Contents

Foreword by Dr. John L. “Jan” Hall
Preface

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword by Dr. John L. “Jan” Hall</td>
<td>xi</td>
</tr>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>References</td>
<td>6</td>
</tr>
<tr>
<td>2 Classical Light Scattering Theory</td>
<td>7</td>
</tr>
<tr>
<td>2.1 A Simple Model of Atomic Polarizability and Differential Scattering Cross Section</td>
<td>8</td>
</tr>
<tr>
<td>2.2 Resonant and Nonresonant Scattering from the Atmosphere</td>
<td>11</td>
</tr>
<tr>
<td>2.3 Physical Causes of Broadened Light Scattering Spectra</td>
<td>14</td>
</tr>
<tr>
<td>References</td>
<td>16</td>
</tr>
<tr>
<td>3 Semiclassical Treatment of Light Absorption and Scattering from Atoms</td>
<td>17</td>
</tr>
<tr>
<td>3.1 Doppler Shift in Backscattering: Nonresonant versus Resonant Processes</td>
<td>17</td>
</tr>
<tr>
<td>3.2 Quantum Polarizability and Absorption Cross Section</td>
<td>20</td>
</tr>
<tr>
<td>3.3 Differential Resonance Scattering Cross Sections</td>
<td>24</td>
</tr>
<tr>
<td>3.4 Application to Real Atoms with Interest to Atmospheric Lidars</td>
<td>31</td>
</tr>
<tr>
<td>3.5 Rudimentary Physics of Na Laser Guide Stars</td>
<td>40</td>
</tr>
<tr>
<td>References</td>
<td>48</td>
</tr>
<tr>
<td>4 Rayleigh and Raman Scattering from Linear Molecules</td>
<td>50</td>
</tr>
<tr>
<td>4.1 Formulation and Evaluation of Polarizability Tensor</td>
<td>52</td>
</tr>
<tr>
<td>4.2 Differential Light Scattering Cross Section from an Ensemble of Linear Molecules</td>
<td>58</td>
</tr>
</tbody>
</table>

© in this web service Cambridge University Press
www.cambridge.org
Contents

4.3 Rayleigh and Vibrational Raman Spectra of Nitrogen and Oxygen Molecules
72

4.4 Cabannes Scattering Spectra
83

References
92

5 Introduction to Lidar Remote Sensing and the Lidar Equation
94

5.1 The Lidar Equation – An Overview
99

References
102

6 Common (Broadband) Lidar Types and Associated Applications
103

6.1 Rayleigh–Mie Scattering (Elastic Backscattering) Lidars
103

6.2 Polarization Lidars
111

6.3 Raman Lidar and DIAL for Monitoring Minor Species in the Atmosphere
121

6.4 Other Important Lidar Types Not Discussed in This Book
131

References
134

7 Lidars for Profiling Aerosol Optical Properties, Atmospheric Temperature and Wind
138

7.1 Profiling Lidar-Ratio and Aerosol Optical Properties
142

7.2 Temperature Measurements with Rayleigh and Rotational Raman Scattering
150

7.3 HSRL Profiling of Aerosol Optical Properties and Atmospheric State Parameters
166

7.4 Wind Profiling with Cabannes-Mie Scattering
194

7.5 Mesopause Region Temperature and Wind Profiling with LIF
209

References
236

8 Transmitting and Receiving Optics
244

8.1 Conservation of Étendue in Transmission and Reception Optics
244

8.2 Laser Beam Expander and Its Use
246

8.3 Telescope Optics
249

8.4 Detectors
256

8.5 The Effects of Atmospheric Turbulence on Receiver Aperture and Na Laser Guide Star
261

References
267

Appendix A: Electric Dipole Interaction and Structures of Atoms and Linear Molecules
268
Contents

A.1 Basics of the Electric Dipole Transition 270
A.2 Energy Structure of Na, K, and Fe Atoms and of Nd$^{3+}$, Cr$^{3+}$ in Crystals 275
A.3 Structure of Linear Molecules 287
A.4 A Brief Account of Thermodynamics and Transport of an Ideal Molecular Gas 299
References 301

Appendix B: Coordinate Systems and Mueller Matrices 303
B.1 Rotation of an Object and Transformation of Coordinate Systems 304
B.2 Rotations in Three-Dimensional Space and Euler Angles 305
B.3 Specification of Selected Sets of Unit Vectors Associated with Finite Rotations 307
B.4 Atoms in the Earth’s Magnetic Field 307
B.5 Jones Vectors, Jones Matrices, and Nondepolarizing Optical Devices 309
B.6 Stokes Vectors, Mueller Matrices, and Atmospheric Scattering 309
References 312

Appendix C: Chiao-Yao She’s Research Career at Colorado State University: An Autobiographical Acknowledgment 313
Index 318