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Conformal Blocks, Generalized Theta Functions

and the Verlinde Formula

In 1988, E. Verlinde gave a remarkable conjectural formula for the dimension of

conformal blocks over a smooth curve arising from representations of affine Lie

algebras. Verlinde’s formula arose from physical considerations, but it attracted further

attention from mathematicians when it was realized that the space of conformal blocks

admits an interpretation as the space of generalized theta functions. A proof followed

through the work of many mathematicians in the 1990s.

This book gives an authoritative treatment of all aspects of this theory. It presents

a complete proof of the Verlinde formula and full details of the connection with

generalized theta functions, including the construction of the relevant moduli spaces

and stacks of G-bundles. Featuring numerous exercises of varying difficulty, guides to

the wider literature and short appendices on essential concepts, it will be of interest

to senior graduate students and researchers in geometry, representation theory and

theoretical physics.

Shrawan Kumar is John R. and Louise S. Parker Distinguished Professor of

Mathematics at the University of North Carolina, Chapel Hill. He was an invited

speaker at the 2010 International Congress of Mathematicians and was elected a Fellow

of the American Mathematical Society in 2012. This is his third book.
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Preface

The main aim of this book is to give a self-contained proof of the Verlinde

formula for the dimension of the space of conformal blocks and prove the

connection between conformal blocks and generalized theta functions.

Let � be a smooth projective irreducible s-pointed (s ≥ 1) curve of any

genus g ≥ 0 with marked points �p = (p1, . . . ,ps) and let G be a simply-

connected simple algebraic group with Lie algebra g. We fix a positive integer c

called the level and let Dc be the set of dominant integral weights of g of level

at most c. We attach weights �λ = (λ1, . . . ,λs) (with each λi ∈ Dc) to the

marked points �p, respectively. Associated to the triple (�, �p,�λ), there is the

space V
†

� ( �p,�λ) of conformal blocks (also called space of vacua), which is a

finite-dimensional space given as the dual of g ⊗ C[� \ �p]-coinvariants of

a tensor product of s copies of integrable highest-weight modules of level c

with highest weights �λ of the affine Kac–Moody Lie algebra ĝ associated to

g. This space is a basic object in rational conformal field theory arising from

the Wess–Zumino–Witten model associated to G. Now, E. Verlinde gave a

remarkable conjectural formula for the dimension of V
†

� ( �p,�λ) in 1988. This

conjecture was ‘essentially’ proved by a pioneering work of Tsuchiya–Ueno–

Yamada, wherein they proved the Factorization Theorem and the invariance of

dimension of the space of conformal blocks under deformations of the curve �,

which allow one to calculate the dimension of the space of conformal blocks

for a genus g curve from that of a genus g − 1 curve. Thus, the problem gets

reduced to a calculation on a genus 0 curve, i.e., on � = P
1. The corresponding

algebra for � = P
1 is encoded in the fusion algebra associated to g at level c,

which gives rise to a proof of an explicit Verlinde dimension formula for the

space V
†

� ( �p,�λ).

Classical theta functions can be interpreted in geometric terms as global

holomorphic sections of a certain determinant line bundle on the moduli

space Picg−1(�) of line bundles of degree g − 1 on �. This has a natural

ix
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x Preface

non-abelian generalization, where one replaces the line bundles on � by

principal G-bundles on � to obtain the parabolic moduli space MG
par, �τ (�)

(

or stack ParbunG

(

�, �P
))

and certain determinant line bundles over them.

Holomorphic sections of these determinant line bundles over these moduli

spaces or stacks are called the generalized theta functions (generalizing the

classical theta functions).

The Verlinde dimension formula attracted considerable further attention

from mathematicians and physicists when it was realized that the space of

conformal blocks admits an interpretation as the space of generalized theta

functions. This interpretation was rigorously established independently in the

‘non-parabolic’ case by Beauville–Laszlo (for the special case G = SLn),

Faltings and Kumar–Narasimhan–Ramanathan (for general G); and in the

‘parabolic’ case by Pauly (for the special case G = SLn), Laszlo–Sorger

(for classical G and G2 for the stack) and here in this book it is proved for

general G.

The theory has undergone tremendous development in various directions

and connections with diverse areas abound. The Verlinde formula and the

ideas behind its proof have found numerous applications, e.g., in the theory

of moduli spaces of vector bundles (and, more generally, principal G-bundles)

on curves, the multiplicative eigenvalue problem, rank-level duality, moduli

of curves (just to name a few). The works leading to the Verlinde dimension

formula and connection between conformal blocks and generalized theta

functions, as well as various applications, are scattered through the literature.

For example, apart from the research papers, there is a Bourbaki talk and also

lecture notes by C. Sorger, and a monograph by Ueno. But there is no single

source containing various developments in and around the Verlinde formula

explaining both of its aspects: the space of conformal blocks and the space of

generalized theta functions, with details of proofs. This book attempts to fill

this void in the literature.

As mentioned above, we give a self-contained proof of the Verlinde

formula for the dimension of the space of conformal blocks (derived from

the Factorization Theorem and the invariance of dimension of the space of

conformal blocks under deformations of �, among others) and full details

of the connection between conformal blocks and generalized theta functions.

The proofs require techniques from algebraic geometry, geometric invariant

theory, representation theory of affine Kac–Moody Lie algebras, topology and

Lie algebra cohomology.

The main results covered in this book are: propagation of vacua; Fac-

torization Theorem; flat projective connection on the sheaf of conformal
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Preface xi

blocks (thereby its local freeness); explicit Verlinde dimension formula for the

space of conformal blocks; uniformization theorem for the moduli stack of

quasi-parabolic G-bundles; identification of parabolic G-bundles over � with

equivariant bundles on a certain Galois cover �̂ of �; Harder–Narasimhan

reduction of G-bundles; Narasimhan–Seshadri theorem for topological real-

ization of polystable G-bundles over �; construction of the moduli space of

parabolic semistable G-bundles over �; canonical identification of the space

of conformal blocks with the space of generalized theta functions (over both

parabolic moduli space and moduli stack); an explicit determination of the

Picard group of the moduli space (as well as moduli stack) of G-bundles; and

higher cohomology vanishing of the determinant line bundles on the moduli

space. In addition, Chapter 1 is devoted to recalling the basic theory of affine

Kac–Moody Lie algebras and their representations; and construction of the

associated groups and their flag varieties to the extent we need them in the

book. We have also added four appendices: one on the Dynkin index, which

plays an important role in the identification of determinant line bundles on the

moduli space; and the second and the third giving a crash (and hopefully quite

palatable) course on C-space (and C-group) functors and stacks. The fourth

appendix (due to S. Mukhopadhyay) gives a survey of rank-level duality.

This book should be useful for senior graduate students, postdocs and

faculty members interested in the interaction between algebraic geometry,

representation theory, topology and mathematical physics. Depending upon the

interests of the audience, parts of the book are suitable for a one-year advanced

graduate course. We have added numerous exercises of varying difficulty

at the end of practically each section. We do require some knowledge of

representation theory of (finite-dimensional) semisimple Lie algebras (roughly

Chapters II and VI of Humphreys (1972)) and some algebraic geometry

(roughly the first three chapters of Hartshorne (1977)).

I am indebted to M. S. Narasimhan, who introduced me to this beautiful

garden. I am also grateful to my collaborators on the subject: A. Boysal,

M. S. Narasimhan, and A. Ramanathan, and to P. Belkale and V. Balaji

for numerous consultations. My special thanks are also due to A. Boysal,

B. Conrad, C. Damiolini, N. Nitsure, S. Mukhopadhyay and X. Zhu, who

carefully looked at parts of the book and pointed out some errors and made

various comments to improve the exposition. I gave a semester-long course

covering Chapters 1 through 4 at the University of Sydney during Fall 2015. It

is my pleasure to thank the audience, especially Anthony Henderson, Gustav

Lehrer, Alex Molev, Hoel Queffelec, Oded Yacobi and Ruibin Zhang, for

their comments. I also gave a series of lectures (covering parts of the book)
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at Duke University (2006–07); the University of Georgia, Athens (May

2010); the Université Claude Bernard Lyon 1 (June 2017); and the Tata

Institute of Fundamental Research, Mumbai (January 2018). The feedback

from the audiences in these institutions was helpful. Finally, I acknowledge

the continued support from NSF over several years during which the book was

written. The typing of the book from my handwritten manuscript was done by

M. P. Raghavendra Prasad from Sriranga Digital Technologies, Srirangapatna.

I also thank Neeraj Kumar for his help in some formatting issues.

I dedicate this book to my wife Shyama and our children, Neeraj and Niketa.
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