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Introduction

There follows a more detailed description of the contents of the book. For

simplicity and uniformity in this Introduction, we let G be a connected simply-

connected simple algebraic group over C with Lie algebra g (though many

of the results in the text are proved, more generally, for connected reductive

groups) and let �̂ be a connected smooth projective curve with faithful action

of a finite group A and we set � := �̂/A.

Chapter 1. Section 1.1 lays out the basic notation to be used throughout the

book. It also includes the Yoneda Lemma.

Section 1.2 introduces the basic theory of affine Kac–Moody Lie alge-

bras ĝ. The main result here is the classification of integrable highest-weight

ĝ-modules.

In Section 1.3 we realize the loop group G((t)), its various subgroups and

the infinite Grassmannian as ind-schemes. Specifically, consider the functors

which assign, to any C-algebra R, the groups (or set)

G(R((t))),G(R[[t]]),G(R[t−1]),G(R((t)))/G(R[[t]]).

Then we show that they are representable functors represented respectively

by ind-schemes Ḡ((t)),Ḡ[[t]],Ḡ[t−1],X̄G. In fact, we show that all these ind-

schemes are reduced. The construction of X̄G for G = SLN proceeds via the

so-called special lattice functor.

In Section 1.4 we construct and discuss the central extensions of the loop

group. This is essentially obtained by exponentiating the integrable highest-

weight ĝ-modules H (λc), thereby realizing these representations as projective

representations of the loop group Ḡ((t)). We further show that the Gm-central

extension
¯̂
Gλc thus obtained splits over Ḡ[[t]] and Ḡ[t−1]. In fact, the splitting

is unique as shown in Section 8.2.

xiii
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xiv Introduction

Chapter 2. Let � be a reduced projective curve with at worst only nodal

singularity and let �p = (p1, . . . ,ps) be a collection of distinct marked smooth

points of �. We fix a central charge c > 0 and associate integrable highest-

weight ĝ-modules with highest weights �λ = (λ1, . . . ,λs) (all with central

charge c) to the points �p, respectively. To this data, there is associated the

space of vacua V
†

� ( �p,�λ) defined as the space of certain invariants in the

dual of the tensor product H (�λ) := H (λ1) ⊗ · · · ⊗ H (λs). This space of

vacua is a fundamental object for this book. It is shown that it is a finite-

dimensional space.

In Section 2.2 we prove propagation of vacua, which asserts that adding

one extra point to �p and associating H (0) to this extra point does not change

the space of vacua.

In Section 2.3 we give a manifestly finite-dimensional expression for the

space of vacua on � = P1 in terms of the action of sl2 passing through the

highest root space of g.

Chapter 3. In Section 3.1 we prove the basic Factorization Theorem, which

explicitly relates the space of vacua on an s-pointed curve (�, �p) of genus g

with a single node with that of the space of vacua on the normalization �̃

(which is of genus g − 1) marked with s + 2 points.

In Section 3.2 we recall the definition of the Sugawara elements in the

completion of the enveloping algebra of the affine Kac–Moody Lie algebra

g̃ (the non-completed version of ĝ). These elements allow us to give the action

of the Virasoro algebra on any smooth representation of g̃.

In Section 3.3 we sheafify the construction of the space of vacua for a

family FT of s-pointed curves with formal parameters at the marked points

parameterized by a smooth variety T . We show that this sheaf VFT
( �p,�λ) is a

coherent sheaf of OT -modules. We also sheafify the Virasoro algebra to allow

its action on the sheafified version H (�λ)T of the tensor product H (�λ) of

integrable highest-weight ĝ-modules.

Then, in Section 3.4 we show that the sheaf VFT
( �p,�λ) for a smooth family is

locally free and admits a functorial flat projective connection. This connection

generalizes the Knizhnik–Zamolodchikov connection for � = P1.

In Section 3.5, using the stack of stable s-pointed connected curves of fixed

genus g and the local freeness of VFT
( �p,�λ) for a smooth family (proved in

the previous section), we show that the dimension of the space of vacua is

independent of the choice of the marked points �p as well as the connected

smooth curve �, as long as the genus of � is fixed and of course �λ is fixed. Let

us denote this dimension by Fg(�λ). Further, using the ‘smoothing deformation’

and the Factorization Theorem, we extend the above result to allow curves with
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nodes. This enables us to prove the following inductive formula to calculate the

dimension Fg(�λ):

Fg(�λ) =
∑

μ

Fg−1(�λ,μ∗,μ),

where μ runs over dominant integral weights of ĝ with central charge c. Thus,

the problem to calculate Fg(�λ) for any g reduces to that for g = 0, i.e., � =P1

(though with s + 2g marked points). Using a similar decomposition, the

problem of calculating F0(�λ) with n marked points reduces to that for three

marked points on P1.

Chapter 4. As mentioned above, to determine Fg(�λ) we only need to

determine F0( �μ) with three marked points. To be able to calculate F0( �μ), a

general algebraic framework in the form of fusion ring Z[A] is introduced in

Section 4.1. It is shown that the corresponding complexified algebra C[A] is a

(finite-dimensional) reduced algebra.

In Section 4.2 we consider a specific fusion ring Rc(g) := Z[Dc], called the

fusion ring of g at level c, with product structure constants coming from F0

with three marked points. Simple algebraic manipulation in this ring allows

us to give an explicit expression for Fg(�λ) once we are able to explicitly

determine the set of characters SDc of C[Dc] (i.e., algebra homomorphisms

to C). This section is devoted to solve this problem by using the combinatorics

of the affine Weyl group and its action on the dual h∗ of the Cartan subalgebra

h of g. One other important ingredient in determining SDc is the result that

a certain linear map ξc from the representation ring R(g) of g to the fusion

ring Rc(g) at level c is a ring homomorphism. To prove that ξc is a ring

homomorphism, we use the affine analogue of the Borel–Weil–Bott (BWB)

theorem as well as a Lie algebra cohomology vanishing result of Teleman.

(For the classical g as well as g of type G2, there is a more direct proof that

ξc is a ring homomorphism avoiding the Lie algebra cohomology vanishing

result, as shown in Exercises 4.2.E.) Once we have explicitly determined SDc

(as we have), one of the most important results of the book – the Verlinde

dimension formula – follows easily by using simple representation theory for

finite groups.

Chapter 5. Let S be the category of quasi-compact separated schemes

over C and let BunG(�) be the groupoid fibration over S whose objects over

S ∈S are G-bundles on � × S and morphisms are the G-bundle morphisms.

Similarly, for an s-pointed curve (�, �p) together with a choice of standard

parabolic subgroups �P = (P1, . . . ,Ps) attached to the marked points, we
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xvi Introduction

define the groupoid fibration ParbunG(�, �P) of quasi-parabolic G-bundles

of type �P over (�, �p). Then, as stated in Section 5.1, both these are smooth

(algebraic) stacks.

In Section 5.2 we define a ‘tautological’ G-bundle U over �×X̄G, where (as

earlier) X̄G is the infinite Grassmannian. Consider the functor which assigns

to any C-algebra R the group Mor(�∗ × Spec R,G), where �∗ := �\ �p. Then

we show that it is a representable functor represented by an ind-affine

group variety denoted Ŵ̄ = Ŵ̄ �p. Then we prove the Uniformization Theorem

for both BunG(�) and ParbunG(�, �P). Specifically, they are realized as

quotient stacks:

BunG(�) ≃
[
Ŵ̄\X̄G

]

and

ParbunG(�, �P) ≃
[
Ŵ̄\

(
X̄G × �s

i=1(G/Pi)
)]

,

where Ŵ̄ = Ŵ̄∞ for a single point ∞ ∈ � different from any pi in �p. An

important ingredient in the proof of the above two uniformization theorems

is a result due to Drinfeld–Simpson asserting that for a family of G-bundles

over � parameterized by a scheme S, the pull-back of the family to some étale

cover S̃ of S is trivial restricted to any affine open subset of �.

As an immediate consequence of the uniformization theorems specialized

to SpecC, we get the following bijections:

BunG(�) ≃ Ŵ\XG

and

ParbunG(�, �P) ≃ Ŵ\
(
XG × �s

i=1(G/Pi)
)
,

where BunG (resp. ParbunG) denotes the set of isomorphism classes of

G-bundles (resp. quasi-parabolic G-bundles) over � and Ŵ := Ŵ̄(C) and

similarly XG := X̄G(C).

Chapter 6. In Section 6.1 we define the stability, semistability and polysta-

bility of vector bundles over � and extend these notions to G-bundles over �.

The semistabilty of a G-bundle is equivalent to the semistability of its adjoint

bundle. More generally, we define the parabolic stability and parabolic

semistability for parabolic G-bundles over an s-pointed curve (�, �p). We

extend the notions of stability, semistability and polystability to A-stability,

A-semistability and A-polystability in the case a finite group A acts faithfully

on a smooth projective curve �̂. The main aim of this section is to prove an

equivalence between the groupoid fibration of A-equivariant G-bundles on �̂

and quasi-parabolic G-bundles on (�, �p), where �p ⊂ � denotes the set of all
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the ramification points under the action of A on �̂. But first we need to define

the local type of A-equivariant G-bundles, which is achieved by proving the

following result.

Let A act on the formal disc D := Spec(C[[t]]). For a C-algebra R,

let DR := Spec(R[[t]]) be the formal disc over Spec R and let E be an

A-equivariant G-bundle over DR (with the trivial action of A on R) such that it

is trivial as a G-bundle. Then, there is a trivialization of the G-bundle E such

that the action of A is a product action, i.e.,

γ ⊙ (x,g) = (γ x,θγ (x(0))g), for γ ∈ A,x ∈ DR and g ∈ G,

for a morphism θγ : Spec R → G. For any xo ∈ Spec R, we get a group

homomorphism θ(xo) : A → G taking a �→ θγ (xo). This homomorphism

θ(xo) is unique up to conjugation.

Now, given an A-equivariant G-bundle E over �̂, for any ramification

point pi ∈ �, we take a point p̂i in �̂ over pi . Applying the above result

to the restriction of E to the formal disc in �̂ around p̂i and A replaced

by the isotropy subgroup Api
of A at p̂i (which is a cyclic group and, up

to a conjugation, does not depend upon the choice of p̂i over pi), we get a

homomorphism Api
→ G (unique up to conjugation). This is, by definition,

the local type of E at pi . Let �p = (p1, . . . ,ps) be the set of all the ramification

points in � and let �τ := (τ1, . . . ,τs) be the local type respectively at �p.

Similar to the definition of the stack BunG(�), define the groupoid fibration

Bun
A, �τ
G (�̂) of A-equivariant G-bundles over �̂ of local type �τ , whose objects

over any scheme S are A-equivariant G-bundles ES over �̂ × S (A acting

trivially on S) such that for any t ∈ S, ES |�̂×t
is of local type �τ . Then we

prove that Bun
A, �τ
G (�̂) is a stack and there is an isomorphism of stacks:

Bun
A, �τ
G (�̂) ≃ ParbunG(�, �P),

where �P corresponds to the Kempf parabolic subgroups attached to �τ . In par-

ticular, Bun
A, �τ
G (�̂) is also a smooth (algebraic) stack. Moreover, specializing

the above isomorphism of stacks to SpecC, we get a bijective correspondence

between the set of isomorphism classes of A-equivariant G-bundles on �̂ of

local type �τ with the set of isomorphism classes of quasi-parabolic G-bundles

over � of type �P :

Bun
A, �τ
G (�̂) ≃ ParbunG(�, �P).

Under this correspondence, A-semistable (resp. A-stable) G-bundles over �̂

correspond to the parabolic semistable (resp. stable) bundles over � with the

parabolic weights given by �τ .
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xviii Introduction

In Section 6.2 we discuss Harder–Narasimhan (HR) reduction (also called

canonical reduction) of any G-bundle E over �. A P -subbundle EP of E

(for a standard parabolic subgroup P of G) is called a HN reduction if the

associated L ≃ P/U -bundle EP (P/U) is a semistable L-bundle and for any

nontrivial character λ of P which lies in the positive cone generated by the

simple roots of g,

deg(EP ×P Cλ) > 0,

where L is a Levi subgroup of P and U is the unipotent radical of P . We

prove that for any G-bundle E over �, the HN reduction EP exists and is

unique. As a consequence, it is shown that for an embedding G ֒→ G′ of

connected reductive groups and a G-bundle E over �, if E(G′) is semistable

then so is E. Conversely, if E is semistable then so is E(G′) if G is not

contained in any proper parabolic subgroup of G′. As another consequence

(cf. Exercises 6.2.E), one gets that an A-equivariant G-bundle over �̂ is

A-semistable if and only if it is semistable.

Section 6.3 is devoted to constructing stable (more generally, polystable)

G-bundles over � topologically from a homomorphism ρ : π1(�) → K ⊂ G

of the fundamental group, where K is a maximal compact subgroup of G.

Specifically, define the corresponding holomorphic G-bundle over � by

Eρ := �̃ ×π1(�) G → �,

where �̃ is the simply-connected cover of �. These bundles Eρ are called

unitary bundles. Then it is shown that Eρ is semistable. Further, for two

such homomorphisms ρ and ρ′, the bundles Eρ and Eρ′ are isomorphic if

and only if ρ and ρ′ are conjugate. Moreover, Eρ is stable if and only if

ρ is irreducible in the sense that the image of ρ is not contained in any

proper parabolic subgroup of G. The irreducibility of ρ is also shown to

be equivalent to the corresponding adjoint representation ad ρ having no

π1(�)-invariants (assuming G to be semisimple). The proof requires, in

particular, an identification of a certain group cohomology of π1(�) with

the cohomology of a certain vector bundle over �. Because of the standard

presentation of π1(�), the set of all homomorphisms from π1(�) → K can

be identified with β−1(e), where

β : K2g → K,
(
(h1,k1), . . . ,(hg,kg)

)
�→ �

g

i=1[hi,ki],

where g is the genus of �. For ρ̄ ∈ β−1(e), let ρ be the corresponding

representation of π1(�). Then it is shown that ρ is irreducible if and only

if the tangent map (dβ)ρ̄ is of maximal rank. In particular,
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Mg(K) := {ρ̄ ∈ β−1(e) : ρ is irreducible}

is a smooth manifold of dimension (2g − 1) dim K (for semisimple G).

Moreover, it supports an R-analytic family of holomorphic G-bundles over

� such that its Kodaira–Spencer infinitesimal deformation map is surjective

everywhere. We now come to the following celebrated result (generalization

of the classical Narasimhan–Seshadri result to G-bundles).

Any stable G-bundle E over � (for g ≥ 2) is realized as Eρ for an irre-

ducible representation ρ : π1(�) → K (and conversely). In fact, the result is

valid for any connected reductive G provided we assume that E is of degree 0.

The result can easily be extended for any polystable G-bundle E. Con-

versely, for any (not necessarily irreducible) representation ρ : π1(�) → K ,

Eρ is polystable.

Let us point out the main strategy behind its proof. Let F → � × T be a

C-analytic family of stable G-bundles over �. Then we prove that

Tu := {t ∈ T : Ft ≃ Eρ for some unitary representation ρ}

is a closed subset of T . Moreover, for any R-analytic family of holomorphic

G-bundles over �,

To := {t ∈ T : Ft ≃ Eρ for some unitary irreducible ρ}

is an open subset of T , which follows from the surjectivity of the Kodaira–

Spencer infinitesimal deformation map (mentioned above). Further, there

exists an irreducible representation ρo : π1(�) → K (this is where we need

g ≥ 2). Finally, we construct a C-analytic family E of stable holomorphic

G-bundles over � parameterized by a connected open subset V of C con-

taining {0,1} such that E0 ≃ E and E1 ≃ Eρo . Observe that, for this family,

Tu = To since the family consists of stable bundles and (as observed above) ρ

is irreducible if and only if Eρ is stable. Now, V being connected and Tu = To

being both open and closed and nonempty, To = V . This proves that E ≃ Eρ

for some irreducible ρ.

We extend these results to the setting of A-equivariant G-bundles over �̂.

Specifically, let π1 be the fundamental group of �̂. Then, π1 is a normal

subgroup of a group π such that π acts on the simply-connected cover
˜̂
� of

�̂ (having fixed points in general) with
˜̂
�/π ≃ � and π/π1 ≃ A. Given

a representation ρ̂ : π → K , we can construct (as above) the holomorphic

G-bundle over �̂:

Êρ̂ := ˜̂
� ×π1 G → �̂.
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Since ρ̂ is a representation of π , Êρ̂ acquires the canonical structure of an

A-equivariant G-bundle. These bundles Êρ̂ are called A-unitary. Conversely,

if Êρ̂ (the definition of which only requires the homomorphism ρ̂|π1) acquires

the structure of an A-equivariant G-bundle, then ρ̂|π1 extends to π . We extend

various results proved for Eρ to that for Êρ̂ . In particular, Êρ̂ is A-stable if

and only if ρ̂ is irreducible. Moreover, for any homomorphism ρ̂ : π → K ,

Êρ̂ is A-semistable (in fact, A-polystable). Conversely, we have the following

equivariant generalization of the Narasimhan–Seshadri theorem for any G:

Any A-polystable G-bundle Ê over �̂ (when the genus g≥2 of �) is realized

as Êρ̂ for a representation ρ̂ : π → K (and conversely).

Let G → GLV be a representation with finite kernel. Then we show that an

A-equivariant G-bundle Ê over �̂ is A-unitary if and only if the corresponding

vector bundle �̂(V ) is A-unitary.

Chapter 7. Let us first recall the following result due to Grothendieck.

Let X be a projective scheme with a very ample line bundle L over X and

let E be a coherent sheaf on X. Then, for any fixed polynomial P(z) ∈ Q[z],

define a contravariant functor which associates to any noetherian scheme S,

set of all OX×S-module quotients F of E ⊠OS such that F is flat over S and

F|X×t has Hilbert polynomial P(z) (with respect to L ) for any t ∈ S. Then,

this functor is representable by a projective scheme Q = Q(E,P ) called the

quot scheme. Moreover, there is a ‘tautological’ coherent sheaf U over X×Q.

Take a pair of positive integers (r,d) such that d > r(2g−1), where g is the

genus of �. We specialize the above general result to X = �,E = O� ⊗ CN

and P(z) = N + rhz, where N := d + r(1 − g) and h is the degree of

a fixed very ample line bundle over �. Thus, we get the quot scheme Q =

Q(E,P (z)) and the tautological coherent sheaf U over � × Q. Moreover,

GLN acts canonically on Q making U a GLN -equivariant sheaf (with the

trivial action of GLN on �). Define the subset

Rss :={q ∈ Q : q̄ is a semistable vector bundle over � and

CN = H 0(�,E) → H 0(�,q̄) is an isomorphism},

where q̄ is the restriction U|�×q . Then we prove that Rss is a GLN -stable

irreducible smooth open subset of Q and U|�×Rss is a rank-r vector bundle.

Let M (r,d) (resp. M s(r,d)) be the functor of semistable (resp. stable) vector

bundles over � of rank r and degree d. Then the main result of Section 7.1

asserts that M (r,d) has a coarse moduli space M(r,d) := Rss// SLN , which

is an irreducible, normal projective variety with rational singularities of

dimension (g − 1)r2 + 1 if g ≥ 2. Moreover, the subfunctor M s(r,d) has
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a coarse moduli space Ms(r,d), which is an open subset of M(r,d).

The canonical map M (r,d)(SpecC) → M(r,d) is surjective such that its

fibers are precisely the equivalence classes of semistable vector bundles and

its restriction M s(r,d)(SpecC) → Ms(r,d) is a bijection.

In Section 7.2 we extend the above results for vector bundles to G-bundles

and even more generally to A-equivariant G-bundles over �̂. To this end, we

fix an embedding i : G ֒→ SLr ⊂ GLr and realize G-bundles as GLr -bundles

via the embedding i (equivalently, rank-r vector bundles) together with a

G-subbundle. To take into consideration the A-action, we fix an A-stable

finite subset {y1, . . . ,yb} of �̂ and a positive integer d ′ such that the divisor

�y := d ′
∑

j yj has degree ≥ 2ĝ, ĝ being the genus of �̂. Now, we consider the

quot scheme as above:

Q = Q
(
E =

(
O

�̂
⊗ CN

)
⊗ O

�̂
(−�y),P (z)

)
,

together with the tautological sheaf U over �̂ × Q, where N := r(d + 1 − ĝ)

and P(z) = r(1 − ĝ) + rhz (h being the degree of a fixed very ample A-

equivariant line bundle H over �̂). Depending on the fixed local type �τ of

A-equivariant G-bundles over �̂, we fix a representation τ̊ of A on CN . In

fact, this representation of A on CN is obtained from taking any A-semistable

G-bundle F over �̂ of topological type �τ and then taking the action of A on

CN ≃ H 0(�̂,F (�y)). (This action of A does not depend upon the choice of F .)

This gives rise to a canonical action of A on Q making U an A-equivariant

sheaf. Define the subset

Rss
τ̊ :={q ∈ QA : q̄ is an A-semistable vector bundle over �̂ and

CN = H 0
(
�̂,E(�y)

)
→ H 0

(
�̂,q̄(�y)

)
is an isomorphism},

where QA is the subscheme of A-invariants in Q and q̄ is the restriction U|�̂×q
.

Let U ss
τ̊

denote the restriction U|�̂×Rss
τ̊

. LetG := GLA
N , the A-invariants under

the conjugation action of A on GLN induced from the representation τ̊ . Then,

Rss
τ̊

is aG-stable open subset of QA and U ss
τ̊

is an A-equivariant rank-r vector

bundle with the action of G.

For any scheme S, let SS be the category consisting of morphisms

T → S as objects and S-morphisms between them as morphisms. Define the

contravariant functor to the category of sets (abbreviating the frame bundle of

U ss
τ̊

by F ):

Ŵ(i,F ) : SRss
τ̊

→ Set

by Ŵ(i,F )(f : T → Rss
τ̊

) = the set of A-equivariant sections σ of Ff /G,

where Ff :=
(

Id
�̂

×f
)∗

(F ). Clearly, giving any such section σ is equiv-

alent to giving an A-equivariant G-subbundle Ff (σ ) of Ff over �̂ × T .

For an A-equivariant topological G-bundle τ over �̂, define a subfunctor
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Ŵτ (i,F ) : SRss
τ̊

→ Set of Ŵ(i,F ) by demanding that for any f : T → Rss
τ̊

,

the G-subbundle Ff (σ ) restricted to any t ∈ T is topologically A-equivariant

isomorphic with τ . Then, by a general result, the functor Ŵτ (i,F ) is repre-

sentable by a separated scheme of finite type fτ : Rss
τ (G) → Rss

τ̊
. Moreover,

there exists a ‘universal’ A-equivariant G-bundle

U
ss

τ (G) ∈ Ŵτ (i,F )(fτ ) over �̂ × Rss
τ (G).

Now, the main result of this section asserts that the A-semistable G-bundles

over �̂ of topological type τ admit a coarse moduli space

MG
τ (�̂) := Rss

τ (G)//G.

Moreover, it is an irreducible, normal variety with rational singularity; and

nonempty and projective if the genus g of � is at least 2. We further prove

that any element in MG
τ (�̂) contains a unique A-polystable representative.

Because of the correspondence between A-equivariant G-bundles over �̂

and the parabolic G-bundles over � (as in Section 6.1), these results read-

ily translate to the results about the moduli space of parabolic semistable

G-bundles.

In the case A = (1) so that �̂ = �, MG
τ (�) is the (non-parabolic) moduli

space of semistable G-bundles over �.

Chapter 8. Recall the definition of the ind-affine group variety Ŵ̄ from

above (summary of Chapter 5). Then, in Section 8.1, we prove that it is

irreducible. The proof relies on showing that (under the analytic topology) Ŵan

is path-connected, where Ŵ := Ŵ̄(C). As a corollary of this, we show that the

infinite Grassmannian X̄G is an irreducible ind-projective variety.

In Section 8.2 we prove that the Gm-central extension
¯̂
Gλc described above

in the summary of Section 1.4 splits uniquely for λc = 0c over Ŵ̄ = Ŵ̄p for a

single point p ∈ �.

Section 8.3: we prove that the space of vacua V
†

� ( �p,�λ) for any s-pointed

smooth curve (�, �p) is canonically identified (up to scalar multiples) with

the space of global sections of the moduli stack ParbunG(�, �P) with respect

to a certain line bundle L̄ (�λ), where the parabolic subgroups �P and L̄ (�λ)

are given in terms of �λ and the central charge c. The main ingredient in the

proof is the analogue of the Borel–Weil theorem for affine Lie algebras and

the propagation of vacua. We also explicitly determine the Picard group of the

moduli stack ParbunG(�, �P).

Section 8.4: we first define the determinant and theta line bundles (Det(V )

and �(V ), respectively) of a family V of vector bundles over � parameterized

by a noetherian scheme S. These are line bundles over S. Thus, for a family
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