Understanding Forensic DNA

Forensic DNA analysis plays a central role in the judicial system. A DNA sample can change the course of an investigation, with immense consequences. Because DNA typing is recognized as the epitome of forensic science, increasing public awareness in this area is vital. Through several cases, examples, and illustrations, this book explains the basic principles of forensic DNA typing, and how it integrates with law enforcement investigations and legal decisions. Written for a general readership, *Understanding Forensic DNA* explains both the power and the limitations of DNA analysis. This book dispels common misunderstandings regarding DNA analysis and shows how astounding match probabilities such as one-in-a-trillion are calculated, what they really mean, and why DNA alone never solves a case.

Suzanne Bell is Emeritus Professor of Forensic Science at West Virginia University, United States. She served on the National Commission on Forensic Science. In addition to numerous scientific publications and books, she has written multiple editions of *Forensic Science: An Introduction to Scientific and Investigative Techniques* (5th edition, CRC Press, 2019) and *Forensic Chemistry* (3rd edition, CRC Press, 2022).

John M. Butler is based at the US National Institute of Standards and Technology (NIST). He is one of the most highly cited authors in forensic science and legal medicine and an internationally recognized expert in forensic DNA typing. He is the author of the leading textbooks in forensic DNA typing and served for many years as Associate Editor of *Forensic Science International: Genetics*.
The *Understanding Life* series is for anyone wanting an engaging and concise way into a key biological topic. Offering a multidisciplinary perspective, these accessible guides address common misconceptions and misunderstandings in a thoughtful way to help stimulate debate and encourage a more in-depth understanding. Written by leading thinkers in each field, these books are for anyone wanting an expert overview that will enable clearer thinking on each topic.

Series Editor: Kostas Kampourakis http://kampourakis.com

Published titles:

- *Understanding Evolution*
 Kostas Kampourakis
 9781108746083

- *Understanding Coronavirus*
 Raul Rabadan
 9781108826716

- *Understanding Development*
 Alessandro Minelli
 9781108799232

- *Understanding Evo-Devo*
 Wallace Arthur
 9781108819466

- *Understanding Genes*
 Kostas Kampourakis
 9781108812825

- *Understanding DNA Ancestry*
 Sheldon Krimsky
 9781108816038

- *Understanding Intelligence*
 Ken Richardson
 9781108940368

- *Understanding Metaphors in the Life Sciences*
 Andrew S. Reynolds
 9781108940498

- *Understanding Cancer*
 Robin Hesketh
 9781009005999

- *Understanding How Science Explains the World*
 Kevin McCain
 9781108995504

- *Understanding Race*
 Rob DeSalle and Ian Tattersall
 9781009055581

- *Understanding Human Evolution*
 Keith N. Frayn
 9781009101998

- *Understanding Human Metabolism*
 Gab Kovacs
 9781009054164

- *Understanding Fertility*
 Suzanne Bell and John M. Butler
 9781009044011

- *Understanding Forensic DNA*
 Suzanne Bell and John M. Butler
 9781009044011

Forthcoming:

- *Understanding Natural Selection*
 Michael Ruse
 9781009088329

- *Understanding Life in the Universe*
 Wallace Arthur
 9781009207324

- *Understanding Creationism*
 Glenn Branch
 9781108927505

- *Understanding Species*
 John S. Wilkins
 9781108987196

- *Understanding the Nature–Nurture Debate*
 Eric Turkheimer
 9781108958165
Understanding Forensic DNA

SUZANNE BELL
West Virginia University

JOHN M. BUTLER
National Institute of Standards and Technology
“This is an excellent book, clearly and comprehensively explaining the scientific aspects of DNA and its analysis and the interpretation of DNA profiles used in forensic science. The sections on emerging issues and dispelling common misunderstandings are particularly useful. The book will be an invaluable guide for scientists and non-scientists alike, and the authors are to be congratulated for an outstanding text.”

Professor Niamh Nic Daéid, Director of the Leverhulme Research Centre for Forensic Science, University of Dundee, UK

“It is essential that the expectations of the public and legal professionals about forensic DNA technology are not based on crime-fiction TV shows, but rather on reality. The authors of this book explain very clearly what DNA can tell us, address existing misconceptions, and share exciting new developments. I enjoyed the real cases included in the book, all very interesting and informative. Understanding Forensic DNA is definitely a must-read for anyone who wants to become a DNA expert!”

Dr Lourdes Prieto, Forensic Science Institute, Santiago de Compostela; General Headquarters of the Spanish Forensic Police, Madrid, Spain

“Understanding Forensic DNA is the perfect resource for anyone wishing to learn about forensic DNA analysis for the very first time. It is a quick read, ideal for the legal professional and for the student who is just beginning to learn about forensic science. Unlike many books of this type, it is written from a historical perspective that outlines how the discipline has evolved in a few short decades. The book thoroughly examines all existing and past technologies in the most comprehensive way and explains the strengths and limitations of each. One would be hard pressed to think of a relevant topic that has been left out. The case examples are instructive and in no way sensational. For someone who teaches forensic science at the college and graduate level, the book provided me with fresh ideas that I can use to improve my teaching of the subject.”

Lawrence Quarino, PhD, ABC-GKE, Cedar Crest College, Pennsylvania, USA
“This is a go-to book to enhance anyone’s understanding of forensic DNA. It is of value to the general public, students of forensic sciences, forensic practitioners, and lawyers. It comprehensively covers all key aspects relating to forensic DNA and plenty of additional intriguing elements you may not have considered. There is a focus on the past, present, and future of forensic DNA with descriptions of key historical events. Complex issues are expertly described with helpful examples, tables, and illustrations. The authors provide a balanced view of the utilization and limitations of forensic DNA analyses, demystify common misunderstandings, and explain current concerns. Reading this book refreshed my understanding and brought new insights to my attention. Another outstanding contribution to forensic science by two exceptional authors.”

Roland van Oorschot, Forensic DNA researcher

“Suzanne Bell and John Butler take a journey through the history of forensic genetics. They showcase how this exciting field emerged from its precursor sciences, hematology and serology, and guide the reader through the most recent scientific developments and debates. This entertaining trip provides an unseen density of information and is accessible to a broad audience.”

Dr Walther Parson, Institute of Legal Medicine, Medical University of Innsbruck, Austria; PennState University, Pennsylvania, USA

“This book is full of information delivered in a very accessible way. It will be useful for the general public who want to inform themselves about DNA, and also for those scientists who want to be reminded of the historical basis or background of some techniques. It will be an aid to those a little daunted by the more advanced texts. The use of real-life examples throughout the text gives an excellent insight into the uses and limitations of forensic DNA. The basic facts about DNA and the techniques in routine use are understandably described in greater detail than the more modern techniques which are not so mature.”

Sheila Willis, Honorary Professor, University of Dundee, Fellow of the Leverhulme Research Centre for Forensic Science, UK; retired Director General, Forensic Science Ireland
“A book that anyone with an interest in DNA profiling will really enjoy. After reading it, you will be well informed, and up to date on current developments. From the inception of biological identification methods to novel methodologies, all is well illustrated by reference to key cases and how the use of DNA profiling has changed forensic investigations. I will be recommending *Understanding Forensic DNA* as a key text to my undergraduates.”

Professor Adrian Linacre, OAM, Chair in Forensic DNA Technologies, Flinders University, Adelaide, Australia

“This book has a very logical structure and touches on all aspects of forensic DNA analysis in an easy-to-understand fashion. Case examples illustrate specific challenges and make the subject matter come alive. I like that the authors include difficult concepts, for example stochastic effects, and relevant calculations, for instance for genotype frequencies and mixture ratios. Forensic DNA analysis is explained but not simplified.”

Mechthild Prinz, PhD, Professor John Jay College for Criminal Justice, New York, USA

“Forensic DNA analysis contributes significantly to the provision of justice in many jurisdictions around the world. However, there are still misconceptions about what it really is. It is a technical and multidisciplinary subject encompassing biology, statistics, and the law. A book providing a clear and comprehensive description of forensic DNA analysis is very welcome, not only for public awareness but also for improving communication between those involved in this area.”

Dr Roberto Puch-Solis, Forensic Statistician, Leverhulme Research Centre for Forensic Science, University of Dundee, UK

“The authors present an excellent overview of the history of forensic DNA analysis, starting with biological identification based on serology in the 1980s and moving on to the first application of DNA profiling by Alec Jeffreys to help solve a case in 1986. The chapters that follow discuss the progressive use of ever smaller fragments and quantities of DNA for identification. This evolution was accomplished by new discoveries about the human genome in conjunction with more sophisticated and sensitive analytical tools and techniques to process
DNA. The book discusses the issues that are raised when new methods are applied to DNA evidence, ranging from increased sensitivity to interpretation of data and acceptance in the courtroom. The final chapters deal with cutting-edge technology and new issues, including the use of DNA to create phenotypic profiling, familial searching, genetic genealogy, behavioral profiling, and non-human applications.

Mark Okuda, Evergreen Valley College, San Jose, California, USA

“DNA has brought about a revolution in all fields of the life sciences, and in medicine, biotechnology, and pharmaceuticals. But, arguably, the public knows of DNA from its impact on ancestry and forensics. These are closely related, for in both cases DNA is the key to determining connections, whether between people or between evidence and perpetrator. Bell and Butler’s book is therefore welcome and timely, setting out in clear and readable language the basis of DNA-based forensics and how it is used in practice. Most importantly, it also makes clear the limitations of DNA forensics, both the technical and societal issues that it raises. The authors write that their goal is ‘to provide an overview of DNA methods, their use, and the current issues in the field.’ They have succeeded admirably.”

Professor Jan A. Witkowski, Cold Spring Harbor Laboratory, New York, USA

“Understanding Forensic DNA provides an intriguing overview of one of the most innovative fields of applied sciences. Written by two compelling narrators with proven expertise in molecular and forensic genetics, this book not only covers the fascinating scientific background of current forensic DNA technologies but also delves into recent innovations such as investigative genetic genealogy that helped to identify the Golden State Killer. Similarly, other high-profile cases are used to illustrate the evidential power of a given technology. At the same time, a critical distance is maintained, such as when addressing cognitive bias or discussing the use of high-throughput genotyping that may threaten the privacy of suspects or witnesses. This book is worth reading not only for forensic science aficionados but also for...
DNA experts who want to discover state-of-the-art resources for education and training.”

Professor Peter M. Schneider, Institute of Legal Medicine, Cologne, Germany

“Suzanne Bell and John Butler have put together an outstanding text on forensic DNA that the general public can understand. The reader can easily appreciate the impact and limitations of the use of DNA technology through the excellent descriptions and illustrations. This book should be on the shelf of every educator, student, scientist, lawyer, investigator, or anyone working in the criminal justice system who needs to understand the role of DNA in forensic science.”

Thomas A. Brettell, PhD, Professor of Chemistry, Cedar Crest College, Pennsylvania, USA

“This easy-to-understand book is a guide I will reference again and again. If you want to truly understand how DNA is used in forensic science, this is the book for you!”

CeCe Moore, Chief Genetic Genealogist, Parabon
To the unsung heroes in libraries everywhere – the research for this book would have been impossible without them. Also, to my co-author, colleague, and friend, Dr. John Butler, who has done more to make forensic science better than anyone I know.

Dr. Suzanne Bell

To Margaret Kline, my NIST colleague for many years in the DNA Technology and Applied Genetics Groups, who showed by example how to be a great scientist with her attention to detail and passion for excellence.

Dr. John M. Butler
Contents

Foreword xxvi
Preface xxviii
Acknowledgments xix

1 Biological Identification 1
What is Identification? 1
Biological Identification 2
Biological Methods of Identification 3
Characterization 4
Successive Classification 5
Q vs. K Comparisons 5
Genetics and Heredity 6
Rules of Heredity 10
Chapter Summary 16

2 Before DNA 17
The Nature of Forensic Samples 17
Transfusions and Blood Types 19
Phenotypes and Genotypes 20
ABO Blood Groups and Biological Identification 21
Secretors and Non-Secretors 22
Issues with ABO Methods and a Case Example 24
Serum Proteins and Isoenzymes 26
Typing Using Gels 27
Combining Data 28
CONTENTS

The Product Rule and an Example Scenario 29
Population Data and Interpretation 32
Sexual Assault Cases 33
Limitations of Blood and Isoenzyme System Typing 33
Chapter Summary 34

3 First-Generation Forensic DNA 35
From Research Laboratory to Courtroom 35
Repeating DNA fragments 36
The RFLP Process 37
Mutation and Mutation Rates 39
The First Cases 39
Immediate Impact 41
The First Wave 43
Court Rulings and Implications 44
Other Key Cases 46
PCR 46
Initial PCR Typing Techniques 48
Chapter Summary 49

4 STR Methods and Loci 50
What are STRs? 50
Identification of Biological Sex 51
STR Typing 53
Steps in STR Typing: Collection and Characterization 56
Steps in STR Typing: Extraction 57
Steps in STR Typing: Quantitation 59
Steps in STR Typing: Amplification 59
Companies and Kits 60
Steps in STR Typing: Typing and Interpretation 62
Trusting the Method 64
The Phantom of Heilbronn 67
Interpretation 68
Sexual Assault Cases and Mixtures 72
Chapter Summary 73
5 DNA Analysis and Interpretation: Single-Source Samples
and Simple Mixtures

Data Analysis and Interpretation 74
What is a Peak? 75
Binary Thresholds 76
Missing Peaks 77
Extra Peaks 77
What Marker Does the Peak Represent? 79
Q and K Comparison 79
DNA Databases 80
Search Results vs. Conclusions 83
Simple Mixtures 84
Is it a Mixture? 84
Mixture Ratios and Peak Patterns 85
Deconvolution 88
Likelihood Ratios 88
Case Examples 90
Chapter Summary 92

6 The Curse of Sensitivity

Low Copy Number 94
Stochastic Effects 94
Working with LCN 96
What is Touch DNA? 97
Sources of Touch and Trace DNA 97
Locating Trace DNA 98
Relevant Transfer, Background, or Contamination? 100
Shedders 102
Dangers of Contamination 102
It’s Not Just Whose DNA It Is, But How It Got There 103
The Amanda Knox Case 104
Tools and Techniques 107
Chapter Summary 108

7 From Mothers and Fathers

DNA From One Parent 109
Patterns of Inheritance 110
What is Mitochondrial DNA? 111
Early Cases 112
Sequence Data 112
mtDNA Analysis 113
Heteroplasmy 114
Interpretation of mtDNA Data 114
mtDNA Databases and Counting 115
Identification of the Last Russian Tsar 116
Y-Chromosome Markers 119
Thomas Jefferson and Sally Hemings 121
X-Chromosome STRs 122
Combined Use of Autosomal STRs and Lineage Markers 123
Chapter Summary 124

8 Emerging Technologies 125
SNPs 125
King Richard III 126
DNA Sequencing 127
SNP Case Example 128
Sequencing STRs 129
Linkage and Microhaplotypes 130
Why Aren’t All Labs Using NGS? 131
Rapid DNA 131
Non-Human DNA 133
Case Examples 134
DNA and Marijuana 135
Microbial Forensics 135
Forensic Epigenetics 136
Chapter Summary 137

9 Emerging Issues 138
Interpretation of Complex DNA Mixtures 138
Mixture Interpretation and Cognitive Bias 139
Proprietary Software 140
Reliability 141
CONTENTS xix

Contradictions 143
Cases and Controversy 144
Indirect DNA Searching, Familial DNA, and Kinship Analysis 146
Familial Searching 146
Investigative Genetic Genealogy (IGG) 148
The Golden State Killer 149
The Controversy 150
Forensic DNA Phenotyping 151
FDP and Missing Persons 152
Chapter Summary 153

Concluding Remarks 155

Summary of Common Misunderstandings 156
References and Further Reading 159
Figure Credits 170
Index 172
Foreword

“I go where the evidence takes me.” “Witnesses lie; the evidence does not lie.” Statements like these made a strong impression on me many years ago when I watched some episodes of one of those forensic investigation TV series. The message conveyed by these statements is that forensic evidence, especially forensic DNA evidence, is the most reliable kind, and it can guide an investigator toward the person who committed a crime. However, things are not as simple and straightforward as that. As Suzanne Bell and John Butler clearly explain in this brilliant book, forensic DNA evidence can lead neither to infallible, nor to definitive, conclusions. The reason for this is that as we do not have the DNA profiles of everyone in the world, we can only figure out the probabilities that someone could have or not have the profile found at a crime scene just by chance. We also need additional evidence to confirm that the evidence found at the scene is indeed related to the crime. This does not make forensic DNA analyses useless. However, as with any science-related endeavor, forensic DNA analysis has a certain potential as well as particular limitations. Suzanne Bell and John Butler have produced the best, most accessible, and most concise guide possible to the science of forensic DNA. Some of the most striking features of the present book are the detailed explanations of the methods used, which are accompanied by very informative and clear illustrations. Read this book, and the forensic investigation TV series may never look the same again.

Kostas Kampourakis, Series Editor
Preface

Forensic DNA typing has leaped into the mainstream of criminal justice over the last few decades. DNA analysis is described as “the gold standard,” and for a good reason. DNA evidence has revolutionized biological identification and given the justice system one of its most powerful tools. As with all such techniques, however, analytical power can lead to unexpected problems and consequences. The science and technology of DNA typing have outpaced general understanding, leaving policymakers scrambling to catch up. We will explore these aspects of modern forensic DNA testing methods.

Forensic DNA analysis plays a central role in the judicial system and the life-changing decisions it renders. We will introduce many such cases in the pages to come. This book is intended to explain the basic principles of forensic DNA typing and how it integrates with law enforcement investigations and legal decisions. Because DNA typing is recognized as the epitome of forensic science, increasing public awareness and understanding in this area is vital. Many misconceptions regarding DNA persist, and DNA testing is not infallible. Accordingly, we will explore the power of the technology as well as important pitfalls and limitations. A DNA sample can change the course of an investigation, with immense consequences for one or more people. The more the public understands forensic DNA typing, the more likely it will be utilized to best effect. We can accomplish this admittedly ambitious goal by clearing common misconceptions.

We will set the stage with a brief overview of biological identification, which began with blood typing techniques developed in the early 1900s. These methods led to the use of probability and statistical approaches that are still
used today in DNA typing. The first application of DNA in a criminal case was in 1986 in England, in which a double murderer was brought to justice. We will see how DNA evidence, as powerful as it is, does not solve cases by itself. DNA results are always part of an extensive investigation.

Following the background information, we will move on to current DNA profiling methods and practices. What used to take days or weeks can now be completed in a few hours. Techniques have steadily improved such that DNA residues the size of the period at the end of this sentence can be typed. The ability to detect DNA transferred by touching has been a boon but also a problem. Even minute amounts of DNA, which may or may not be relevant to a case, can be detected on almost any surface. Finding someone’s DNA on an item does not tell you when, how, or why it got there. Sorting through complex mixtures from “touch evidence” remains a significant challenge facing forensic DNA. The last two chapters will delve into emerging technologies and current issues, including investigative genetic genealogy.

Our goal is to provide an overview of DNA methods, their use, and the current issues in the field. This book is not intended to be a standalone textbook, nor is it a primary resource for legal or investigative purposes. If, as a reader, you wish to explore these topics further, the books mentioned in the Acknowledgments and the References and Further Reading provide a good starting point.
Acknowledgments

The foundation of this work is the three-book series by John Butler:

Selected figures and tables from these are graciously provided as non-copyrighted materials by Dr. Butler and the National Institute of Standards and Technology (NIST), US Department of Commerce.

Dr. Suzanne Bell
I owe a debt to the staff at NIST who reviewed the book and provided feedback and guidance. Also, thanks to the editors and staff of Cambridge University Press and the series editor, Kostas Kampourakis, for allowing us to add a book to the wonderful Understanding Life series.

Dr. John M. Butler
I appreciate the opportunity to work with Suzanne Bell on a book intended for the general public.
Points of view in this book are those of the authors and do not necessarily represent the official position or policies of the National Institute of Standards and Technology. Certain commercial equipment, instruments, and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that any of the materials, instruments, or equipment identified are necessarily the best available for the purpose.