclidean vacuum, 445–447, 449
Young diagrams
and the permutation group, 65–67
and unitary symmetry, 150
and weights for SU(3) irreps, 157
and Young tableau, 67

dimensionality of SU(*N*) irreps, 155 for many-particle states, 66 for two particles, 66 hook rule, 69, 155 partitions, 66 projection operators, 69 standard arrangement, 67 SU(*N*), 151 two particles in three states, 154 two particles in two states, 153 Young operator, 70 Yukawa coupling, 329