The Cambridge Handbook of Research Methods and Statistics for the Social and Behavioral Sciences

Volume 1

The first of three volumes, this book, covers a variety of issues important in developing, designing, and analyzing data to produce high-quality research efforts and cultivate a productive research career. First, leading scholars from around the world provide a step-by-step guide to doing research in the social and behavioral sciences. After discussing some of the basics, the various authors next focus on the important building blocks of any study. In Part III, various types of quantitative and qualitative research designs are discussed, and advice is provided regarding best practices of each. The volume then provides an introduction to a variety of important and cutting-edge statistical analyses. In the last part of the volume, nine chapters provide information related to what it takes to have a long and successful research career. Throughout the book, examples and real-world research efforts from dozens of different disciplines are discussed.

Austin Lee Nichols is Associate Professor of Organizational Psychology at Central European University in Vienna, Austria. Prior to his current position, he worked in various faculty and research positions around the world in both psychology and management. He has published in journals across a variety of research disciplines and has won awards for his teaching, research, and service from various global institutions.

John E. Edlund is Professor of Psychology at the Rochester Institute of Technology, USA, and serves as the Research Director of Psi Chi: The International Honor Society in Psychology. He has won numerous awards related to teaching and is passionate about the improvement of research methods and the dissemination of psychological knowledge to the world.
The Cambridge Handbook of Research Methods and Statistics for the Social and Behavioral Sciences

Volume 1: Building a Program of Research

Edited by
Austin Lee Nichols
Central European University

John E. Edlund
Rochester Institute of Technology
Most importantly, I dedicate this book to my wife, family, and friends who put up with me reading and editing chapters at some very weird times and days. I would also like to thank the numerous coffee shops, mostly in Vienna and Orlando, for providing the energy and focus to edit the many wonderful chapters contained in this book.

Austin Lee Nichols

I dedicate this book to my awesome wife and children. Without you, all that I have and do would not be possible. You three are my everything.

John E. Edlund
Contents

List of Figures page x
List of Tables xiv
List of Contributors xvi
Preface xix

Part I. From Idea to Reality: The Basics of Research 1
1 Promises and Pitfalls of Theory 3
YZAR S. WEHBE, TODD K. SHACKELFORD, AND LAITH AL-SHAWAF

2 Research Ethics for the Social and Behavioral Sciences 25
IGNACIO FERRERO AND JAVIER PINTO

3 Getting Good Ideas and Making the Most of Them 47
CHRISTIAN S. CRANDALL AND MARK SCHALLER

4 Literature Review 65
RACHEL ADAMS GOERTEL

5 Choosing a Research Design 85
GLYNIS M. BREAKWELL

6 Building the Study 103
MARTIN SCHNUERCH AND EDGAR ERDFELDER

7 Analyzing Data 125
ROGER WATT AND ELIZABETH COLLINS

8 Writing the Paper 156
JOHN F. DOVIDIO

Part II. The Building Blocks of a Study 177
9 Participant Recruitment 179
JESSE CHANDLER

10 Informed Consent to Research 202
DAVID S. FESTINGER, KAREN L. DUGOSH, HANNAH R. CALLAHAN, AND
RACHEL A. HOUGH
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 Experimenter Effects</td>
</tr>
<tr>
<td>JOCELYN PARONG, MARIYA VODYANYK, C. SHAWN GREEN, SUSANNE M. JAEGGI, AND AARON R. SEITZ</td>
</tr>
<tr>
<td>12 Debriefing and Post-Experimental Procedures</td>
</tr>
<tr>
<td>TRAVIS D. CLARK AND GINETTE BLACKHART</td>
</tr>
<tr>
<td>Part III. Data Collection</td>
</tr>
<tr>
<td>13 Cross-Sectional Studies</td>
</tr>
<tr>
<td>MANINDER SINGH SETIA</td>
</tr>
<tr>
<td>14 Quasi-Experimental Research</td>
</tr>
<tr>
<td>CHARLES S. REICHARDT, DANIEL STORAGE, AND DAMON ABRAHAM</td>
</tr>
<tr>
<td>15 Non-equivalent Control Group Pretest–Posttest Design in Social and Behavioral Research</td>
</tr>
<tr>
<td>MARGARET DENNY, SUZANNE DENIEFFE, AND KATHLEEN O’SULLIVAN</td>
</tr>
<tr>
<td>16 Experimental Methods</td>
</tr>
<tr>
<td>THOMAS F. DENSON AND CRAIG A. ANDERSON</td>
</tr>
<tr>
<td>17 Longitudinal Research: A World to Explore</td>
</tr>
<tr>
<td>ELISABETTA RUSPINI</td>
</tr>
<tr>
<td>18 Online Research Methods</td>
</tr>
<tr>
<td>KEVIN B. WRIGHT</td>
</tr>
<tr>
<td>19 Archival Data</td>
</tr>
<tr>
<td>JASON MILLER</td>
</tr>
<tr>
<td>20 Qualitative Research Design</td>
</tr>
<tr>
<td>SINIKKA ELLIOTT, KAYONNE CHRISTY, AND SIQI XIAO</td>
</tr>
<tr>
<td>Part IV. Statistical Approaches</td>
</tr>
<tr>
<td>21 Data Cleaning</td>
</tr>
<tr>
<td>SOLVEIG A. CUNNINGHAM AND JONATHAN A. MUIR</td>
</tr>
<tr>
<td>22 Descriptive and Inferential Statistics</td>
</tr>
<tr>
<td>MARTHA S. ZLOKOVICH, DANIEL P. CORTS, AND MARY MOUSSA ROGERS</td>
</tr>
<tr>
<td>23 Testing Theories with Bayes Factors</td>
</tr>
<tr>
<td>ZOLTAN DIENES</td>
</tr>
<tr>
<td>24 Introduction to Exploratory Factor Analysis: An Applied Approach</td>
</tr>
<tr>
<td>MARTIN SELLBOM AND DAVID GORETZKO</td>
</tr>
<tr>
<td>25 Structural Equation Modeling</td>
</tr>
<tr>
<td>REX B. KLINE</td>
</tr>
<tr>
<td>Chapter</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>26</td>
</tr>
<tr>
<td>27</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>29</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>31</td>
</tr>
<tr>
<td>32</td>
</tr>
<tr>
<td>33</td>
</tr>
<tr>
<td>34</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>36</td>
</tr>
<tr>
<td>37</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Figures

4.1 Maya’s literature review map.

6.1 Screenshot of a power analysis for a two-groups t-test in G*Power.

6.2 Plotting a power curve for different Type I error probabilities in G*Power (sensitivity analysis).

7.1 Two scatter plots with no effect (a) and a substantial effect (b). The variability of each variable taken on its own (i.e., the variance) is the same in both (a) and (b). In (b), but not (a), the variables share some of that variability. This is called covariance – they vary together.

7.2 Simulated data showing a hypothetical relationship between social pressure and compliance. The relationship in the sample is small but not zero. Detecting it depends on the data points marked in white; without these, the relationship would be negligible.

7.3 Some data with incomplete sampling: (a) sampling that missed both tails of the social pressure distribution and (b) sampling that has missed the left half of the distribution. Comparing these with Figure 7.2 shows how important completeness is.

7.4 Two scatter plots of data: (a) the original data with some outliers (top left) that eradicate the effect; (b) the outliers (top right) amplify the effect.

7.5 The sample of data shown here have high non-independence. This is visible in this case as small, localized clusters of data points. In (b) the data have just one from each small cluster (so half as many data points) and, as can be seen, this is really what the data in (a) contain. The extra non-independent data do not add anything except the illusion of higher precision.

7.6 (a) An example of a set of data (circles) with the model values shown (white squares). The residuals are shown in the diagram as the vertical lines between the model value and the data value. Two alternative model lines are either too shallow (b) or too steep (c).

7.7 When we add in age as a variable, we see that the effect of social pressure on compliance is higher in older people (dark dots) than in younger people (light dots). This indicates an interaction between social pressure and age.
7.8 An effect between two variables. The variance of each variable is represented by a circle. Where the circles overlap, there is shared variance.

7.9 An ANOVA table for the basic model of compliance and social pressure. Currently, only the SumSq column is of interest. The remaining columns relate to null hypothesis testing, which we consider later.

7.10 The variance of a response variable and the variance accounted for by two predictors. Since the two predictors are partially correlated, there is an overlap between all three variables.

7.11 ANOVA results when extroversion is added to the model.

7.12 The logic of sampling distributions. Sampling distributions run from left to right. In (a) a sampling distribution is shown: the set of samples that will be obtained from a particular population. In this case it is a population with effect size of 0.2. In (b) many such sampling distributions are shown coming from many populations with different effect sizes.

7.13 We can see the relative likelihood of a sample effect size of 0.3 for (a) three different population effect sizes and (b) many different population effect sizes. (c) The continuous distribution that results when enough population effect sizes are considered. This is called a likelihood function. The population effect size that gives the highest likelihood (the peak of the curve) is then the maximum likelihood estimate of the population effect size for the given sample effect size.

7.14 The distribution of expected sample effect sizes from a null hypothesis (population effect size is zero) and a sample size of 42. The proportion of the area under the curve that lies outside of a given sample effect size is the probability that is used for null hypothesis testing.

7.15 The likelihood function for the data in Figure 7.2. It shows the relative likelihood of different population effect sizes given that sample. The range is quite wide, and the 95% confidence interval is +0.49 to +0.82.

7.16 Two different likelihood functions are shown for two different sample sizes. (a) The smaller sample size (n = 42) leads to more uncertainty than (b) the larger sample size (n = 500). Reflecting this, the second likelihood function has a much sharper peak.

7.17 Each rectangle is a variable, and the arrows are causal links. In this observational system, there will be a small statistical effect between i and d that is not causal (i.e., i and d are both caused by s and its causes – the white links). There is also an effect of i on c, part of which is causal (via f) and part of which is not (via n and j and via s, p, and k).

8.1 An inverted pyramid structure of the introduction.

13.1 Example of a cohort study.
13.2 Example of a case–control study.
13.3 Example of a cross-sectional study.
13.4 Example of confounding variables. 275
13.5 An example of length-time bias. 280
13.6 Scatter plot and correlation between age and scores of political leaning in a hypothetical population. 287
14.1 Hypothetical data showing a positive treatment effect in a regression discontinuity design. 302
14.2 Hypothetical data showing a positive treatment effect in an interrupted time-series design. 307
15.1 A NECGPP design. 317
16.1 Illustration of multiple translation levels from learning theory to empirical realization of the independent variable: experimental manipulation of video game violence. 337
16.2 Data from a one-way between subjects experiment on emotion regulation (Kalokerinos et al., 2015). The independent variable was emotion regulation strategy with three levels. The dependent measure was self-reported sadness after watching a sad film clip. 341
16.3 Data from a within-subjects fMRI experiment on amygdala responses to ethnicity (White, Black) and skin tone (light, dark). 343
16.4 Data from a mixed design experiment on cognitive reappraisal and cortisol responses to a speech stressor (Denson et al., 2014). The between-subjects independent variable was cognitive reappraisal (versus control). The within-subjects dependent measure was salivary cortisol at three time points. 344
16.5 An overview of the experimental research process. 353
20.1 Relationship between ontology, epistemology, and methodology. 423
22.1 Normal distribution for the number of people in each age group who completed the eating-disorders survey. 472
22.2 Negatively skewed distribution for number of people in each age group who completed the eating-disorders survey. 472
22.3 Positively skewed distribution for number of people in each age group who completed the eating-disorders survey. 473
22.4 Vertical and horizontal bar graphs of the number of participants by gender. 474
22.5 Vertical bar graph of the percentage of participants by gender. 474
22.6 Number of participants in low, medium, and high disordered-eating-level categories. 475
22.7 Number of participants in low, medium, and high disordered-eating-level categories by gender. 475
22.8 Demonstration of the effect of a shorter or longer y-axis on bar-graph displays. 476
22.9 Number of disordered-eating survey participants by gender. 476
22.10 Normal distribution and standard deviations. 481
22.11 An illustration of 95% confidence interval for the mean. 483
22.12 Examples of Type I and Type II errors. 485
23.1 Common models of \(H_1 \) and \(H_0 \). Each graph is a plot of the plausibility (probability density) of different possible population parameter values (e.g., slopes and mean differences). Let a positive value be in the direction predicted by the theory (e.g., “compassion to enemy” group will show greater anger than “compassion to stranger” group). \(H_0 \) is a point \(H_0 \) – there is a spike of probability for just one value and no difference between the means (or zero slope). Note that \(H_1 \) allows a range of population values consistent with the theory, with smaller values more likely than larger ones.

25.1 Example of a manifest-variable path model analyzed by Yamaga et al. (2013).

25.2 Example of a CFA model analyzed by Filippetti and Krumm (2020).

25.3 Example of a SR model analyzed by Recio et al. (2013).

25.4 Original Yamaga et al. (2013) path model (a) and equivalent versions (b–d) all with identical fit to the data; dotted lines changed causal status relative to original model.

27.1 Example of a forest plot and tabular display of data. Symbol sizes indicate weights. CI, confidence interval; Ctrl = control group; Ev = number of events; Trt = treatment group.

27.2 Example of a cumulative meta-analysis, showing the evolution of the mean effect size over time.

27.3 Network meta-analysis graphical display. Thicker lines signify more included studies. Solid lines indicate direct comparison of the interventions within primary studies, and dotted lines represent indirect comparisons derived from the network meta-analysis.

29.1 Proximal and distal defenses in response to conscious and unconscious death thoughts.

31.1 Elements of a standard poster.

31.2 Papers with “interdisciplinary” in title (VanNoorden, 2014).

32.2 Transdisciplinary model (Total Communication, 2019).
Tables

1.1 Definitions and descriptions of common theoretical and descriptive entities used in research
4.1 Sample spreadsheet for initial collection
4.2 Cooper’s taxonomy of literature reviews
6.1 Overview of eight freely available power/design analysis tools
7.1 Possible inferential errors in the process of NHST
10.1 Informed consent quiz best practices
13.1 The association between gender and anxiety
13.2 The multiple scenarios of the study of association between gender and anxiety
21.1 Study protocol considerations related to data cleaning
21.2 Common software platforms for data entry, data management, and data analysis
21.3 Aspects of a study that may lead to missing data
22.1 Conformity and eating-disorder inventory score means and standard deviations by sorority membership
22.2 Chart of Type I and II errors
22.3 Interpreting the effect size of a z- or t-test with Cohen’s d
22.4 Contingency table example for initial chi-square calculations
22.5 Contingency table example for calculating expected measures and chi-square
25.1 Correlation residuals and standardized residuals for a path model of denture satisfaction and oral health
26.1 Description of R^2 measures based on the Rights and Sterba (2019b) framework
26.2 Example R^2 measures for internet usage model
27.1 Contingency table for numbers of studies (e.g., loss in automobile value over time for used cars) with values indicated for two moderators: color and size
27.2 Software packages commonly used to carry out meta-analyses
31.1 Tips for an effective poster presentation
31.2 Tips for an effective oral presentation
31.3 Tips for an effective job talk
32.1 Example of a publication plan for collaboration
<table>
<thead>
<tr>
<th>List of Tables</th>
<th>xv</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.1 Overview of recommended validity criteria that a good peer review should focus on</td>
<td>719</td>
</tr>
<tr>
<td>33.2 A core set of good reviewer practices, conceived as carrier of academic culture</td>
<td>728</td>
</tr>
<tr>
<td>36.1 Examples of multisite projects for researchers and students</td>
<td>782</td>
</tr>
<tr>
<td>37.1 Statistical techniques used in applied settings by area of specialization</td>
<td>801</td>
</tr>
<tr>
<td>37.2 Academic and applied/industry characteristics</td>
<td>813</td>
</tr>
</tbody>
</table>
Contributors

AARON R. SEITZ, University of California, Riverside
ALEXIS B. AVERY, University of Wisconsin–Madison
ANNE MOYER, Stony Brook University
ANTHONY J. GAMBINO, University of Connecticut
C. SHAWN GREEN, University of Wisconsin–Madison
CHARLES S. REICHARDT, University of Denver
CHRISTIAN S. CRANDALL, University of Kansas
CHRISTIAN UNKELBACH, University of Cologne
CRAIG A. ANDERSON, Iowa State University
D. BETSY MCCOACH, University of Connecticut
 Damon Abraham, University of Denver
DANIEL P. CORTS, Augustana College
DANIEL STORAGE, University of Denver
DAVID GORETZKO, Ludwig-Maximilians-Universität München
DAVID S. FESTINGER, Philadelphia College of Osteopathic Medicine
DOLORES ALBARRACIN, University of Pennsylvania
EDGAR ERFELDER, University of Mannheim
ELISABETTA RUSPINI, University of Milano-Bicocca
ELIZABETH COLLINS, University of Stirling
GINETTE BLACKHART, East Tennessee State University
GLYNIS M. BREAKWELL, University of Bath
HANNA K. PILLION, US Customs and Border Protection
HANNAH R. CALLAHAN, Philadelphia College of Osteopathic Medicine
HOWARD C. NUSBAUM, University of Chicago
List of Contributors

IGNACIO FERRERO, University of Navarra
JASON MILLER, Michigan State University
JAVIER PINTO, University of Los Andes
JEFF GREENBERG, University of Arizona
JEFFREY M. CUCINA, US Customs and Border Protection
JENNIFER N. BAUMGARTNER, University of California, San Diego
JESSE CHANDLER, Mathematica; University of Michigan
JESSICA GUREVITCH, Stony Brook University
JOCELYN PARONG, University of Wisconsin–Madison
JOHN F. DOVIDIO, Yale University
JONATHAN A. MUIR, Emory University
JORDAN R. WAGGE, Avila University
KAREN L. DUGOSH, Public Health Management Corporation
KATHLEEN O’SULLIVAN, University College Cork
KAYONNE CHRISTY, University of British Columbia
KELLY CUCCOLO, Alma College
KEVIN A. BYLE, US Customs and Border Protection
KEVIN B. WRIGHT, George Mason University
KLAUS FIEDLER, Heidelberg University
LAITH AL-SHAWAF, University of Colorado, Colorado Springs
LISA L. HARLOW, University of Rhode Island
MANINDER SINGH SETIA, MGM Institute of Health Sciences
MARGARET DENNY, University of Maribor
MARIYA VODYANYK, University of California, Irvine
MARK SCHALLER, University of British Columbia
MARTHA S. ZLOKOVICH, Psi Chi, The International Honor Society in Psychology
MARTIN SCHNUERCH, University of Mannheim
MARTIN SELLBOM, University of Otago
MARY G. CAREY, University of Rochester Medical Center
MARY MOUSSA ROGERS, University of South Carolina Aiken
<table>
<thead>
<tr>
<th>List of Contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicky Hayes, Professional Development Foundation</td>
</tr>
<tr>
<td>Rachel A. Hough, Public Health Management Corporation</td>
</tr>
<tr>
<td>Rachel Adams Goertel, Roberts Wesleyan College, Rochester</td>
</tr>
<tr>
<td>Rex B. Kline, Concordia University, Montréal, Canada</td>
</tr>
<tr>
<td>Roger Watt, University of Stirling</td>
</tr>
<tr>
<td>Sarah D. Newton, University of Connecticut</td>
</tr>
<tr>
<td>Sheldon Solomon, Skidmore College</td>
</tr>
<tr>
<td>Sicong Liu, University of Illinois at Urbana–Champaign</td>
</tr>
<tr>
<td>Sinikka Elliott, University of British Columbia</td>
</tr>
<tr>
<td>Siqi Xiao, University of British Columbia</td>
</tr>
<tr>
<td>Solveig A. Cunningham, Emory University</td>
</tr>
<tr>
<td>Susanne M. Jaeggi, University of California, Irvine</td>
</tr>
<tr>
<td>Suzanne Denieffe, Waterford Institute of Technology</td>
</tr>
<tr>
<td>Tamera R. Schneider, Baruch College – CUNY</td>
</tr>
<tr>
<td>Thomas F. Denson, University of New South Wales</td>
</tr>
<tr>
<td>Todd K. Shackelford, Oakland University</td>
</tr>
<tr>
<td>Tom Pyszczynski, University of Colorado at Colorado Springs</td>
</tr>
<tr>
<td>Travis D. Clark, University of North Dakota</td>
</tr>
<tr>
<td>Wendy M. Brunner, Bassett Medical Center</td>
</tr>
<tr>
<td>Yuri Jadotte, Stony Brook University</td>
</tr>
<tr>
<td>Yzar S. Wehbe, Oakland University</td>
</tr>
<tr>
<td>Zoltan Dienes, University of Sussex</td>
</tr>
</tbody>
</table>
Preface

The Cambridge Handbook of Research Methods and Statistics for the Social and Behavioral Sciences is meant to be the most comprehensive and contemporary collection of topics related to research methods and statistics spanning these related yet extremely diverse fields of research. This first volume, Building a Program of Research, provides researchers at all levels a starting point along with the tools to build a successful research career in one of these fields. Although each chapter provides a substantial contribution to this end, together the individual chapters combine to provide the knowledge needed to be a successful researcher in the social and behavioral sciences.

Throughout these chapters, the leading researchers in a variety of disciplines seek to share their knowledge and experience in a way that is both accessible and useful. They do so by writing in a way that is understandable to novice researchers and also deeply discusses the challenges related to each topic and provides new information to highly experienced scientists. This volume begins with issues related to building theory and generating promising ideas, includes detailed topics related to each of the steps involved in the research process, and provides ethical considerations that should be at the forefront of any research project.

Volume 1 next focuses on detailed building blocks of any research endeavor, including issues related to recruitment of participants, providing informed consent, awareness of and amelioration of experimenter effects, and how best to debrief and probe participants at the conclusion of the study. The chapters that follow get into the nitty gritty of data collection by focusing on, giving examples of, and providing advice for a variety of study designs and methodological approaches. Subsequently, the experts address several considerations for analyzing a variety of quantitative and qualitative data, ranging from cleaning the data to running descriptive statistics to introducing higher-level modeling techniques.

The volume finishes by providing real-world advice, from extremely successful researchers, that will help even the most experienced scientists to further their career. Topics include designing a line of research, publishing and presenting one’s research, successfully collaborating, handling and reviewing your own and others’ research submissions, grant writing, teaching methods and statistics, and even options and applications for researchers outside of a traditional academic context. In all, the authors in this volume span over a dozen disciplines, many more countries, and have amassed successful research careers leading to numerous publications and acknowledgments. It is for this reason that we are confident in their ability to teach you and to help you progress in your career as a scientist.