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1 Introduction

1.1 From Data Processing to Communication

For a long time, approximately from the 1950s to the 1990s, most computing

consisted of isolated computers doing data processing. The importance of struc-

tured data was realised at an early stage, and the first high-level programming

languages supported data structures and data types. Figure 1.1 shows examples

of data structure declarations with types in Cobol and Fortran, and Figure 1.2

shows examples in the modern languages Rust and Haskell. Niklaus Wirth, the

inventor of the programming language Pascal, used the slogan “algorithms +

data structures = programs” as the title of a classic textbook, and almost cer-

tainly most of the readers of this book have attended or taught a course with a

similar title.

Programming languages allow data structures to be codified as data types, and

programming tools and environments use data types as the basis for analysis and

Cobol:

DATA DIVISION.

WORKING-STORAGE SECTION.

01 WS-NAME PIC X(25).

01 WS-CLASS PIC 9(2) VALUE ’10’.

01 WS-ADDRESS.

05 WS-HOUSE-NUMBER PIC 9(3).

05 WS-STREET PIC X(15).

05 WS-CITY PIC X(15).

05 WS-COUNTRY PIC X(15) VALUE ’INDIA’.

Fortran:

INTEGER COLS,ROWS

PARAMETER(ROWS=12,COLS=10)

REAL MATRIX(ROWS,COLS),VECTOR(ROWS)

Figure 1.1 Typed data structure declarations in Cobol (top, from
www.tutorialspoint.com/cobol/cobol_data_types.htm) and Fortran (bottom, from
www.obliquity.com/computer/fortran/initial.html).
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2 Introduction

Rust:

struct Address {

houseNumber : u16,

street : String,

city : String,

country : String

}

Haskell:

data Tree a = Leaf

| Node a (Tree a) (Tree a)

Figure 1.2 Typed data structure declarations in Rust (top) and Haskell (bottom).

verification. This could be at compile time, in languages such as Java, C], Scala

and Haskell, or at run time, in languages such as Python. In a typical integrated

development environment (IDE) such as Eclipse, writing code that applies an

operation to the wrong data type (for example, calling a method that doesn’t

exist in a class) produces a visual highlight of the error (such as a × or an

underline). Clicking on the error then produces a menu suggesting operations

that can be validly applied.

More recently, the nature of computing has changed. We now depend on sys-

tems of communicating programs: web apps and web services, mobile apps and

their connections to servers, cloud services, data centres, software architectures

based on micro-services, and more. Even a typical device that we think of as a

single computer contains a multicore processor, and further speed increases in

computing will depend on effective use of increasingly parallel architectures and

the communication that they require.

We can update Wirth’s slogan to a new slogan: “programs + communication

structures = systems”. Communication structures are essential for the design of

systems, as evidenced by the large number of standard communication protocols

that specify the sequence and format of messages in communication-based sys-

tems. In order for programming languages and tools to support programmers in

the correct implementation of communication, there needs to be a way of cod-

ifying communication structures in the same way that data types codify data

structures. This is where session types come in.

1.2 From Data Types to Session Types

Session types are type-theoretic specifications of communication protocols, so

that protocol implementations can be verified by compile-time type checking in

a programming language. We can introduce the key ideas through a series of
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1.2 From Data Types to Session Types 3

examples. An extremely simple protocol specifies sending one message, which is

an integer, and then closing the connection. The corresponding session type is

!int.end!

in which ! means send, or output, the dot means sequencing, and end! means that

the channel must be closed. If there is a software component that implements

this protocol, by sending a particular integer and then closing the connection,

then there should be another component that interacts with it by receiving an

integer and then waiting for the connection to be closed. The protocol followed

by the latter component is described by the session type

?int.end?

in which ? means receive, or input, and end? means wait for closure of the con-

nection. These protocols are related by a notion of duality, which swaps sending

and receiving steps.

Typical protocols do not only send messages in one direction. The session type

?int.?int.!int.end?

describes a slightly more complex protocol in which two integers are received,

one after the other, and then an integer is sent. The dual session type describes

the protocol followed by the other component:

!int.!int.?int.end!

Another feature of most protocols is choice. At a certain point in the protocol,

perhaps at the beginning, one component offers a choice between several patterns

of interaction, and the other component makes a choice. Here is a protocol for a

compute service, written to specify the behaviour of the server. It offers a choice

(&) between two operations: addition (plus) and negation (neg).

&{plus : ?int.?int.!int.end?, neg : ?int.!int.end?}

Each option is followed by a session type describing the protocol for that op-

eration. If the client chooses plus then the server must receive two integers in

sequence and then send an integer which is supposed to be their sum. If the

client chooses neg then the server must receive an integer and then send an in-

teger which is supposed to be its negation. This form of choice is called external

choice because the choice is made by the component at the other endpoint of the

channel.

Again we have a dual session type that describes the protocol followed by a

client. The new ingredient is the constructor ⊕ for making a choice.

⊕{plus : !int.!int.?int.end!, neg : !int.?int.end!}

The client implements this type by sending as the first message one of the labels

plus or neg. After that, it sends and receives messages according to the continu-

ation protocol of the label that it sent. This is an internal choice by the client.
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4 Introduction

We have adopted the convention that the client closes the connection (end!) and

the server waits for it to be closed (end?).

Realistic protocols usually allow repetition. We can express repetition by in-

troducing recursive session types. For example, the following session type allows

the server to offer a sequence of operations, terminating when the client selects

quit.

S = &{plus : ?int.?int.!int.S, neg : ?int.!int.S, quit : end?}

The dual session type, describing the client’s protocol, becomes recursive in a

corresponding way.

1.3 Assumptions about Communication

The theory of session types makes some assumptions about the underlying com-

munication mechanism that protocols are built on top of. First, we are working

in a concurrent or distributed setting, with communication over channels. When

a message is sent, it is consumed by exactly one receiver. This is in contrast

to broadcast communication, for example. We also assume that reliable mes-

sage delivery is guaranteed, and that the order of messages is preserved. The

implementation of TCP/IP sockets in a typical programming language is a good

example of what we have in mind. In theoretical accounts of session types, we

consider channels to be bidirectional. A bidirectional channel could be imple-

mented as a pair of unidirectional channels. A channel has two endpoints, and

each message travels from one endpoint to the other. In general there can be

multiple references to each endpoint, but messages are not shared. Also, one

component in a distributed system can use any number of channels for sending

or receiving. This is in contrast to the actor paradigm, in which each component

has a single mailbox for incoming messages.

Session types can be applied to synchronous and asynchronous models of com-

munication. Synchronous communication, in which the sender and receiver syn-

chronise on every message, is theoretically simpler but is only realistic as a model

of local concurrency. Asynchronous communication assumes that messages go

into a queue at the receiver, and is more realistic for distributed systems. A

formal model of asynchronous communication requires the queues to be consid-

ered as part of the semantics. However, from the point of view of type checking

programs, there is no difference between synchronous and asynchronous commu-

nication.1 In this book we only consider synchronous communication.

An important aspect of session type systems is control of ownership of channel

endpoints. In the client/server example discussed in the previous section, imagine

two clients sharing a connection to a single server. If both clients send messages

to select a service—for example, one might send add and the other might send

neg—the server receives one of the messages first. The other message is then

1 Unless we consider asynchronous subtyping, which is discussed briefly in Section 5.6.
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1.4 Session Types in Programming Languages 5

unexpected, because the server has already entered the protocol for one particular

service. This is a race condition which conflicts with the assumption of reliable

message delivery, because in effect the label chosen by the second client cannot

be delivered. The simplest way to avoid this situation, which is followed by most

session type systems, is to specify that each of the two endpoints of a given

channel is accessible to exactly one thread at a time. Technically, this is achieved

by using concepts from linear type theory. This restriction can be relaxed in the

special case of stateless protocols, as we explain in Chapter 4.

1.4 Session Types in Programming Languages

We have introduced the concepts of session types without considering which lan-

guage they are a type system for. In most of the book we present a session type

system for a form of pi calculus, which we regard as a core concurrent program-

ming language. This gives the simplest possible setting in which to define the

syntax and operational semantics of a language for which we can then define

typing rules for session types. In Chapter 7 we define a core functional language

with concurrency and communication features, and define a session type system

for it. Session types have also been applied to imperative and object-oriented

languages. Generally speaking, the more features a language has, the more com-

plex its session type system becomes, because of the need to consider interactions

between session types, linear typing and various other language constructs.

1.5 The Safety Guarantees of Session Types

In this book, we focus on session types as a static type system, so that compile-

time type checking guarantees certain run-time behavioural properties. It is also

possible to apply session types to dynamically typed languages, by interpreting

types as specifications of run-time monitors which detect protocol violations.

Working with static session type systems, there are two main guarantees for well-

typed programs (or systems of distributed programs). First, no communication

mismatch: if the owner of one endpoint of a channel sends a message, then the

owner of the other endpoint is expecting to receive a message, and the message

types match; conversely if the owner of one endpoint is expecting to receive a

message of a certain type, then the owner of the other endpoint will send a

message of the expected type. Second, session fidelity: the sequence and types of

the messages sent on a channel match the session type of the channel. Formally

we define runtime errors to be programs that fail to communicate because they

connect an input to an input, or connect an output to a choice, and so on.

We then prove that well-typed programs cannot evolve into runtime errors. The

higher-level properties, no communication mismatch and session fidelity, emerge
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6 Introduction

from the proof that runtime errors cannot occur. All of these properties can be

proved with respect to the formal type system and operational semantics.

Some session type systems guarantee deadlock-freedom. This means that every

send operation eventually finds a matching receive, and conversely every input

operation eventually finds a matching output. Most of the type systems in this

book do not guarantee deadlock-freedom. The exception is the logically-based

type system in Chapter 9.

1.6 Binary and Multiparty Session Types

The theory of session types comes in two varieties. The original form, which

is now known as binary session types, considers every communication channel

separately. Every protocol is between the two endpoints of a single channel. It

is possible for one component to run several protocols on different channels,

with each protocol described by its own session type, but the type system does

not specify any relationship between messages in one protocol and messages

in another protocol. This gives a relatively simple theory but the behavioural

guarantees are rather weak: a system can easily deadlock even if all of its point-

to-point protocols are correctly implemented.

Multiparty session types consider collective protocols among groups of compo-

nents. The theory offers a methodology for the design of communicating systems,

in which the first stage is to define a global protocol that specifies all the messages

exchanged between a certain set of components. Subject to some consistency con-

ditions, the global type can be projected to a collection of local types, one for

each component. A local type is similar to a binary session type, in that it speci-

fies the sequence of communications that one component can do, but it includes

communications between one component and all the other components. Local

types can be used as the basis for type checking in pi calculus or a programming

language. Because all the messages in the system are specified together, including

consideration of how they can be interleaved, the behavioural guarantees offered

by multiparty session types include strong deadlock-freedom properties.

In this book we only deal with binary session types. Multiparty session types

deserve a book of their own. However, a thorough understanding of the the-

ory of binary session types is a good preparation for tackling the literature on

multiparty session types.
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2 Basic Concepts

We begin by presenting the basic concepts of session types, using the pi calculus

as a core concurrent programming language for which we define a type system.

We assume some familiarity with the pi calculus and the concepts of operational

semantics and type systems. References to background reading can be found at

the end of the chapter.

2.1 Session Types

Moving on from the informal description in Chapter 1, we now define session

types formally. We begin with finite types built from input, output and the two

forms of the terminated type. These are defined by the grammar in Figure 2.1. In

this and other figures, we highlight new parts of the definition. As this is the first

definition of the syntax of types, every clause is highlighted. We add external

and internal choice types later in the chapter (Section 2.5).

A session type describes the communication operations that can be performed

on one endpoint of a communication channel. The type end! means that commu-

nication has finished and the only remaining operation is to close the channel.

The type end? also means that communication has finished, but the channel will

be closed from the other endpoint. The type ?T.U means that a message of type

T can be received from the channel, and subsequently the channel must be used

according to type U . The type !T.U means that a message of type T can be sent

on the channel, and subsequently the channel must be used according to type

U . We use meta-variables T , U , V , W to denote types.

We often use end! and end? as illustrative message types. For example, ?end!.end?
is a type that describes receiving (?) a message of type end! and then waiting

for the channel to be closed (end?). The message received, of type end!, is a

channel endpoint that can be used by closing it. For a more elaborate example,

!(?end!.end?).end! is a type that describes receiving a message of type ?end!.end?
and then actively closing the channel (end!).

A key part of the theory of session types is the duality relation. If the two

endpoints of a communication channel have session types T and U , and each

endpoint is used correctly according to its type, then the relationship T ⊥ U

guarantees that communication succeeds. Success means that when one endpoint
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8 Basic Concepts

Types T, U, V,W

T ::= Types:

end? end wait

end! end close

?T.T input

!T.T output

Figure 2.1 The syntax of types.

is waiting for a channel to be closed, the other endpoint closes the channel, and

when one endpoint sends, the other endpoint receives, and vice versa; moreover,

the value being sent has the type that the receiver expects.

Duality is defined inductively by the rules in Figure 2.2. Intuitively, the dual

of output is input and the dual of input is output. In particular if U is dual to

V , then ?T.U is dual to !T.V . The types end! and end? are dual to each other.

As an example, let us show that the type !(?end!.end!).?end!.end! is dual to the

type ?(?end!.end!).!end!.end?.

end! ⊥ end?
D-End!

?end!.end! ⊥ !end!.end?
D-?

!(?end!.end!).?end!.end! ⊥ ?(?end!.end!).!end!.end?
D-!

From the form of the rules it should be clear that duality is symmetric. We

leave the proof as an exercise.

Exercise 2.1.1. Prove that the duality relation is symmetric but not reflexive

or transitive.

We have presented duality as a relation, so the question arises: given a session

type T , how many session types U are there such that T ⊥ U? It turns out that

the answer is exactly one. This observation is captured by the next result.

Lemma 2.1.2 (Uniqueness of dual). If T ⊥ U and T ⊥ V then U = V .

Proof By rule induction on T ⊥ U . In case D-? we have T = ?W.T ′ and

U = !W.U ′, with T ′ ⊥ U ′. Because of the form of T , it must be the case that

T ⊥ V is also derived by D-?, so V = !W.V ′ with T ′ ⊥ V ′. By induction, U ′ = V ′

and so U = V .

The case of D-! is symmetrical, and the cases of D-End? and D-End! are

simpler.

In Chapter 3 we introduce a notion of type equivalence, and then Lemma 2.1.2

is generalised so that the dual of a type is unique up to type equivalence.
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2.2 The Pi Calculus with Sessions 9

Duality T ⊥ T

end? ⊥ end! (D-End?)

end! ⊥ end? (D-End!)

U ⊥ V

?T.U ⊥ !T.V
(D-?)

U ⊥ V

!T.U ⊥ ?T.V
(D-!)

Figure 2.2 Duality.

Exercise 2.1.3 (The dual of a session type). In the literature, the unique dual of

a session type T is often written T⊥. Give an inductive definition of the function

(·)
⊥

, then show that T ⊥ T⊥.

What is the dual of a dual? It’s the original session type. The proof is left as

an exercise. This result remains true in later systems, with a generalisation to

type equivalence.

Exercise 2.1.4 (My dual’s dual is myself). Prove that if T ⊥ U and U ⊥ V

then T = V .

2.2 The Pi Calculus with Sessions

Session types describe structured communication among concurrent agents, so

they fit naturally in a language with concurrency and communication. In order

to focus on these core concepts, we use a form of pi calculus, featuring primitives

for sending and receiving messages along communication channels, for parallel

execution and for local scoping of channels. We begin with a subset of our final

language, and extend it later in the chapter.

The syntax of our version of pi calculus builds on a countably infinite set X

of variables. When writing definitions and examples we use lower case Roman

letters to represent variables and the upper case Roman letters M , P and Q to

represent processes.

Variables represent channel endpoints, which are used for communication.

They are also used as placeholders for channel endpoints that are received during

communication. We do not distinguish between these uses of variables. Many

presentations of pi calculus use the term “name” where we use “variable”. In

Chapters 7 and 8 we introduce other kinds of values, for example data values

and functions, and then we also use variables as placeholders for received values.

We define the syntax of processes by the grammar in Figure 2.3. The termi-

nated process, or inaction, is denoted by 0. Channels are closed by x?.P (wait)

and x!.P (close). The distinction between wait and close will become more signif-

icant in Chapter 9. The receive process x?y.P receives, from the channel endpoint
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10 Basic Concepts

Processes M,P,Q

P ::= Processes:

0 inaction

x?.P wait

x!.P close

x?y.P receive

x!y.P send

P | P parallel composition

(νxy)P scope restriction

Figure 2.3 The syntax of processes.

represented by variable x, a variable that it uses to replace the variable y before

continuing with the execution of process P . Conversely, the send process x!y.P

sends variable y on the channel endpoint represented by variable x and contin-

ues as P . The parallel composition P | Q allows processes P and Q to proceed

concurrently.

In interactive behaviour, variables come in pairs, called co-variables. The best

way to understand co-variables is to think of them as representing the two end-

points of a communication channel. In order to communicate, threads do not

need to share variables (we use the term thread for any process that is not a

parallel composition). Since a channel is represented by a pair of co-variables,

two threads may each hold one variable, allowing them to write or to read on the

channel. When we introduce the type system, this mechanism will allow precise

control of the resources needed for communication.

The syntax for scope restriction (νxy)P combines two purposes. First, it si-

multaneously hides (or binds, or restricts the scope of) the variables x and y.

Second, it establishes x and y as two co-variables, allowing communication to

happen in process P , between a thread writing on x and another thread reading

from y (or vice versa). We will see later, when we define a type system, that x

and y must be different variables.

Now let us consider free and bound variables. A variable occurring in a process

can be either free or bound. The bound variables are those that are used inter-

nally: y in x?y.P , and x and y in (νxy)P . All other variables are free and are

available for external interaction by the process. The key point about bound vari-

ables is that their exact names don’t matter and can be systematically changed

without changing the meaning of a process. To make this more formal, we say

that a change of bound variable in P is either (1) the replacement of a part

x?y.Q of P by x?z.Q′ where z does not occur in Q and Q′ is obtained from Q by

replacing all occurrences of y by z, or (2) the replacement of (νxy)Q by (νxz)Q′

or of (νyx)Q by (νzx)Q′, where again z does not occur in Q and Q′ is obtained
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