CAMBRIDGE TRACTS IN MATHEMATICS

General Editors

J. BERTOIN, B. BOLLOBÁS, W. FULTON, B. KRA, I. MOERDIJK, C. PRAEGER, P. SARNAK, B. SIMON, B. TOTARO

224 Attractors of Hamiltonian Nonlinear Partial Differential Equations

CAMBRIDGE TRACTS IN MATHEMATICS

GENERAL EDITORS

J. BERTOIN, B. BOLLOBÀS, W. FULTON, B. KRA, I. MOERDIJK, C. PRAEGER, P. SARNAK, B. SIMON, B. TOTARO

A complete list of books in the series can be found at www.cambridge.org/mathematics. Recent titles include the following:

- 190. Jordan Structures in Geometry and Analysis. By C.-H. CHU
- Malliavin Calculus for Lévy Processes and Infinite-Dimensional Brownian Motion. By H. Osswald
- 192. Normal Approximations with Malliavin Calculus. By I. NOURDIN and G. PECCATI
- 193. Distribution Modulo One and Diophantine Approximation. By Y. BUGEAUD
- 194. Mathematics of Two-Dimensional Turbulence. By S. KUKSIN and A. SHIRIKYAN
- 195. A Universal Construction for Groups Acting Freely on Real Trees. By I. CHISWELL and T. MÜLLER
- 196. The Theory of Hardy's Z-Function. By A. Ivić
- 197. Induced Representations of Locally Compact Groups. By E. KANIUTH and K. F. TAYLOR
- 198. Topics in Critical Point Theory. By K. PERERA and M. SCHECHTER
- 199. Combinatorics of Minuscule Representations. By R. M. GREEN
- 200. Singularities of the Minimal Model Program. By J. KOLLÁR
- 201. Coherence in Three-Dimensional Category Theory. By N. GURSKI
- 202. Canonical Ramsey Theory on Polish Spaces. By V. KANOVEI, M. SABOK, and J. ZAPLETAL
- 203. A Primer on the Dirichlet Space. By O. EL-FALLAH, K. KELLAY, J. MASHREGHI, and T. RANSFORD
- 204. Group Cohomology and Algebraic Cycles. By B. TOTARO
- 205. Ridge Functions. By A. PINKUS
- 206. Probability on Real Lie Algebras. By U. FRANZ and N. PRIVAULT
- 207. Auxiliary Polynomials in Number Theory. By D. MASSER
- 208. Representations of Elementary Abelian p-Groups and Vector Bundles. By D. J. BENSON
- 209. Non-homogeneous Random Walks. By M. MENSHIKOV, S. POPOV, and A. WADE
- 210. Fourier Integrals in Classical Analysis (Second Edition). By C. D. SOGGE
- 211. Eigenvalues, Multiplicities and Graphs. By C. R. JOHNSON and C. M. SAIAGO
- 212. Applications of Diophantine Approximation to Integral Points and Transcendence. By P. CORVAJA and U. ZANNIER
- 213. Variations on a Theme of Borel. By S. WEINBERGER
- 214. The Mathieu Groups. By A. A. IVANOV
- 215. Slenderness I: Foundations. By R. DIMITRIC
- 216. Justification Logic. By S. ARTEMOV and M. FITTING
- 217. Defocusing Nonlinear Schrödinger Equations. By B. DODSON
- 218. The Random Matrix Theory of the Classical Compact Groups. By E. S. MECKES
- 219. Operator Analysis. By J. AGLER, J. E. MCCARTHY, and N. J. YOUNG
- Lectures on Contact 3-Manifolds, Holomorphic Curves and Intersection Theory. By C. WENDL
- 221. Matrix Positivity. By C. R. JOHNSON, R. L. SMITH, and M. J. TSATSOMEROS
- 222. Assouad Dimension and Fractal Geometry. By J. M. FRASER
- 223. Coarse Geometry of Topological Groups. By C. ROSENDAL
- 224. Attractors of Hamiltonian Nonlinear Partial Differential Equations. By A. KOMECH and E. KOPYLOVA

Attractors of Hamiltonian Nonlinear Partial Differential Equations

ALEXANDER KOMECH Universität Wien

ELENA KOPYLOVA Universität Wien

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781316516911 DOI: 10.1017/9781009025454

© Alexander Komech and Elena Kopylova 2022

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2022

A catalogue record for this publication is available from the British Library.

ISBN 978-1-316-51691-1 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

In memory of Mark Vishik

CAMBRIDGE

Cambridge University Press 978-1-316-51691-1 — Attractors of Hamiltonian Nonlinear Partial Differential Equations Alexander Komech , Elena Kopylova Frontmatter <u>More Information</u>

Contents

	Preface	<i>page</i> ix
	Introduction	1
1	Global Attraction to Stationary States	13
1.1	Free d'Alembert Equation	13
1.2	A String Coupled to a Nonlinear Oscillator	14
1.3	String Coupled to Several Nonlinear Oscillators	28
1.4	Space-Localized Nonlinearity	43
1.5	Wave–Particle System	56
1.6	Maxwell–Lorentz Equations: Radiation Damping	66
1.7	Wave Equations with Concentrated Nonlinearities	68
1.8	Comparison with Dissipative Systems	76
2	Global Attraction to Solitons	77
2.1	Translation-Invariant Wave–Particle System	77
2.2	The Case of Weak Coupling	89
3	Global Attraction to Stationary Orbits	91
3.1	Nonlinear Klein–Gordon Equation	91
3.2	Generalizations and Open Questions	94
3.3	Omega-Limit Trajectories	95
3.4	Limiting Absorption Principle	96
3.5	A Nonlinear Analog of Kato's Theorem	99
3.6	Splitting into Dispersive and Bound Components	102
3.7	Omega-Compactness	103
3.8	Reduction of Spectrum to Spectral Gap	104
3.9	Reduction of Spectrum to a Single Point	105
3.10	On the Nonlinear Radiative Mechanism	107
3.11	Conjecture on Attractors of G-Invariant PDEs	111

viii

Contents

4	Asymptotic Stability of Stationary Orbits and Solitons	114
4.1	Orthogonal Projection	114
4.2	Symplectic Projection	116
4.3	Generalizations and Applications	120
4.4	Further Generalizations	122
4.5	The 1D Schrödinger Equation Coupled to an Oscillator	124
5	Adiabatic Effective Dynamics of Solitons	166
5.1	Solitons in Slowly Varying External Potentials	166
5.2	Mass-Energy Equivalence	168
6	Numerical Simulation of Solitons	170
6.1	Kinks of Relativistic Equations	170
6.2	Numerical Observation of Soliton Asymptotics	174
6.3	Adiabatic Effective Dynamics of Relativistic Solitons	174
7	Dispersive Decay	178
7.1	The Schrödinger and Klein–Gordon Equations	178
7.2	Decay $L^1 - L^\infty$ for 3D Schrödinger Equations	180
8	Attractors and Quantum Mechanics	192
8.1	Bohr's Postulates	192
8.2	On Dynamical Interpretation of Quantum Jumps	194
8.3	Bohr's Postulates via Perturbation Theory	197
8.4	Conclusion	198
	Bibliography	200
	Index	212

Preface

We present the theory of attractors of nonlinear Hamiltonian partial differential equations in infinite space. This is a new branch of the theory of attractors of PDEs initiated by one of the authors in 1990. This theory differs significantly from the case of dissipative systems. In particular, this theory has no analog for finite-dimensional Hamiltonian equations.

This book is the first monographic publication in this direction. Included are results on global attraction to stationary states, to solitons, and to stationary orbits; results on adiabatic effective dynamics of solitons and their asymptotic stability; and results on dispersive decay for linear Hamiltonian PDEs. The obtained results are generalized in the formulation of a new mathematical conjecture on global attractors of G-invariant nonlinear Hamiltonian partial differential equations.

We also describe the results of numerical simulations.

In conclusion, we discuss possible relations of this theory with the problem of mathematical interpretation of Bohr's transitions between quantum stationary states. The book is intended for

- 1. graduate and postgraduate students working with partial differential equations;
- 2. lecturers on PDEs;
- 3. mathematicians working in PDEs, mathematical physics, and mathematical problems of quantum theory.

On the Required Knowledge

All proofs are self-contained, and their overwhelming parts rely on traditional methods of analysis: ODEs, general theory of Hilbert and Banach spaces,

X

Preface

distributions and their Fourier transform, Sobolev spaces, and definitions of Lie groups and Lie algebra and of their representations.

The key points of the proofs rely on a novel application of subtle methods of harmonic analysis: the Wiener Tauberian theorem, the Titchmarsh theorem on convolution, the theory of multipliers in the space of quasimeasures, and others. The applications are explained in detail and with exact references to the corresponding textbooks.

Acknowledgments

The authors express their deep gratitude to H. Spohn and B. Vainberg for longtime collaboration on attractors of Hamiltonian PDEs and to A. Shnirelman for useful long-term discussions. We are also grateful to A. Comech and V. Imaykin for their collaboration.

The authors are indebted to the Faculty of Mathematics of Vienna University and the Institute for the Information Transmission Problems of the Russian Academy of Sciences for providing congenial facilities for the work.

The authors are grateful to the Max Planck Institute for Mathematical Sciences (Leipzig) and to the München Technical University for their hospitality.

The work was supported in part by the Department of Mechanics and Mathematics of Moscow State University, by the Alexander von Humboldt Foundation, by the Austrian Science Fund (FWF) (projects P28152 and P34177), and by grants from the Deutsche Forschungsgemeinschaft and the Russian Fund for Basic Research.