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Introduction

This monograph presents the theory of global attractors and of the long-time

behavior of solutions of nonlinear Hamiltonian partial differential equations

in infinite space. This theory was initiated by one of the authors in 1990, and

it has been developed in collaboration with H. Spohn since 1995 and with

V. S. Buslaev, A. Comech, V. Imaikin, E. Kopylova, D. Stuart, and B. Vainberg

since 2005. The theory resulted, in particular, in the first rigorous solution of

the problem of radiation damping in classical electrodynamics and in the first

rigorous model of Bohr’s transitions between quantum stationary states. This

progress became possible due to novel application of subtle methods of the

Wiener Tauberian theorem and the Titchmarsh convolution theorem.

The theory of attractors for nonlinear PDEs began in Landau’s famous 1944

paper [22], where he proposed the first mathematical interpretation of the onset

of turbulence as the growth of the dimension of attractors of the Navier–Stokes

equations when the Reynolds number increases.

The foundation for the corresponding mathematical theory was laid in 1951

by Hopf, who first established the existence of global solutions of the 3D

Navier–Stokes equations [5]. He introduced the method of compactness, which

is a nonlinear version of Faedo–Galerkin approximations. This method is based

on a priori estimates and Sobolev embedding theorems and has had an essential

influence on the development of the theory of nonlinear PDEs (see [2, 3, 12]).

The modern development of the theory of global attractors for dissipative

PDEs, that is, PDEs with friction, originated in 1975–1985 in publications by

J. Ball, C. Foias, J. M. Ghidaglia, J. K. Hale, D. Henry, and R. Temam and was

developed further by M. I. Vishik, A. V. Babin, V. V. Chepyzhov, A. Haraux,

A. A. Ilyin, A. Miranville, V. Pata, E. Titi, S. Zelik, and others. An essential

part of the theory up to 2000 was covered in the monographs [16]–[23].
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2 Introduction

One of the central subjects of research in this theory is the global attractor of

all bounded subsets of the corresponding Banach phase space. Typically, this

attractor is a submanifold connecting stationary states, which is an analog of

separatrices. Each single point also attracts to this submanifold and eventually

converges to one of stationary states,

ψ(x,t) → S(x), t → +∞, (1)

where the convergence holds in appropriate norm on the Banach phase space.

In particular, the relaxation to an equilibrium regime in chemical reactions is

due to energy dissipation.

The results obtained concern a wide class of nonlinear dissipative PDEs,

including fundamental equations of applied and mathematical physics: the

Navier–Stokes equations, nonlinear parabolic equations, reaction–diffusion

equations, wave equations with friction, integro-differential equations, equa-

tions with delay, equations with memory, and so on. The techniques of

functional analysis of nonlinear PDEs were developed for the study of the

structure of different types of attractors; their smoothness and their fractal and

Hausdorff dimensions; and their dependence on parameters, on averaging, and

so on.

The development of a similar theory for Hamiltonian PDEs seemed at

first to be unmotivated and even impossible in view of energy conservation

and time reversal for these equations. However, it turned out that such

a theory is possible, and its development was inspired by the problem of

mathematical interpretation of basic postulates of quantum theory. These

relations to quantum theory are discussed in the final chapter (Chapter 8). More

details can be found in [214].

Results obtained between 1990 and 2020 suggest that long-time global

attraction to a finite-dimensional submanifold in the corresponding Hilbert

phase space is, in fact, a typical feature for nonlinear Hamiltonian PDEs in

infinite space. These results are presented in our monograph.

For Hamiltonian PDEs in infinite space, the theory of attractors differs

significantly from the case of dissipative systems, where the global attraction

to stationary states is caused by an energy dissipation that is due to friction.

For Hamiltonian PDEs the friction and energy dissipation are absent, and

the global attraction is caused by radiation that irreversibly carries energy

to infinity. This peculiarity required novel tools for analysis of nonlinear

Hamiltonian PDEs, which are presented in this monograph.

Let us note, however, that this theory is only at an initial stage of its devel-

opment and cannot be compared with the theory of attractors of dissipative

PDEs with regard to richness and diversity of results.
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Introduction 3

The modern development of the theory of nonlinear Hamiltonian PDEs

dates back to K. Jörgens [7], who first established the existence of global

solutions for nonlinear wave equations of the form

ψ̈(x,t) = �ψ(x,t) + f (ψ(x,t)), x ∈ R
n, (2)

by developing the Hopf method of compactness. Subsequent studies of the

well-posedness for nonlinear PDEs were presented by J.-L. Lions [12] and by

T. Cazenave and A. Haraux [2, 3].

The first results on long-time asymptotics for linear hyperbolic PDEs in

infinite space were established in the scattering theory by P. D. Lax, C. S.

Morawetz, and R. S. Phillips for the wave equation in the exterior of a star-

shaped obstacle [31]. This is the local energy decay: for any finite R > 0,
∫

|x|<R

[|ψ̇(x,t)|2 + |∇ψ(x,t)|2 + |ψ(x,t)|2]dx → 0, t → ±∞. (3)

This decay means that the energy escapes each bounded region for large times.

For general linear hyperbolic PDEs and systems, similar local decay was

established by B. R. Vainberg [37]. The extension of this decay to nonlinear

Hamiltonian PDEs was established first by I. Segal, C. S. Morawetz, and W.

Strauss [32]–[36]. In these papers the local energy decay (3) was proved for

solutions of equations (2) with small initial data in the case of defocusing

nonlinearities similar to

f (ψ) = −m2ψ − ̹|ψ |p−1ψ, (4)

where m2 ≥ 0, ̹ > 0, and p > 1. Moreover, in these articles the corresponding

nonlinear wave operators and scattering operators are constructed. In [77, 78],

W. Strauss established the completeness of the scattering for small solutions of

more general equations.

For convenience, characteristic properties of all finite-energy solutions of

an equation will be referred to as global to distinguish them from the corre-

sponding local properties of the solutions with initial data sufficiently close to

an attractor. Note that global attraction to a (proper) attractor is impossible for

finite-dimensional Hamiltonian systems because of energy conservation. All

the aforementioned results [32]–[36] on local energy decay (3) for nonlinear

Hamiltonian PDEs mean that the corresponding local attractor of solutions

with small initial states consists of only the zero point.

Theory of global attractors The first results on global attractors for non-

linear Hamiltonian PDEs were obtained by one of the present authors in 1991–

1995 for 1D equations [40, 41, 42] and were extended to multidimensional
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4 Introduction

equations in 1995–2020 in collaboration with A. Comech, V. S. Buslaev, E.

Kopylova, H. Spohn, D. Stuart, B. R. Vainberg, and others. These results were

obtained from an analysis of the irreversible energy radiation to infinity, which

plays the role of dissipation. This progress was achieved by a novel application

of subtle methods of harmonic analysis: the Wiener Tauberian theorem, the

Titchmarsh convolution theorem, the new theory of multipliers in the space of

quasimeasures, and other methods.

The questions of asymptotic stability required the use of the stationary scat-

tering theory of Agmon, Jensen, and Kato [171, 183] and of the eigenfunction

expansion for non-selfadjoint Hamiltonian operators [137, 138] based on M.

G. Krein’s theory of J -selfadjoint operators.

One of the key observations is that the results obtained so far indicate

a certain dependence of long-time asymptotics of solutions on the symmetry

group of the equation. For example, it may be the trivial group G = {e}, or

the group of translations G = R
n, or the unitary group G = U(1), or the

orthogonal group SO(3). This observation suggests general conjecture for

nonlinear Hamiltonian autonomous PDEs of type

�̇(t) = F(�(t)), t ∈ R, (5)

with a Lie symmetry group G, which acts on the Hilbert or Banach phase space

E of the equation via a representation T .

Conjecture A (On attractors) For generic nonlinear Hamiltonian PDEs (5)

with a Lie symmetry group G, any finite-energy solution admits the asymptotics

�(t) ∼ eλ̂±t�±, t → ±∞ (6)

in the appropriate topology of the phase space E .

Here λ̂± = T ′(e)λ±, where λ± belong to the corresponding Lie algebra g,

while the �±(x) are some limiting amplitudes depending on the trajectory

�(x,t) considered. Both pairs (�+,λ̂+) and (�−,λ̂−) are solutions of the

corresponding nonlinear eigenvalue problem (3.11.5); see more details in

Section 3.11.

Let us specify the asymptotics (6) for the four symmetry groups mentioned

above.

1. Equations with trivial symmetry group G = {e} For such generic equa-

tions, the conjecture (6) means global attraction to stationary states

ψ(x,t) → S±(x), t → ±∞, (7)
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Figure 1 Convergence to stationary states.

as is illustrated in Figure 1. Here the states S±(x) depend on the trajectory

ψ(x,t) under consideration, and the convergence holds in local seminorms of

type L2(|x| < R) with any R > 0. This convergence cannot hold in global

norms (i.e., in norms corresponding to R = ∞) due to energy conservation.

The asymptotics (7) can be symbolically written as the transitions

S− 	→ S+, (8)

which can be considered as the mathematical model of Bohr’s quantum jumps

(8.1.1).

Such an attraction was established in [40]–[52] for a variety of model

equations: (1) for a string coupled to nonlinear oscillators, (2) for a 3D wave

equation coupled to a charged particle and for the Maxwell–Lorentz equations,

and also (3) for wave equations and Dirac and Klein–Gordon equations with

concentrated nonlinearities.

All proofs rely on the bounds for radiation which irreversibly carries energy

to infinity. The proofs of global attraction in [44, 45] rely on a novel application

of the Wiener Tauberian theorem [15], which provides the relaxation of the

acceleration of the particle

q̈(t) → 0, t → ±∞ (9)

under the Wiener condition (1.5.13) on the particle charge density. These

results gave the first rigorous proof of radiation damping (9) in classical

electrodynamics, which has been an open problem for about 100 years.

The results of [40]–[44] and [50] are presented with detail in Chapter 1.

In all problems considered here, the convergence (7) implies by the Fatou

theorem the inequality

H(S±) ≤ H(Y (t)) ≡ const, t ∈ R, (10)
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6 Introduction

where H is the corresponding Hamiltonian (energy) functional. This inequality

is an analog of the well-known property of the weak convergence in the Hilbert

and Banach spaces. Simple examples show that strong inequality in (10) is

possible, which means the irreversible scattering of energy to infinity.

Example 1 The d’Alembert waves In particular, the asymptotics (7) and the

strong inequality (10) can easily be demonstrated for the d’Alembert equation

with general solution ψ(x,t) = f (x − t) + g(x + t). Namely, the local

convergence ψ(·,t) → 0 in L2
loc(R) obviously holds for all f,g ∈ L2(R). On

the other hand, the convergence to zero in the global norm of L2(R) obviously

fails if f (x) �≡ 0 or g(x) �≡ 0.

Example 2 Nonlinear strong Huygens principle Similarly, a solution of the

3D wave equation with unit speed of propagation is concentrated in spherical

layers |t |−R < |x| < |t |+R if the initial data have support in the ball |x| ≤ R.

Therefore, the solution converges to zero in L2
loc(R

3) as t → ±∞, although

its energy remains constant. This also illustrates the strong inequality in (10).

This convergence corresponds to the well-known strong Huygens principle in

optics and acoustics (see [1]). Thus, global attraction to stationary states (7) is

a generalization of the strong Huygens principle to nonlinear equations. The

difference is that for the linear wave equation the limit is always zero, while

for nonlinear equations the limit can be any stationary solution.

2. Equations with the symmetry group of translations G =R
n Let us

consider, as an example, the case of the simplest representation

[T (a)ψ](x) := ψ(x − a), x ∈ R
n (11)

for a ∈R
n. Then the asymptotics (6) means global attraction to solitons

(traveling waves)

ψ(x,t) ∼ ψ±(x − v±t), t → ±∞, (12)

where the asymptotics holds in local seminorms of type L2(|x − v±t | < R)

with any R > 0, that is, in the comoving frame of reference.

Such soliton asymptotics was proved first for integrable equations

(Korteweg–de Vries equation (KdV), etc.); see [53, 59]. Moreover, for the

Korteweg–de Vries equation, more accurate soliton asymptotics in global

norms with several solitons were first discovered by M. Kruskal and N. J.

Zabuzhsky in 1965 by numerical simulation: it is the decay to solitons

ψ(x,t) ∼
∑

k

ψ±(x − vk
±t) + w±(x,t), t → ±∞, (13)
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Introduction 7

where w± are some dispersive waves. A trivial example is provided by

the d’Alembert equation ψ̈(x,t)= ψ ′′(x,t), for which any solution reads

ψ(x,t) = f (x − t) + g(x + t).

Later on, such asymptotics were proved by the method of the inverse

scattering problem for nonlinear integrable Hamiltonian translation-invariant

equations (KdV, etc.) in the works of M. J. Ablowitz, H. Segur, W. Eckhaus,

A. van Harten, and others [53, 59].

For nonintegrable equations the global attraction to solitons (12) was

established for the first time in [54]–[57] for translation-invariant systems of

the wave and Maxwell equations coupled to a charged relativistic particle.

The result of [55] gives the first rigorous proof of the radiation damping for

the translation-invariant system of classical electrodynamics.

The proofs in [54] and [55] rely on a canonical transformation to the comov-

ing frame and variational properties of solitons, as well as on the relaxation of

the acceleration (9) under the Wiener condition for the particle charge density.

The multisoliton asymptotics (13) for nonintegrable equations were

observed numerically in [58] in the case of 1D relativistic nonlinear wave

equations.

The results of [54] and [58] are presented with details in Chapters 2 and 6,

respectively.

3. Equations with the unitary symmetry group G= U (1) Let us consider

for example the case of the simplest representation

[T (eiθ )ψ](x) := eiθψ(x), x ∈ R
n (14)

for θ ∈ R. Then the asymptotics (6) means the single-frequency asymptotics

ψ(x,t) ∼ ψ±(x)e−iω±t, t → ±∞, (15)

where ω± ∈ R.

Example 3 For the case of the coupled Maxwell–Schrödinger equations

(8.2.1) with the symmetry group U(1), the conjecture (6) reduces to the

asymptotics (8.2.8) similar to (15).

The asymptotics (15) also means the global attraction to the solitary man-

ifold formed by all stationary orbits which are solutions of type ψω(x)e−iωt .

The asymptotics are expected in the local seminorms L2(|x| < R) with any

R > 0. The global attractor is a smooth manifold formed by the circles which

are the orbits of the action of the symmetry group U(1) (see Figure 2).
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Figure 2 Convergence to stationary orbits.

Such an attraction in local seminorms L2(|x| < R) was proved (1) in [61]–

[67] for the Klein–Gordon and Dirac equations coupled to a U(1)-invariant

nonlinear oscillator; (2) in [60], for discrete approximations of such coupled

systems, i.e., for the corresponding difference schemes; and (3) in [69]–[71] for

the wave, Klein–Gordon, and Dirac equations with concentrated nonlinearities.

More precisely, we have proved global attraction to the solitary manifold of all

stationary orbits, though global attraction to particular stationary orbits, with

fixed ω±, is still an open problem.

All these results were proved under the assumption that the equations are

“strictly nonlinear.” For linear equations, the global attraction obviously fails

if the discrete spectrum consists of at least two different eigenvalues.

The proofs of these results rely on (1) the concept of omega-limit trajectory,

(2) a nonlinear analog of the Kato theorem on the absence of embedded

eigenvalues, (3) new theory of multipliers in the space of quasimeasures, and

(4) novel application of the Titchmarsh convolution theorem. The results of

[62]–[64] are presented with details in Chapter 3.

Existence and orbital stability of stationary orbits The existence of solu-

tions eλ̂t� (stationary G-orbits) for G-invariant nonlinear wave equations (2)

in the cases G= U(1) and G=R
n was extensively studied in the 1960s–1980s.

The most general results were obtained by W. Strauss, H. Berestycki, and P.-L.

Lions [24, 25, 30]. M. Esteban, V. Georgiev, and E. Séré constructed in [27]

stationary orbits for the relativistic nonlinear Maxwell–Dirac system (8.2.7)
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and for the Klein–Gordon–Dirac system. The key role in these papers was

played by the Lusternik–Schnirelmann theory of critical points [28, 29].

In [26] G. M. Coclite and V. Georgiev constructed stationary orbits for the

nonlinear Maxwell–Schrödinger system with the external Coulomb potential.

General theory of orbital stability of stationary G-orbits was developed by

M. Grillakis, J. Shatah, and W. Strauss in [100, 101].

4. Equations with the orthogonal symmetry group G = SO(3) For such

generic equations, the asymptotics (6) means that

ψ(x,t) ∼ e−i	̂±tψ±(x), t → ±∞, (16)

where 	̂± are suitable representations of real skew-symmetric 3 × 3 matrices

	± ∈ so(3). This means that global attraction to “stationary SO(3)-orbits”

occurs. Such asymptotics are proved in [88] for the Maxwell–Lorentz equa-

tions with rotating particle.

Generic equations Let us emphasize that, for example, we are conjecturing

asymptotics (15) for generic U(1)-invariant equations. This means that the

long-time behavior of solutions may be quite different for U(1)-invariant

equations of “positive codimension.” In particular, for solutions of the linear

Schrödinger equation

iψ̇(x,t) = −�ψ(x,t) + V (x)ψ(x,t), x ∈ R
n,

the asymptotics (15) generally fail. Namely, any finite-energy solution admits

the spectral representation

ψ(x,t) =
∑

Ckψk(x)e−iωk t +

∞∫

0

C(ω)ψ(ω,x)e−iωtdω,

where ψk and ψ(ω,·) are the corresponding eigenfunctions of the discrete and

continuous spectrum, respectively. The last integral is a dispersive wave, which

decays to zero in the norms L2(|x| < R) with any R > 0 (under appropriate

conditions on the potential V (x)). Correspondingly, the attractor is the linear

span of the eigenfunctions ψk . Thus, the long-time asymptotics does not reduce

to a single term like (15), so the linear case is degenerate in this sense. Note

that all our results [61]–[67] are established for a strictly nonlinear case (see

the condition (3.1.16)), which eliminates linear equations).

Higher symmetry groups For more sophisticated symmetry groups

G = U(N), the asymptotics (6) mean the global attraction to N -frequency
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trajectories, which can be quasi-periodic. In particular, the symmetry groups

SU(2), SU(3), and others were suggested in 1961 by M. Gell-Mann and

Y. Ne’eman for strong interaction of baryons [222, 224]. This theory provides

empirical evidence for the asymptotics (6), see Section 3.11.

On relations with Soffer’s conjectures Note that our conjecture (6) specifies

the concept of localized solution/coherent structures from the “Grande Conjec-

ture” and the “Petite Conjecture” of A. Soffer (see [161], p. 460) in the context

of the Banach spaces. The Grande Conjecture was proved in [47] for the case

of a 1D wave equation coupled to a nonlinear oscillator (1.2.1). Moreover,

suitable versions of the Grande Conjecture were also proved in [57, 88] for the

3D wave and Klein–Gordon and Maxwell equations coupled to a relativistic

particle with sufficiently small charge (2.2.1) (see Remark 2.2.1). Finally, for

any matrix symmetry group G, the asymptotics (6) corresponds to the Petite

Conjecture since then the localized solutions eg±tψ±(x) are quasi-periodic.

In this book we present available results on the global attraction (7)–

(16) and related numerical experiments. Moreover, we survey the results on

asymptotic stability of solitons and their adiabatic effective dynamics, on the

dispersive decay and relations to quantum mechanics.

Asymptotic stability of solitons More precisely, we should phrase “asymp-

totic stability of solitary manifolds,” which means a local attraction, i.e., for

states sufficiently close to the manifold. There is a huge body of literature

on this subject. In Chapter 4 we review the results on such local attraction

that were developed in a series of articles [162]–[170] by V.S. Buslaev, G.

Perelman, A. Soffer, D. Stuart, C. Sulem, T. P. Tsai, M. Weinstein, H. T. Yau,

and others.

The crucial peculiarity of this attraction is the instability of the dynamics

along the solitary manifold. This follows directly from the fact that soli-

tons move with different speeds and therefore run away for large times.

Analytically, this instability is caused by the presence of the eigenvalue

λ = 0 in the spectrum of the generator of linearized dynamics. Namely,

the tangent vectors to the solitary manifold are eigenvectors and associated

vectors of the generator. They correspond to zero eigenvalue. Respectively, the

Lyapunov theory is not applicable to this case.

This is why in the articles [162]–[169] an original strategy was developed

for proving asymptotic stability of solitary manifolds. This strategy allows one

to separate the unstable motion along the solitary manifold and the attraction

in transversal directions to this manifold.
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