
Cambridge University Press
978-1-316-51655-3 — Orthogonal Polynomials in the Spectral Analysis of Markov Processes
Manuel Domínguez de la Iglesia 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1

Orthogonal Polynomials

In this chapter we introduce some basic definitions and properties about the theory

of special functions and orthogonal polynomials on the real line. In the first section

we will introduce some basic special functions and the concept of the Stieltjes

transform, which will be used frequently in the text. In Section 1.2 we will give some

properties of the general theory of orthogonal polynomials. Section 1.3 is devoted to

the spectral theorem and in particular applied to orthogonal polynomials, in which

case it is usually called Favard’s theorem. In Sections 1.4 and 1.5 we will focus on

the so-called classical orthogonal polynomials, both of a continuous and a discrete

variable. These special families, apart from being orthogonal, are characterized by

the fact that they are eigenfunctions of a second-order differential operator (in the

continuous variable) or a second-order difference operator (in the discrete variable)

of the Sturm–Liouville type. Finally, in Section 1.6, we describe the Askey scheme,

which is a way of organizing orthogonal polynomials of hypergeometric type into a

hierarchy, where the classical orthogonal polynomials are included. This chapter is

based on references [3, 9, 16, 74, 135, 137, 142].

1.1 Some Special Functions and the Stieltjes Transform

The Gamma function is a complex-valued function that extends the domain of the

factorial function of a nonnegative integer n!. It was introduced by Euler in 1789 and

it is defined by its integral representation

Ŵ(z) =
∫ ∞

0

e−ttz−1dt, Re z > 0. (1.1)

Integrating by parts we obtain the functional equation

zŴ(z) = Ŵ(z + 1), Re z > 0.

The formula above can also be written as

(z)nŴ(z) = Ŵ(z + n), n ≥ 0,
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2 Orthogonal Polynomials

where (z)n is the Pochhammer symbol

(z)n =

{
1, if n = 0,

z(z + 1) · · · (z + n − 1), if n ≥ 1.
(1.2)

From here we also observe that if n is a nonnegative integer, then Ŵ(n + 1) = n!.

The Beta function is defined by the integral

B(x,y) =
∫ 1

0

tx−1(1 − t)y−1dt, Re x, Re y > 0. (1.3)

It is symmetric, i.e. B(x,y) = B(y,x), and it is related to the Gamma function by the

well-known formula

B(x,y) =
Ŵ(x)Ŵ(y)

Ŵ(x + y)
.

A hypergeometric series
∑∞

n=0 cn is a series for which c0 = 1 and the ratio of con-

secutive terms is a rational function of the summation index n, i.e. one for which

cn+1

cn

=
P(n)

Q(n)
,

where P(n) and Q(n) are polynomials. In this case, cn is called a hypergeometric

term. If the polynomials are completely factored, the ratio of successive terms can

be written as

cn+1

cn

=
P(n)

Q(n)
=

(n + a1)(n + a2) · · · (n + ap)

(n + b1)(n + b2) · · · (n + bq)(n + 1)
,

where the factor n + 1 in the denominator is present for historical reasons of notation.

From here we define the generalized hypergeometric function as

pFq

(
a1, . . . ,ap

b1, . . . ,bq
;x

)
=

∞∑

n=0

cnxn =
∞∑

n=0

(a1)n · · · (ap)n

(b1)n · · · (bq)n

xn

n!
. (1.4)

We can also use the following notation for generalized hypergeometric functions:

pFq(a1, . . . ,ap;b1, . . . ,bq;x).

This series is absolutely convergent for all x if p ≤ q and for |x| < 1 if p = q + 1. It

is divergent for all x �= 0 if p > q + 1, as long as the series is not finite. Observe that

when one of the parameters of the numerator ai,i = 1, . . . ,p, is a negative integer,

then the generalized hypergeometric function is a polynomial.

Many of the known special functions can be represented in terms of generalized

hypergeometric functions. For example, the simplest cases of 0F0 and 1F0 corre-

spond to the exponential series and the binomial series, respectively. Indeed,

0F0(−; − ;x) =
∞∑

n=0

xn

n!
= ex,
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1.1 Some Special Functions and the Stieltjes Transform 3

1F0(a; − ;x) =
∞∑

n=0

(a)nxn

n!
=

∞∑

n=0

Ŵ(z + n)

Ŵ(a)Ŵ(n +1)
xn =

∞∑

n=0

(
a + n − 1

n

)
xn =(1 − x)−a.

If p = 2 and q = 1, the function becomes what is called the Gaussian hypergeometric

function 2F1(a,b;c;x) and it is related to the solutions of Euler’s hypergeometric

differential equation

x(1 − x)y′′(x) + [c − (a + b + 1)x]y′(x) − aby(x) = 0. (1.5)

We will see later the relation of this equation with the Jacobi polynomials. All

families of orthogonal polynomials in the Askey scheme admit a representation in

terms of hypergeometric series, as we will see later. For more information about

generalized hypergeometric functions see [3, Chapter 2].

The Stieltjes transform (also known as the Cauchy transform) of a measure ψ

defined on R is defined as the complex-valued function

B(z;ψ) =
∫

R

dψ(x)

x − z
, z ∈ C \ R. (1.6)

This transform is related to the generating function of the moments of the measure

ψ , since, formally

B(z;ψ) = −
1

z

∫

R

1

1 − x/z
dψ(x) = −

1

z

∞∑

n=0

∫

R

xn

zn
dψ(x) = −

∞∑

n=0

μn

zn+1
, (1.7)

where μn =
∫
R

xndψ(x) are the moments of the measure. In the case where

supp(ψ) ⊆ [−A,A], then |μn| ≤ 2An, implying that the series (1.7) is absolutely

convergent for |z| > A. In this case, the Stieltjes transform is completely determined

in terms of the moments of the measure ψ . In general, the expansion of the Stieltjes

transform (1.6) has to be interpreted as an asymptotic expansion of the Stieltjes trans-

form B(z;ψ) as |z| → ∞.

There is a formula which allows to calculate the measure ψ if we have information

about the corresponding Stieltjes transform. This formula is known as the Perron–

Stieltjes inversion formula. It has several versions, but the one we will use in this text

is included in the following result.

Proposition 1.1 ([51, Theorem X.6.1]) Let ψ be a probability measure with finite

moments and B(z;ψ) its Stieltjes transform (1.6). Then

∫ b

a

dψ(x) +
1

2
ψ({a}) +

1

2
ψ({b}) =

1

π
lim
ε↓0

∫ b

a

ImB(x + iε;ψ) dx, (1.8)

where ψ({a}) ≥ 0 is the magnitude or size of the mass at an isolated point a. If the

measure is absolutely continuous at a then ψ({a}) = 0.
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4 Orthogonal Polynomials

Proof Observe that

2iImB(z;ψ) = B(z;ψ) − B(z;ψ)= B(z;ψ) − B(z;ψ) =
∫

R

[
1

x − z
−

1

x − z

]
dψ(x)

=
∫

R

z − z

|x − z|2
dψ(x) = 2i

∫

R

Imz

|x − z|2
dψ(x).

Therefore

ImB(x + iε;ψ) =
∫

R

ε

|s − (x + iε)|2
dψ(s) =

∫

R

ε

(s − x)2 + ε2
dψ(s).

Integrating and exchanging integrals (which is allowed since the integrand is

positive) we have that

∫ b

a

ImB(x + iε;ψ) dx =
∫

R

[∫ b

a

ε

(s − x)2 + ε2
dx

]
dψ(s).

The internal integral can be calculated explicitly by making the change of variables

y = (x − s)/ε:

χε(s) =
∫ b

a

ε

(s − x)2 + ε2
dx =

∫ (b−s)/ε

(a−s)/ε

1

1 + y2
dy = arctan y

∣∣∣∣
y=(b−s)/ε

y=(a−s)/ε

.

We have that 0 ≤ χε(s) ≤ π and when we take the limit (which is also allowed using

the Lebesgue dominated convergence theorem since ψ is a probability measure and

χε(s) is bounded and positive) we have that

lim
ε↓0

χε(s) =

{
π, if a < s < b,

π
2
, if s = a or s = b.

As a consequence of the previous proposition we also have the formula

∫ b

a

dψ(x) =
1

π
lim
ε↓0

lim
η↓0

∫ b−η

a+η

ImB(x + iε;ψ) dx. (1.9)

When the measure is absolutely continuous with respect to the Lebesgue measure,

i.e. dψ(x) = ψ(x) dx (abusing the notation), we have

ψ(x) =
1

π
lim
ε↓0

ImB(x + iε;ψ) = lim
ε↓0

B(x + iε;ψ) − B(x − iε;ψ)

2π i
. (1.10)

Finally, for measures that have an absolutely continuous part and a discrete part,

there is a direct way to calculate the size of the jump. Indeed, assume that

ψ = ψ̂ + ψ({a})δa, where δa(x) = δ(x − a) is the Dirac delta distribution which is

defined, as usual, by
∫
R

f (x)δ(x − a) dx = f (a). Then, since the Stieltjes transform is

linear, we have

B(z;ψ) = B(z;ψ̂) +
ψ({a})
a − z

.
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1.1 Some Special Functions and the Stieltjes Transform 5

Evaluating at z = a + iε and taking imaginary parts, we have

ImB(a + iε;ψ) = ImB(a + iε;ψ̂) + Im
ψ({a})
−iε

= ImB(a + iε;ψ̂) +
ψ({a})

ε
.

Therefore we get

ψ({a}) = εImB(a + iε;ψ) − εImB(a + iε;ψ̂). (1.11)

Taking limits as ε ↓ 0 we observe that B(a + iε;ψ̂) is bounded since ψ̂ is absolutely

continuous. Therefore the meaningful isolated points (where ψ({a}) > 0) must be

those satisfying

lim
ε↓0

ImB(a + iε;ψ) = ∞,

while the size of the jump at x = a is given by

ψ({a}) = lim
ε↓0

εImB(a + iε;ψ) ≥ 0. (1.12)

Example 1.2 Let B(z;ψ) be given by

B(z;ψ) =
1

1 − z
, z ∈ C \ {1}.

According to (1.11) there will be a pole at z = 1, so it is a candidate for a singular

part of the measure. Assume that ψ = ψ̂ + ψ({1})δ1, where ψ̂ is the absolutely

continuous part. Then, by (1.10), we have

ψ̂(x) =
1

π
lim
ε↓0

Im
1

1 − x − iε
=

1

π
lim
ε↓0

Im

(
1 − x + iε

(1 − x)2 + ε2

)
=

1

π
lim
ε↓0

ε

(1 − x)2 + ε2
.

We observe that if x �= 1, then ψ̂(x) = 0. Therefore the measure ψ consists only of a

singular part at x = 1. The value of ψ({1}) is given by (1.12) and it is easy to see that

ψ({1}) = lim
ε↓0

εImB(1 + iε;ψ) = lim
ε↓0

ε
ε

ε2
= 1.

Therefore ψ(x) = δ1(x). ♦

Example 1.3 Consider the Stieltjes transform given by

B(z;ψ) = −2z + 2
√

z2 − 1, z ∈ C \ [−1,1],

where the branch of the square root is determined by analytic continuation from

positive values for real z > 1. We observe that there are no singular points, so the

measure will consist only of an absolutely continuous part. From (1.10) we get

ψ(x) =
1

π
lim
ε↓0

ImB(x + iε;ψ)

=
1

π
lim
ε↓0

(
−2ε + 2Im

√
x2 − ε2 + 2ixε − 1

)
=

2

π
Im

√
x2 − 1.
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6 Orthogonal Polynomials

The last part has only imaginary part when |x| ≤ 1. Therefore

ψ(x) =
2

π

√
1 − x2, |x| < 1,

which is the Wigner semicircle distribution. ♦

In Chapters 2 and 3 we will see several examples of computation of measures

using the Perron–Stieltjes inversion formula.

Remark 1.4 As we have seen in (1.7), the Stieltjes transform is related to the

generating function of the moments of a probability measure ψ . This is not exactly

the same as the usual moment generating function, which is defined as

MX(t) = E(etX) =
∞∑

n=0

μn

tn

n!
,

where X is the random variable associated with the probability measure ψ . This

moment generating function is more related to the Laplace transform. Indeed,

assume that the probability measure is absolutely continuous and supported on

[0,∞). Then the Laplace transform is defined by

L[ψ](s) =
∫ ∞

0

e−sxψ(x) dx.

Then we have L[ψ](−t) = MX(t). The Stieltjes transform arises naturally as an

iteration of the Laplace transform. Indeed, if we call φ(s) = L[ψ](s) then, formally,

we have

L[φ](t) =
∫ ∞

0

e−stφ(s)ds =
∫ ∞

0

e−st

(∫ ∞

0

e−suψ(u)du

)
ds

=
∫ ∞

0

ψ(u)

(∫ ∞

0

e−s(t+u)ds

)
du

=
∫ ∞

0

ψ(u)

(
−

1

t + u
e−s(t+u)

∣∣∣∣
s=∞

s=0

)
du =

∫ ∞

0

ψ(u)

t + u
du, Re(t) > 0.

Therefore B(t;ψ) = L2[ψ](−t). A good reference about Stieltjes transforms in

connection with the Laplace transform can be found in Chapter VIII of [146]. ♦

1.2 General Properties of Orthogonal Polynomials

Let ψ be a positive Borel measure on R with infinite support and let us assume that

the moments

μn =
∫

R

xndψ(x), n ≥ 0,
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1.2 General Properties of Orthogonal Polynomials 7

exist and are finite. We normalize the measure in such a way that μ0 = 1, so we

have a probability measure. Following Lebesgue’s decomposition theorem any Borel

measure on the real line can be decomposed into three measures such that

ψ = ψc + ψd + ψsc,

where ψc is absolutely continuous, ψd is discrete and ψsc is singular continuous. The

absolutely continuous measure ψc is classified by the Radon–Nikodym theorem and

can always be written (abusing the notation) as dψc(x) = ψc(x)dx, with respect to

the Lebesgue measure. The discrete measure ψd can always be written as

dψd(x) =
∑

k

ψ({xk})δ(x − xk) dx,

where k runs over a countable set, xk are the mass points, ψ({xk}) are the sizes or

magnitudes of these jumps and δ(x − a) is the Dirac delta distribution. Finally, the

singular continuous measure ψsc is defined over a set of measure 0. The Cantor

measure (the probability measure on the real line whose cumulative distribution

function is the Cantor function) is an example of a singular continuous measure.

In this text we consider positive Borel measures on R with either only an absolutely

continuous part or only a discrete part (or a combination of both).

Associated with this measure ψ we can consider the Hilbert space L2
ψ with the

inner product

( f,g)ψ =
∫

R

f (x)g(x) dψ(x), (1.13)

of all measurable real functions f such that ( f,f )ψ = ‖f ‖2
ψ < ∞. If the support of

the measure is given by S ⊆ R, then this space will be written as L2
ψ (S). When S is a

countable set, for example N0 = {0,1, . . .}, this space is usually denoted by ℓ2
ψ (N0).

We say that (pn(x))n is a sequence of polynomials if each element is a polynomial

of degree exactly n in the real variable x. A sequence of polynomials is monic if the

leading coefficient of each polynomial is exactly 1. A sequence of polynomials (pn)n

is orthogonal with respect to a Borel measure ψ if

(pn,pm)ψ =
∫

R

pn(x)pm(x) dψ(x) = d2
nδnm,

where d2
n = ‖pn‖2

ψ > 0. If the norm is always identically 1, we say that the poly-

nomial sequence is orthonormal and we denote it by (Pn)n. When we work with the

sequence of monic orthogonal polynomials, we will use the notation (̂Pn)n and its

norms will be denoted by ‖P̂n‖2
ψ = ζn.

Given a Borel measure ψ on R with infinite support and finite moments, it will

always be possible to build a sequence of orthogonal polynomials. A direct way is

through the Gram–Schmidt orthogonalization process applied to the set {1,x,x2, . . .}.
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8 Orthogonal Polynomials

This method builds the polynomials one by one taking into account that all the

previous ones have already been calculated. Specifically

P̂0(x) = 1,

P̂1(x) = x −
(̂P0,x)ψ

(̂P0,P̂0)ψ
P̂0(x),

...
...

P̂k(x) = xk −
k−1∑

j=0

(̂Pj,x
k)ψ

(̂Pj,P̂j)ψ
P̂j(x).

Once they have been computed, the monic polynomials can be normalized by divid-

ing them by ‖P̂k‖ψ =
√

ζk. Observe that the monic orthogonal polynomials have

always real coefficients.

Another way to define orthogonal polynomials is through determinants associated

with the moments. Consider the determinant

�n =

∣∣∣∣∣∣∣∣∣

μ0 μ1 · · · μn

μ1 μ2 · · · μn+1

...
...

. . .
...

μn μn+1 · · · μ2n

∣∣∣∣∣∣∣∣∣
, �−1 = 1.

The quadratic form associated with the matrix of the previous determinant,

which we denote by (�n), is always positive definite. Indeed, for any real vector

v = (v0,v1, . . . ,vn)
T , we have that

vT(�n)v =
n∑

j,k=0

μj+kvjvk =
∫

R

⎡
⎣

n∑

j=0

vjx
j

⎤
⎦

2

dψ(x),

which is clearly positive. Thus �n > 0,n ≥ 0. �n,n ≥ 0 are usually called Hankel

determinants.

It is easy to see that the sequence of polynomials defined by

pn(x) =

∣∣∣∣∣∣∣∣∣

μ0 μ1 · · · μn−1 1

μ1 μ2 · · · μn x
...

...
. . .

...
...

μn μn+1 · · · μ2n−1 xn

∣∣∣∣∣∣∣∣∣
, n ≥ 0, (1.14)

is orthogonal with respect to the measure ψ . To see that, we simply evaluate the inner

product (pn,x
m)ψ = 0,m = 0,1, . . . ,n − 1 observing that we always have a repeated

column, so the determinant is 0. Alternatively, we have (pn,x
n)ψ = �n > 0. Thus

pn(x) = �n−1xn + lower degree terms,
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1.2 General Properties of Orthogonal Polynomials 9

and we have that

(pn,pn)ψ = (pn,�n−1xn)ψ = �n−1�n.

Therefore, the polynomials

Pn(x) =
1

√
�n−1�n

pn(x)

are orthonormal, and the leading coefficient is given by hn =
√

�n−1/�n = ζ
−1/2
n .

The monic family can be written as

P̂n(x) =
1

�n−1
pn(x) =

√
�n

�n−1
Pn(x).

Finally, let us see another way to generate the orthogonal polynomials recurrently.

Assume that we have a sequence of orthogonal polynomials (pn)n. The polynomial

xpn(x) has degree n + 1 and can be expressed as a linear combination of the n + 1

first polynomials, i.e.

xpn(x) =
n+1∑

j=0

dn,jpj(x).

Now, multiplying by pk(x) and evaluating the inner product, it is easy to see, using

the orthogonal relations, that the coefficients dn,j = 0,j = 0,1, . . . ,n − 2. Therefore,

only the last three coefficients remain and every family of orthogonal polynomials

satisfies a three-term recurrence relation of the form

xpn(x) = anpn+1(x) + bnpn(x) + cnpn−1(x), n ≥ 0, p−1 = 0, (1.15)

where

an =
(xpn,pn+1)ψ

(pn+1,pn+1)ψ
, bn =

(xpn,pn)ψ

(pn,pn)ψ
, cn =

(xpn,pn−1)ψ

(pn−1,pn−1)ψ
.

We observe that the coefficient bn is always real. Moreover, for the orthonormal

family Pn(x) we have, comparing the coefficients of xn+1 in (1.15), that an = hn/

hn+1 =
√

ζn+1/ζn > 0, and that cn = (xPn,Pn−1)ψ = (Pn,xPn−1)ψ = an−1.

Therefore the sequence of orthonormal polynomials (Pn)n satisfies a three-term

recurrence relation of the form

xPn(x) = anPn+1(x) + bnPn(x) + an−1Pn−1(x), an > 0, bn ∈ R. (1.16)

For the monic family (̂Pn)n the three-term recurrence relation will be given by

xP̂n(x) = P̂n+1(x) + αnP̂n(x) + βnP̂n−1(x), P̂0(x) = 1, P̂1(x) = x − α0,

(1.17)
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10 Orthogonal Polynomials

where αn−1 ∈ R,βn > 0 for n ≥ 1. The relations between these coefficients and the

coefficients of the orthonormal family are given by

an =

√
ζn+1

ζn

, αn = bn, βn =
ζn

ζn−1
.

Observe that ζn = βn · · ·β1.

Another way of writing this recurrence relation is in matrix form. Denoting the

column vector of orthonormal polynomials by P(x) = (P0(x),P1(x), . . .)
T , we have

that xP(x) = JP(x), where J is the tridiagonal symmetric matrix

J =

⎛
⎜⎜⎜⎜⎜⎝

b0 a0 0 0 0 · · ·
a0 b1 a1 0 0 · · ·
0 a1 b2 a2 0 · · ·
0 0 a2 b3 a3 · · ·
...

...
...

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎠

. (1.18)

This matrix plays a very important role and it is called a Jacobi matrix. In particular,

we will find this kind of matrix in the one-step transition probability matrix of a

one-dimensional discrete-time birth–death chain and in the infinitesimal operator of

a birth–death process, as we will see in the next two chapters. The inverse result, i.e.

for a family of polynomials defined by (1.16), where there exists a positive measure

for which they are orthogonal, is known as Favard’s theorem or the spectral theorem

for orthogonal polynomials. We will see more details in Section 1.3.

The powers of J can be computed formally using orthogonality properties.

Observe that the relation xP(x) = JP(x) implies that xnP(x) = JnP(x). Therefore,

multiplying by PT(x), integrating with respect to the measure ψ and looking at the

(i,j) entry, we obtain

∫

R

xnPi(x)Pj(x)dψ(x) =
∑

k≥0

∫

R

Jn
ikPk(x)Pj(x)dψ(x) = Jn

ij. (1.19)

From here we observe that the moments (μn)n of the measure ψ can be computed

from Jn
00. In general, the diagonal coefficients Jn

ii are the moments of the measure

dψi(x) = P2
i (x)dψ(x).

The identity (1.19) can be extended to any analytic function defined on supp(ψ)

of the form f (x) =
∑

n≥0 cnxn as

∫

R

f (x)Pi(x)Pj(x) dψ(x) =
∑

n≥0

∫

R

cnxnPk(x)Pj(x) dψ(x) =
∑

n≥0

cnJn
ij = f (J)ij.
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