Contents

	Prefé	ice	<i>page</i> xi	
	Ackn	owledgments	xiii	
1	Intro	oduction	1	
2	Univariate Risk Representation Using Arrival Rates			
	2.1	Pure Jump Finite Variation Probability Models	7	
	2.2	Probability Densities and Arrival Rates	11	
	2.3	The Complex Exponential Variation	16	
	2.4	Evaluating Event Arrival Rates	20	
	2.5	Variation Outcomes	22	
	2.6	Drift, Volatility, Risk Dimensions, and Their Compensation	26	
3	Estimation of Univariate Arrival Rates from Time Series Data			
	3.1	Complex Exponential Variations and Data	30	
	3.2	Digital Moment Estimation	31	
	3.3	Variance Gamma, Bilateral Gamma, and Bilateral Double Gamma		
		Estimation Results	33	
	3.4	Assessing Parameter Contributions	35	
4	Esti	nation of Univariate Arrival Rates from Option Surface Data	39	
	4.1	Depreferencing Option Prices	39	
	4.2	Estimation Results	43	
5	Multivariate Arrival Rates Associated with Prespecified Univariate			
	Arri	val Rates	48	
	5.1	Multivariate Model for Bilateral Gamma Marginals	49	
	5.2	The Role of Dependency Parameters in the Multivariate Bilateral		
		Gamma Model	52	
	5.3	Multivariate Bilateral Gamma Lévy Copulas	53	
	5.4	Multivariate Model for Bilateral Double Gamma Marginals	55	
	5.5	Simulated Count of Multivariate Event Arrival Rates	56	
6	The Measure-Distorted Valuation As a Financial Objective			
	6.1	Linear Valuation Issues	61	

CAMBRIDGE

Cambridge University Press
978-1-316-51809-0 – Nonlinear Valuation and Non-Gaussian Risks in Finance
Dilip B. Madan , Wim Schoutens
Table of Contents
More Information

viii		Contents	
	6.2	Modeling Risk Acceptability	63
	6.3	Nonlinear Conservative Valuation	65
	6.4	Risk Reward Decompositions of Value	66
	6.5	Remarks on Modigliani–Miller Considerations	67
	6.6	Probability Distortions	67
	6.7	Measure Distortions Proper	73
	6.8	Dual Formulation of Measure Distortions	78
	6.9	Explicit Representation of Dual Distortions $\Phi, \widetilde{\Phi}$.	82
	6.10	Generic Considerations in the Maximization of Market Valuations	84
7	Repr	esenting Market Realities	85
	7.1	Risk Charges and the Measure Distortion Parameters	86
	7.2	Measure Distortions and Option Prices	87
	7.3	Measure-Distorted Value-Maximizing Hedges for a Short Gamma	
		Target	90
	7.4	Measure Distortions Implied by Hedges for a Long Gamma Target	95
8	Meas	sure-Distorted Value-Maximizing Hedges in Practice	98
	8.1	Hedging Overview	99
	8.2	The Hedge-Implementing Enterprise	100
	8.3	Summarizing Option Surfaces Using Gaussian Process Regression	101
	8.4	Selecting the Hedging Arrival Rates	104
	8.5	Approximating Variation Exposures	105
	8.6	Measure Distortion Parameters	106
	8.7	Backtest Hedging Results for Multiple Strangles on SPX	108
9	Coni	c Hedging Contributions and Comparisons	110
	9.1	Univariate Exposure Hedging Study	112
	9.2	Distorted Least Squares	113
	9.3	Example Illustrating Distorted Least-Squares Hedges	110
	9.4	Incorporating weightings	118
	9.5	Greek Hedging	119
	9.0	Theta Issues in Exposure Design	120
	9.7	Incorporating Spreads	120
	9.0	No Spread Access and Theta Considerations	122
10	Docid	ming Ontimel University Evnesures	121
10	10.1	Exposure Design Objectives	120
	10.2	Exposure Design Constraints	128
	10.3	Exposure Design Problem	128
	10.4	Lagrangean Analysis of the Design Problem	129
	10.5	Discretization and Solution	130
	10.6	Details Related to Lévy Measure Singularities at Zero	131
	10.7	Sample Optimal Exposure Designs	131
	10.8	Further Details about Some Particular Cases	132

CAMBRIDGE

		Contents	ix
11	Mult	ivariate Static Hedge Designs Using Measure-Distorted Valuations	135
	11.1	A 10-Dimensional Example	130 142
12	Statio	c Portfolio Allocation Theory for Measure-Distorted Valuations	150
	12.1	Measure Integrals by Simulation	152
	12.2	Dual Formulation of Portfolio Problem	152
	12.3	Approximation by Probability Distortion	154
	12.4	Implementation of Portfolio Allocation Problems	154
	12.5	Mean Risk Charge Efficient Frontiers	156
	12.6	Sensitivity of Required Returns to Choice of Points on Frontiers	163
	12.7	Conic Alpha Construction Based on Arrival Rates	164
	12.8	Fixed Income Asset Efficient Exposure Frontiers	165
13	Dyna	mic Valuation via Nonlinear Martingales and Associated Backward	
	Stoch	astic Partial Integro-Differential Equations	171
	13.1	Backward Stochastic Partial Integro-Differential Equations and	
		Valuations	173
	13.2	Nonlinear Valuations and BSPIDE	175
	13.3	Spatially Inhomogeneous Bilateral Gamma	176
	13.4	Dynamic Implementation of Hedging Problems	179
14	Dyna	mic Portfolio Theory	184
	14.1	The Dynamic Law of Motion	185
	14.2	Relativity Dynamics	187
	14.3	The Full Sample	188
	14.4	Portfolio Construction	188
	14.5	Stationary Exposure Valuation	191
	14.6	Stationary Value and Policy Results	192
	14.7	Building Neural Net Policy Functions and Simulating Trades	192
15	Enter	rprise Valuation Using Infinite and Finite Horizon Valuation of	
	Term	inal Liquidation	195
	15.1	Bilateral Gamma Enterprise Returns	197
	15.2	Prudential Capital for Bilateral Gamma Returns	201
	15.3	Regulatory Risk Capital for Enterprises with Bilateral Gamma	
		Returns	209
	15.4	Calibration of Measure-Distortion Parameters	210
	15.5	Results for Equity Enterprises	216
	15.6	Results for Treasury Bond Investments	216
	15.7	Results for Hedge Fund Enterprises	217
	15.8	Short Position Capital Requirements	220
	15.9	Equity versus Leveraged Equity	220

Х		Contents	
16	Econ	omic Acceptability	223
	16.1	Interplay between Equity Markets and Regulators	224
	16.2	Candidate Physical Laws of Motion	225
	16.3	Adapted Measure Distortions	226
	16.4	Equity and Regulatory Capital Constructions	228
	16.5	Financial Sector Capital during and after the Financial Crisis	230
17	Trad	ing Markovian Models	235
	17.1	Return Dependence on States	237
	17.2	Markovian State Dynamics	239
	17.3	Formulation and Solution of Market Value Maximization	240
	17.4	Results on Policy Functions for 10 Stocks	242
	17.5	Results for Sector ETFs and SPY	243
18	Mark	et-Implied Measure-Distortion Parameters	245
	18.1	Designing the Time Series Estimation of Measure-Distortion	
		Parameters	245
	18.2	Estimation Results	247
	18.3	Distribution of Measure-Distorted Valuations for Equity Underliers	247
	18.4	Structure of Measure-Distorted Valuation-Level Curves	249
	18.5	Valuation Frontiers	250
	18.6	Acceptability Indices	251
	18.7	Acceptability-Level Curves	252
	18.8	Equilibrium Return Distributions	253
	18.9	Empirical Construction of Return Distribution Equilibria and Their	
		Properties	254
	References		257
	Index		265