Machine Learning and Data Sciences for Financial Markets

Leveraging the research efforts of more than 60 experts in the area, this book reviews cutting-edge practices in machine learning for financial markets. Instead of seeing machine learning as a new field, the authors explore the connection between knowledge developed in quantitative finance over the past 40 years and modern techniques generated by the current revolution in data sciences and artificial intelligence.

The text is structured around three main areas: "Interacting with investors and asset owners," which covers robo-advisors and price formation; "Towards better risk intermediation," which discusses derivative hedging, portfolio construction, and machine learning for dynamic optimization; and "Connections with the real economy," which explores nowcasting, alternative data, and ethics of algorithms.

Accessible to a wide audience, this invaluable resource will allow practitioners to include machine learning driven techniques in their day-to-day quantitative practices, while students will build intuition and come to appreciate the technical tools and motivation behind the theory.

AGOSTINO CAPPONI is Associate Professor in the Department of Industrial Engineering and Operations Research at Columbia University. He conducts research in financial technology and market microstructure. His work has been recognized with the NSF CAREER Award, and a JP Morgan AI Research award. Capponi is a co-editor of *Management Science and Mathematics and Financial Economics*. He is a Council member of the Bachelier Financial Society, and recently served as Chair of the SIAM-FME and INFORMS Finance.

CHARLES-ALBERT LEHALLE is Global Head of Quantitative R&D at Abu Dhabi Investment Authority and Visiting Professor at Imperial College London. He has a PhD in machine learning, was previously Head of Data Analytics at CFM, and held different Global Head positions at Crédit Agricole CIB. Recognized as an expert in market microstructure, Lehalle is often invited to present to regulators and policy-makers.

> "Agostino Capponi and Charles-Albert Lehalle have edited an excellent book tackling the most important topics associated with the application of machine learning and data science techniques to the challenging field of finance, including robo-advisory, high-frequency trading, nowcasting, and alternative data. I highly recommend this book to any reader interested in our field, regardless of experience or background."

- Marcos López de Prado, Abu Dhabi Investment Authority & Cornell University

"Beginning with the 1973 publication of the Black–Scholes formula, mathematical models coupled with computing revolutionized finance. We are now witnessing a second revolution as larger-scale computing makes data science and machine learning methods feasible. This book demonstrates that the second revolution is not a departure from, but rather a continuation of, the first revolution. It will be essential reading for researchers in quantitative finance, whether they were participants in the first revolution or are only now joining the fray." — Steven E. Shreve, *Carnegie Mellon University*

"[This book] comes at a critical time in the financial ma

"[This book] comes at a critical time in the financial markets. The amount of machine-readable data available to practitioners, the power of the statistical models they can build, and the computational power available to train them keeps growing exponentially. AI and machine learning are increasingly embedded into every aspect of the investing process. The common curriculum, however, both in finance and in applications of machine learning, lags behind. This book provides an excellent and very thorough overview of the state of the art in the field, with contributions by key researchers and practitioners. The monumental work done by the editors and reviewers shows in the wide diversity of current topics covered – from deep learning for solving partial differential equations to transformative breakthroughs in NLP. This book, which I cannot recommend highly enough, will be useful to any practitioner or student who wishes to familiarize themselves with the current state of the art and build their careers and research on a solid foundation." — Gary Kazantsev, *Bloomberg & Columbia University*

Machine Learning and Data Sciences for Financial Markets

A Guide to Contemporary Practices

Edited by

Agostino Capponi Columbia University, New York

Charles-Albert Lehalle Abu Dhabi Investment Authority

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781316516195 DOI: 10.1017/9781009028943

© Cambridge University Press & Assessment 2023

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment

First published 2023

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

ISBN 978-1-316-51619-5 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Cont	ributors	xvi
Prefa	ice	xix
II A	NTERACTING WITH INVESTORS AND SSET OWNERS	1
Part	I Robo Advisors and Automated Recommendation	3
1	Introduction to Part I. <i>Robo-advising as a Technological Platform for Optimization and Recommendations Lisa L. Huang</i>	5
2	New Frontiers of Robo-Advising: Consumption, Saving, Debt Man- agement, and Taxes	
	Francesco D'Acunto and Alberto G. Rossi	9
2.1	Robo-advice and the balance-sheet view of the household	9
2.2	Robo-advising for consumption-saving choices	12
	2.2.1 Open areas of inquiry in robo-advising for consumption-saving choices	16
2.3	Robo-advising and durable spending choices	18
	2.3.1 Robo-advising for housing choices	18
	2.3.2 Robo-advising for the purchase of vehicles	19
	2.3.3 Open areas of inquiry in robo-advising for durable spending	20
2.4	Robo-advising and consumers' lending decisions	21
2.5	Areas of consumer finance with a scarce presence of robo-advising	22
	2.5.1 Robo-advising and consumer credit management	23
	2.5.2 Robo-advising and human capital investments	25
	2.5.3 Robo-advising and tax management	26
2.6	E pluribus unum: Is the Holistic Robo-Advisor the future of	
	robo-advising?	27
2.7	Conclusions	28

vi		Ca	ontents
3	Robo with]	-Advising: Less AI and More XAI? Augmenting Algorithms Humans-in-the-Loop	
	Milo	Bianchi and Marie Brière	33
3.1	Introc	luction	33
3.2	Why s	so popular?	34
	3.2.1	Fintech revolution	36
	3.2.2	Fundamental problems with investors	36
	3.2.3	Fundamental problems with advisors	37
3.3	Prom	ises	38
	3.3.1	Accountable procedures and tailored recommendations	38
	3.3.2	Make investors better off	41
2.4	3.3.3	Reach under-served investors	42
3.4	Open	questions	43
	3.4.1	Why not more Al/big data?	43
	3.4.2	How far shall we go into personalization?	45
	3.4.3	Can humans trust robots?	4/
25	3.4.4 The m	Do robots replace or complement numan decisions?	51
3.5	I ne n	ext generation of robo-advisors	51
4	Robo	-advisory: From investing principles and algorithms to future	1
	devel	opments	
	Adam	n Grealish and Petter N. Kolm	60
4.1	From	investing principles to algorithms	60
	4.1.1	Client assessment and onboarding	62
	4.1.2	Implementation of the investment strategy	66
	4.1.3	Ongoing management of the investment strategy	69
4.2	Autor	nated tax management for retail investors	70
	4.2.1	Tax-loss harvesting	71
	4.2.2	Asset location	73
	4.2.3	Tax lot management	74
4.3	Invest	tor interaction	74
	4.3.1	Investor education	74
	4.3.2	Data collection and split testing	75
4.4	Expai	nding service offerings	75
	4.4.1	Goals-based investing	75
	4.4.2	Retirement planning	76
	4.4.3	Responsible investing	77
	4.4.4	Smart beta and factor investing	78
	4.4.5	Risk parity	79
	4.4.6	User-defined portfolios	79
	4.4.7	Cash management	80
4.5	Concl	lusion	81
5	Reco	mmender Systems for Corporate Bond Trading	
	Domi	nic Wright, Artur Henrykowski, Jacky Lee and Luca Capriotti	86
5.1	Introd	luction	86
5.2	Bond	recommender systems	87
	5.2.1	Content-based filtering	88
	5.2.2	Collaborative filtering	90

Cont	ents	vii
5.3	Testing	93
	5.3.1 Hyperparameter optimization	94
	5.3.2 Testing results	94
5.4	Explaining recommendations	95
5.5	Conclusions	96
Part	t II How Learned Flows Form Prices	99
6	Introduction to Part II. Price Impact: Information Revelation or Self- Fulfilling Prophecies?	
	Jean-Philippe Bouchaud	101
6.1	Liquidity hide-and-seek	101
6.2	Information efficiency vs. statistical efficiency	102
6.3	Price "Discovery" vs. price "formation"	104
7	Order Flow and Price Formation	
	Fabrizio Lillo	107
7.1	Introduction	107
7.2	The limit order book	109
7.3	Modeling approaches	110
7.4 7.5	Order now	115
7.5	Cross impact Merket impact of meteorders	11/
7.0 7.7	Co impact of metaorders	119
7.8	Conclusion	124
8	Price Formation and Learning in Equilibrium under Asymmetric	
	Information	
	Umut Çetin	130
8.1	Introduction	130
8.2	The Kyle model	131
	8.2.1 A toy example	131
0.0	8.2.2 The Kyle model in continuous time	133
8.3	The static Kyle equilibrium	137
8.4 0 5	The static Kyle model with multiple insiders	141
0.J 0.G	The Kyle model and default risk	145
0.0 8 7	Glosten Milgrom model	144
8.8	Risk aversion of market makers	140
8.9	Conclusion and further remarks	149
9	Deciphering How Investors' Daily Flows are Forming Prices	
	Daniel Giamouridis, Georgios V. Papaioannou and Brice Rosenzweig	153
9.1	Introduction	153
9.2	Data description and exploratory statistics	156
9.3	Modeling and methodology	160
9.4	Empirical results	162

viii		Contents
	9.4.1 Aggregate flow and price formation	162
	9.4.2 Participant type flow imbalance and price formation	163
	9.4.3 Co-Impact	168
9.5	Summary and Conclusions	169
Т	OWARDS BETTER RISK INTERMEDIATION	173
Part	III High Frequency Finance	175
10	Introduction to Part III	
	Robert Almgren	177
10.1	Chapters in this Part	177
10.2	State of the field and future prospects	179
	10.2.1 Data needs and simulation	179
	10.2.2 Game formulation	180
	10.2.3 Conclusion	181
11	Reinforcement Learning Methods in Algorithmic Trading	
	Olivier Guéant	182
11.1	Introduction	182
	11.1.1 The recent successes of reinforcement learning	182
	11.1.2 Finance, it might be your go	183
11.2	A brief introduction to reinforcement learning	184
	11.2.1 Markov Decision Processes and optimization problems	185
	11.2.2 Basic concepts	186
	11.2.3 Main RL methods	188
11.3	Finance is not a game	192
	11.3.1 States and actions	192
	11.3.2 The role of models	192
	11.3.3 The question of risk	194
	11.3.4 The question of time steps	194
11.4	A review of existing works	194
	11.4.1 Statistical arbitrage	195
	11.4.2 Optimal execution	196
	11.4.3 Market making	198
11.5	Conclusion and perspectives for the future	199
12	Stochastic Approximation Applied to Optimal Execution: Learn	ning
	Sonhie Laruelle	205
12.1	Introduction	205
12.2	Stochastic approximation: results on a.s. convergence and its rate	207
	12.2.1 Back to deterministic recursive methods	207
	12.2.2 Stochastic recursive methods	208
12.3	Applications to optimal execution	216
12.5	12.3.1 Optimal split of an order across liquidity pools	216
	12.3.2 Optimal posting price of limit orders	221
	r r r r r r r r r r r r r r r r r r r	

Conte	ents	ix
13	Reinforcement Learning for Algorithmic Trading	
10	Álvaro Cartea. Sebastian Jaimungal and	
	Leandro Sánchez-Betancourt	230
13.1	Learning in financial markets	230
13.2	Statistical arbitrage: trading an FX triplet	232
	13.2.1 Market model	234
13.3	The reinforcement learning paradigm	235
	13.3.1 Deep Q-learning (DQN)	237
	13.3.2 Reinforced deep Markov models	239
	13.3.3 Implementation of RDMM	244
13.4	Optimal trading in triplet	245
	13.4.1 Remarks on RDMM versus DDQN	248
13.5	Conclusions and future work	249
Part	IV Advanced Optimization Techniques	251
14	Introduction to Part IV. Advanced Optimization Techniques for Banks	
	and Asset Managers	
	Paul Bilokon, Matthew F. Dixon and Igor Halperin	253
14.1	Introduction	253
	14.1.1 Pelger's asset pricing model	257
14.2	Data wins the center stage	259
	14.2.1 Deep hedging vs. reinforcement learning for option pricing	259
14.2	14.2.2 Market simulators	261
14.5	Stratified models for portiolio construction	262
14.4	Summary	203
15	Harnessing Quantitative Finance by Data-Centric Methods	
	Blanka Horvath, Aitor Muguruza Gonzalez and Mikko S. Pakkanen	265
15.1	Data-centric methods in quantitative finance	265
15.2	Pricing and calibration by supervised learning	269
	15.2.1 Model calibration framework	269
	15.2.2 Pricing and calibration aided by deep neural networks	270
	15.2.3 An example where deep pricing makes a difference: the rough	070
	Bergomi model	272
	15.2.4 Choosing the feature set	213
	of the tractability mantra	274
153	Pricing and hedging by unsupervised deep learning	275
15.5	15.3.1 Deen hedging	275
	15.3.2 Utility indifference pricing	278
	15.3.3 Numerical illustration	279
15.4	Market generators	284
	15.4.1 The case for more flexible data-driven market models	285
	15.4.2 The case for classical models	288
	15.4.3 Synergies between the classical and modern approaches, and further	
	risk management considerations	288
15.5	Outlook and challenges with data at centre stage	288

х		Contents
16	Asset Pricing and Investment with Big Data	
	Markus Pelger	293
16.1	Overview	293
16.2	No-arbitrage pricing and investment	294
16.3	Factor models	296
16.4	Deep learning in asset pricing	300
	16.4.1 Forecasting	300
	16.4.2 No-arbitrage model	301
	16.4.3 Economic dynamics	303
	16.4.4 Model architecture	305
	16.4.5 Empirical results	305
16.5	Decision trees in asset pricing	308
	16.5.1 SDF recovery as a mean-variance optimization problem	310
	16.5.2 Empirical results	312
16.6	Directions for future research	314
17	Portfolio Construction Using Stratified Models	
	Jonathan Tuck, Shane Barratt and Stephen Boyd	317
17.1	Introduction	317
	17.1.1 Related work	319
17.2	Laplacian regularized stratified models	319
17.3	Dataset	320
17.4	Stratified market conditions	322
17.5	Stratified return model	324
	17.5.1 Hyper-parameter search	324
	17.5.2 Final stratified return model	325
17.6	Stratified risk model	326
	17.6.1 Hyper-parameter search	327
	17.6.2 Final stratified risk model	327
17.7	Trading policy and backtest	328
	17.7.1 Trading policy	328
	17.7.2 Backtests	330
	17.7.3 Hyper-parameter selection	331
	17.7.4 Final trading policy results	332
17.8	Extensions and variations	335
17.9	Conclusions	337
Ð		
Part	V New Frontiers for Stochastic Control in Finance	341
18	Introduction to Part V. Machine Learning and Applied Mathematic a Game of Hide-and-Seek?	cs:
	Gilles Pagès	343
19	The Curse of Optimality, and How to Break it?	
	Xun Yu Zhou	354
19.1	Introduction	354
19.2	Entropy-regularized exploratory formulation	357
	19.2.1 Classical stochastic control	357

Conte	ents	xi
	10.2.2 Exploratory formulation	350
	19.2.2 Exploratory regularization	360
10.3	Ontimal distributional policies	361
19.5	Non-convex optimization and Langevin diffusions	363
19.4	Algorithmic considerations for RL	365
19.5	Conclusion	367
17.0	Conclusion	507
20	Deep Learning for Mean Field Games and Mean Field Control with Applications to Finance	
	René Carmona and Mathieu Laurière	369
20.1	Introduction	369
	20.1.1 Literature review	370
	20.1.2 Definition of the problems	372
20.2	Direct method for MKV Control	373
	20.2.1 Description of the method	374
	20.2.2 Numerical illustration: a price impact model	376
20.3	Deep BSDE method for MKV FBSDEs	379
	20.3.1 Description of the method	379
	20.3.2 Numerical illustration: a toy model of systemic risk	381
20.4	DGM method for mean field PDEs	382
	20.4.1 Description of the method	383
a a r	20.4.2 Numerical illustration: a crowded trade model	386
20.5	Conclusion	389
21	Reinforcement Learning for Mean Field Games, with Applications to Economics	
21	Reinforcement Learning for Mean Field Games, with Applications to Economics Andrea Angiuli, Jean-Pierre Fouque and Mathieu Laurière	393
21 21.1	Reinforcement Learning for Mean Field Games, with Applications to Economics <i>Andrea Angiuli, Jean-Pierre Fouque and Mathieu Laurière</i> Introduction	393 393
21 21.1 21.2	Reinforcement Learning for Mean Field Games, with Applications to Economics <i>Andrea Angiuli, Jean-Pierre Fouque and Mathieu Laurière</i> Introduction Finite horizon mean field problems	393 393 396
21 21.1 21.2	Reinforcement Learning for Mean Field Games, with Applications to Economics <i>Andrea Angiuli, Jean-Pierre Fouque and Mathieu Laurière</i> Introduction Finite horizon mean field problems 21.2.1 Mean field games	393 393 396 397
21 21.1 21.2	Reinforcement Learning for Mean Field Games, with Applications to Economics <i>Andrea Angiuli, Jean-Pierre Fouque and Mathieu Laurière</i> Introduction Finite horizon mean field problems 21.2.1 Mean field games 21.2.2 Mean field control	393 393 396 397 397
2121.121.221.3	Reinforcement Learning for Mean Field Games, with Applications to Economics <i>Andrea Angiuli, Jean-Pierre Fouque and Mathieu Laurière</i> Introduction Finite horizon mean field problems 21.2.1 Mean field games 21.2.2 Mean field control Two-timescale approach	393 393 396 397 397 398
2121.121.221.3	Reinforcement Learning for Mean Field Games, with Applications to Economics <i>Andrea Angiuli, Jean-Pierre Fouque and Mathieu Laurière</i> Introduction Finite horizon mean field problems 21.2.1 Mean field games 21.2.2 Mean field control Two-timescale approach 21.3.1 Discrete formulation	393 393 396 397 397 398 398
21 21.1 21.2 21.3	Reinforcement Learning for Mean Field Games, with Applications to EconomicsAndrea Angiuli, Jean-Pierre Fouque and Mathieu LaurièreIntroductionFinite horizon mean field problems21.2.1Mean field games21.2.2Mean field controlTwo-timescale approach21.3.1Discrete formulation21.3.2Action-value function	393 393 396 397 397 398 398 400
21 21.1 21.2 21.3	Reinforcement Learning for Mean Field Games, with Applications to EconomicsAndrea Angiuli, Jean-Pierre Fouque and Mathieu LaurièreIntroductionFinite horizon mean field problems21.2.1Mean field games21.2.2Mean field controlTwo-timescale approach21.3.1Discrete formulation21.3.2Action-value function21.3.3Unification through a two-timescale approach	 393 393 396 397 397 398 398 400 401
 21 21.1 21.2 21.3 21.4 	Reinforcement Learning for Mean Field Games, with Applications to EconomicsAndrea Angiuli, Jean-Pierre Fouque and Mathieu LaurièreIntroductionFinite horizon mean field problems21.2.1Mean field games21.2.2Mean field controlTwo-timescale approach21.3.1Discrete formulation21.3.2Action-value function21.3.3Unification through a two-timescale approachReinforcement learning algorithm	 393 393 396 397 397 398 398 400 401 404
 21 21.1 21.2 21.3 21.4 	Reinforcement Learning for Mean Field Games, with Applications to EconomicsAndrea Angiuli, Jean-Pierre Fouque and Mathieu LaurièreIntroductionFinite horizon mean field problems21.2.1 Mean field games21.2.2 Mean field controlTwo-timescale approach21.3.1 Discrete formulation21.3.2 Action-value function21.3.3 Unification through a two-timescale approachReinforcement learning algorithm21.4.1 Reinforcement learning	 393 393 396 397 398 398 400 401 404 404
 21 21.1 21.2 21.3 21.4 	Reinforcement Learning for Mean Field Games, with Applications to EconomicsAndrea Angiuli, Jean-Pierre Fouque and Mathieu LaurièreIntroductionFinite horizon mean field problems21.2.1 Mean field games21.2.2 Mean field controlTwo-timescale approach21.3.1 Discrete formulation21.3.2 Action-value function21.3.3 Unification through a two-timescale approachReinforcement learning algorithm21.4.1 Reinforcement learning21.4.2 Algorithm	 393 393 396 397 398 398 400 401 404 404 404 404
 21 21.1 21.2 21.3 21.4 	Reinforcement Learning for Mean Field Games, with Applications to EconomicsAndrea Angiuli, Jean-Pierre Fouque and Mathieu LaurièreIntroductionFinite horizon mean field problems21.2.1 Mean field games21.2.2 Mean field controlTwo-timescale approach21.3.1 Discrete formulation21.3.2 Action-value function21.3.3 Unification through a two-timescale approachReinforcement learning algorithm21.4.1 Reinforcement learning21.4.2 Algorithm21.4.3 Learning rates	 393 393 396 397 398 398 400 401 404 404 404 406
 21 21.1 21.2 21.3 21.4 	Reinforcement Learning for Mean Field Games, with Applications to EconomicsAndrea Angiuli, Jean-Pierre Fouque and Mathieu LaurièreIntroductionFinite horizon mean field problems21.2.1 Mean field games21.2.2 Mean field controlTwo-timescale approach21.3.1 Discrete formulation21.3.2 Action-value function21.3.3 Unification through a two-timescale approachReinforcement learning algorithm21.4.1 Reinforcement learning21.4.2 Algorithm21.4.3 Learning rates21.4.4 Application to continuous problems	 393 393 396 397 398 398 400 401 404 404 404 406 407
 21 21.1 21.2 21.3 21.4 21.5 	Reinforcement Learning for Mean Field Games, with Applications to EconomicsAndrea Angiuli, Jean-Pierre Fouque and Mathieu LaurièreIntroductionFinite horizon mean field problems21.2.1 Mean field games21.2.2 Mean field controlTwo-timescale approach21.3.1 Discrete formulation21.3.2 Action-value function21.3.3 Unification through a two-timescale approachReinforcement learning algorithm21.4.1 Reinforcement learning21.4.2 Algorithm21.4.3 Learning rates21.4.4 Application to continuous problemsA mean field accumulation problem	 393 393 396 397 397 398 398 400 401 404 404 404 406 407 407 407
 21 21.1 21.2 21.3 21.4 21.5 	Reinforcement Learning for Mean Field Games, with Applications to Economics Andrea Angiuli, Jean-Pierre Fouque and Mathieu Laurière Introduction Finite horizon mean field problems 21.2.1 Mean field games 21.2.2 Mean field control Two-timescale approach 21.3.1 Discrete formulation 21.3.2 Action-value function 21.3.3 Unification through a two-timescale approach Reinforcement learning algorithm 21.4.1 Reinforcement learning 21.4.2 Algorithm 21.4.4 Application to continuous problems A mean field accumulation problem 21.5.1 Description of the problem	 393 393 396 397 398 398 400 401 404 404 404 406 407 407 407
 21 21.1 21.2 21.3 21.4 21.5 	Reinforcement Learning for Mean Field Games, with Applications to EconomicsAndrea Angiuli, Jean-Pierre Fouque and Mathieu LaurièreIntroductionFinite horizon mean field problems21.2.1 Mean field games21.2.2 Mean field controlTwo-timescale approach21.3.1 Discrete formulation21.3.2 Action-value function21.3.3 Unification through a two-timescale approachReinforcement learning algorithm21.4.1 Reinforcement learning21.4.2 Algorithm21.4.3 Learning rates21.4.4 Application to continuous problemsA mean field accumulation problem21.5.1 Description of the problem21.5.2 Solution of the MFG21.5.2 Nutrie for the MFG	 393 393 396 397 398 398 400 401 404 404 404 406 407 407 407 409 412
 21 21.1 21.2 21.3 21.4 21.5 	Reinforcement Learning for Mean Field Games, with Applications to EconomicsAndrea Angiuli, Jean-Pierre Fouque and Mathieu LaurièreIntroductionFinite horizon mean field problems21.2.1 Mean field games21.2.2 Mean field controlTwo-timescale approach21.3.1 Discrete formulation21.3.2 Action-value function21.3.3 Unification through a two-timescale approachReinforcement learning algorithm21.4.1 Reinforcement learning21.4.2 Algorithm21.4.3 Learning rates21.4.4 Application to continuous problemsA mean field accumulation problem21.5.1 Description of the problem21.5.2 Solution of the MFG21.5.3 Solution of the MFC	 393 393 396 397 398 398 400 401 404 404 404 406 407 407 407 409 410
 21 21.1 21.2 21.3 21.4 21.5 	Reinforcement Learning for Mean Field Games, with Applications to EconomicsAndrea Angiuli, Jean-Pierre Fouque and Mathieu LaurièreIntroductionFinite horizon mean field problems21.2.1 Mean field games21.2.2 Mean field controlTwo-timescale approach21.3.1 Discrete formulation21.3.2 Action-value function21.3.3 Unification through a two-timescale approachReinforcement learning algorithm21.4.1 Reinforcement learning21.4.2 Algorithm21.4.3 Learning rates21.4.4 Application to continuous problemsA mean field accumulation problem21.5.1 Description of the problem21.5.3 Solution of the MFG21.5.4 Numerical results	 393 393 396 397 398 398 400 401 404 404 404 404 406 407 407 407 409 410 411
 21 21.1 21.2 21.3 21.4 21.5 21.6 	Reinforcement Learning for Mean Field Games, with Applications to Economics Andrea Angiuli, Jean-Pierre Fouque and Mathieu Laurière Introduction Finite horizon mean field problems 21.2.1 Mean field games 21.2.2 Mean field control Two-timescale approach 21.3.1 Discrete formulation 21.3.2 Action-value function 21.3.3 Unification through a two-timescale approach Reinforcement learning algorithm 21.4.1 Reinforcement learning 21.4.2 Algorithm 21.4.3 Learning rates 21.4.4 Application to continuous problems A mean field accumulation problem 21.5.1 Description of the problem 21.5.2 Solution of the MFG 21.5.3 Solution of the MFC 21.5.4 Numerical results A mean field execution problem	 393 393 396 397 398 398 400 401 404 404 404 404 404 406 407 407 407 409 410 411 413 415
 21 21.1 21.2 21.3 21.4 21.5 21.6 	Reinforcement Learning for Mean Field Games, with Applications to Economics Andrea Angiuli, Jean-Pierre Fouque and Mathieu Laurière Introduction Finite horizon mean field problems 21.2.1 Mean field games 21.2.2 Mean field control Two-timescale approach 21.3.1 Discrete formulation 21.3.2 Action-value function 21.3.3 Unification through a two-timescale approach Reinforcement learning algorithm 21.4.1 Reinforcement learning 21.4.2 Algorithm 21.4.3 Learning rates 21.4.4 Application to continuous problems A mean field accumulation problem 21.5.1 Description of the problem 21.5.2 Solution of the MFG 21.5.3 Solution of the MFG 21.5.4 Numerical results A mean field execution problem 21.6.1 The MFG trader problem 21.6.1 The MFG trader problem	 393 393 396 397 398 398 400 401 404 404 404 404 406 407 407 407 409 410 411 413 415 416
 21 21.1 21.2 21.3 21.4 21.5 21.6 	Reinforcement Learning for Mean Field Games, with Applications to Economics Andrea Angiuli, Jean-Pierre Fouque and Mathieu Laurière Introduction Finite horizon mean field problems 21.2.1 Mean field games 21.2.2 Mean field control Two-timescale approach 21.3.1 Discrete formulation 21.3.2 Action-value function 21.3.3 Unification through a two-timescale approach Reinforcement learning algorithm 21.4.1 Reinforcement learning 21.4.2 Algorithm 21.4.3 Learning rates 21.4.4 Application to continuous problems A mean field accumulation problem 21.5.1 Description of the problem 21.5.2 Solution of the MFG 21.5.3 Solution of the MFG 21.5.4 Numerical results A mean field execution problem 21.6.1 The MFG trader problem 21.6.2 Solution of the MFG problem 21.6.2 Solution of the MFG problem	 393 393 396 397 398 398 400 401 404 404 404 406 407 407 407 409 410 411 413 415 416 416

xii	Con	ntents
	21.6.4 Solution of the MFC problem	417
	21.6.5 Numerical results	418
21.7	Conclusion	421
22	Neural Networks-Based Algorithms for Stochastic Control and PDEs in Finance	
	Maximilien Germain. Huvên Pham and Xavier Warin	426
22.1	Breakthrough in the resolution of high-dimensional nonlinear problems	426
22.2	Deep learning approach to stochastic control	427
	22.2.1 Global approach	428
	22.2.2 Backward dynamic programming approach	429
22.3	Machine learning algorithms for nonlinear PDEs	430
	22.3.1 Deterministic approach by neural networks	431
	22.3.2 Probabilistic approach by neural networks	432
	22.3.3 Case of fully nonlinear PDEs	436
22.4	22.3.4 Limitations of the machine learning approach	440
22.4	Numerical applications	440
	22.4.1 Numerical tests on credit valuation adjustment pricing	441
22.5	22.4.2 Portiono anocation in stochastic volatility models	445
22.3	Extensions and perspectives	448
23	Generative Adversarial Networks: Some Analytical Perspectives	
	Haoyang Cao and Xin Guo	453
23.1	Introduction	453
23.2	Basics of GANs: an analytical view	455
23.3	GANs Training	460
23.4	Applications of GANs	467
	23.4.1 Computing MFGs via GANs	467
	23.4.2 GANs in Mathematical Finance	471
23.5	Conclusion and Discussion	475
C	ONNECTIONS WITH THE DEAL ECONOMY	470
C	CONNECTIONS WITH THE REAL ECONOMI	479
Part	VI Nowcasting with Alternative Data	481
24	Introduction to Dort VI. Nourcesting in Communication	
24	Michael Recce	183
24.1	Micro before macro	40J 183
24.1 24.2	Advance driven by Moore's law	484
24.2 24 3	The CEO dashboard	485
24.3 24.4	Internet companies led progress in nowcasting	486
24.4 24.5	CEO dashboard from alternative data	486
24.5	Nowcasting with alternative data	487
	renewang with alternative and	107

Со	ntents	xiii
25	Data Preselection in Machine Learning Methods: An Application to Macroeconomic Nowcasting with Google Search Data	
	Laurent Ferrara and Anna Simoni	490
25.	1 Introduction	490
25.	2 Structure of Google search database	493
25.	3 The nowcasting approach	494
	25.3.1 Linear Bridge equation	494
	25.3.2 Preselection of Google search variables	495
25.	4 Factor models	496
25.	5 Methods based on regularisation: Ridge	499
25.	6 Nowcasting euro area GDP growth: Empirical eesults	500
25.	7 Conclusions	505
26	Alternative data and ML for macro nowcasting	
	Apurv Jain	507
26.	1 The fundamental problems of macro data	507
26.	2 High-dimensionality problem	510
26.	3 Nowcasting the big and jagged data	512
	26.3.1 Nonlinearity and ML for nowcasting	516
26.	4 Dimensions of alternative data quality	519
	26.4.1 A crowd-sourced experiment	519
	26.4.2 The need for a hypothesis	519
26.	5 Non-farm payrolls and web search case study	522
	26.5.1 Background and related work	522
	26.5.2 Government non-farm payrolls data overview	526
	26.5.3 Information content of NFP revisions	528
	26.5.4 Web search data	530
	26.5.5 Search and NFP correlation	531
	26.5.6 Regression results	533
	26.5.7 Robustness	535
26	26.5.8 Machine learning for NFP revisions	536
26.	6 Conclusion and future work	538
27	Nowcasting Corporate Financials and Consumer Baskets with Al-	
	ternative Data Michael Eleden and Demonst Shah	515
27	Michael Fleder and Devavrai Snan	545
27.	1 Quant for all data	540
27.	2 Nowcasting company linancials	547
	27.2.1 Problem statement and model	547
	27.2.2 Contributions	551
	27.2.5 Theoretical results	552
77	27.2.4 Experiments 3 Inferring products in anonymized transactions	554
21.	27.3.1 Problem statement and model	554
	27.3.1 Fromerin statement and model	554
	27.3.2 Contributions	556
	27.3.4 Main results	557
	27.3.5 Experiments	558
27	4 Conclusion	561
27	5 Relevant literature	561
<i></i> ,		201

Cambridge University Press & Assessment
978-1-316-51619-5 – Machine Learning and Data Sciences for Financial Markets
Edited by Agostino Capponi, Charles-Albert Lehalle
Frontmatter
More Information

xiv	Co	ontents
28	NLP in Finance	
20	Prabhanian Kambadur. Gideon Mann and Amanda Stent	563
28.1	Core NLP techniques	564
	28.1.1 Basic language analytics	565
	28.1.2 Higher-level linguistic analysis	566
28.2	Mathematics for NLP	568
	28.2.1 Introduction to supervised learning	569
	28.2.2 Machine learning methods for NLP	571
28.3	Applications	575
	28.3.1 Information extraction	576
	28.3.2 NSTM: Identifying key themes in news	580
	28.3.3 Market sentiment analysis	584
28.4	Conclusion	586
29	The Exploitation of Recurrent Satellite Imaging for the Fine-Scale	
	Observation of Human Activity	
	Carlo de Franchis, Sébastien Drouyer, Gabriele Facciolo, Rafael	
	Grompone von Gioi, Charles Hessel and Jean-Michel Morel	593
29.1	Introduction	593
29.2	What is recurrent satellite imaging?	594
	29.2.1 A landscape of satellites images	595
29.3	3D monitoring from space	599
29.4	The SAR revolution of oil storage	604
	29.4.1 Overview	605
20.5	29.4.2 Detailed description	605
29.5	Creating a movie of the existing methods $20.5.1$ Overview of the existing methods	610
	29.5.1 Overview of the existing methods	612
20.6	Ground visibility and cloud detection	613
29.0	Detecting and counting cars from space	616
29.1	20.7.1 Vehicle detection on high resolution satellite images	618
	29.7.2 Parking occupancy estimation on PlanetScope satellite images	620
Part	VII Biases and Model Risks of Data-Driven Learning	629
30	Introduction to Part VII. Towards the Ideal Mix between Data and	!
20	Models	
	Mathieu Rosenbaum	631
30.1	What are we exactly talking about?	631
30.2	What is a good model?	631
30.3	Simulating what has never been observed	632
30.4	Being pragmatic	632
31	Generative Pricing Model Complexity: The Case for Volatility-	
	Managed Portfolios	
	Brian Clark, Akhtar Siddique and Majeed Simaan	634
31.1	Introduction	634
31.2	Quantifying model complexity	640
	31.2.1 The main idea	640

<i>Contents</i> xv		
	31.2.2 ALE functions	640
	31.2.3 Interaction strength (IAS)	642
	31.2.4 Main effect complexity (MEC)	644
31.3	Portfolio problem	647
	31.3.1 Volatility managed portfolio	647
	31.3.2 The appeal of ML in portfolio	648
31.4	Empirical investigation	649
	31.4.1 Data	649
	31.4.2 Training and testing	650
	31.4.3 Performance	651
	31.4.4 Results and discussion	652
	31.4.5 Additional results	654
31.5	Concluding remarks	657
32	Ravesian Deen Fundamental Factor Models	
02	Matthew F. Dixon and Nicholas G. Polson	661
32.1	Introduction	661
52.1	32.1.1 Why Bayesian deep learning?	662
	32.1.2 Connection with fundamental factor models	663
	32.1.3 Overview	664
32.2	Barra fundamental factor models	665
32.2	32.2.1 Prediction with the Barra model	666
32.3	Bayesian deep learning	667
02.0	32.3.1 Deep probabilistic models	667
	32.3.2 Variational Approximation	669
	32.3.3 Bayes by backprop	670
32.4	Bayesian deen fundamental factor models	671
32.1	32.4.1 Probabilistic prediction	671
32.5	Deep network interpretability	672
0210	32.5.1 Factor sensitivities	673
32.6	Applications: Russell 1000-factor modeling	675
32.0	Discussion	680
32.7 32 A	Appendix: Gradients of two-layer feedforward networks	684
32.IT	Description of Russell 1000-factor model	685
52.0	Description of Russen 1000 factor model	005
33	Black-Box Model Risk in Finance	
	Samuel N. Cohen, Derek Snow and Lukasz Szpruch	687
33.1	Introduction	687
33.2	A practical application of machine learning	689
	33.2.1 How to use neural networks for derivative modelling	689
	33.2.2 Black-box trade-offs	692
33.3	The role of data	693
	33.3.1 Data risks	693
	33.3.2 Data solutions	695
33.4	The role of models	699
	33.4.1 Model risks	699
	33.4.2 Model solutions	705
Index		718

Contributors

Robert Almgren <i>Ouantitative Brokers</i> , New York: and Princeton University.
Andrea Angiuli Department of Statistics and Applied Probability, University of
California, Santa Barbara.
Shane Barratt Stanford University, Department of Electrical Engineering.
Milo Bianchi Toulouse School of Economics, TSM; and IUF, University of Toul-
ouse Capitole.
Paul Bilokon Department of Mathematics, Imperial College, London.
Jean-Philippe Bouchaud Capital Fund Management, Paris.
Stephen Boyd Stanford University, Department of Electrical Engineering.
Haoyang Cao CMAP, École Polytechnique.
Marie Brière Amundi, Paris Dauphine University, and Université Libre de Brux-
elles.
Luca Capriotti Department of Mathematics, University College London; and
New York University, Tandon School of Engineering.
René Carmona Department of Operations Research and Financial Engineering,
Princeton University.
Álvaro Cartea Oxford University, Mathematical Institute, and Oxford–Man In-
stitute of Quantitative Finance.
Umut Çetin London School of Economics, Department of Statistics.
Brian Clark Lally School of Management, Rensselaer Polytechnic Institute.
Samuel N. Cohen Mathematical Institute, University of Oxford.
Francesco D'Acunto Carroll School of Management, Boston College.
Carlo de Franchis ENS Paris-Saclay, CNRS; and Kayrros, Paris.
Matthew F. Dixon Department of Applied Mathematics, Illinois Institute of Tech-
nology.
Sébastien Drouyer ENS Paris-Saclay, CNRS.
Gabriele Facciolo ENS Paris-Saclay, CNRS.
Laurent Ferrara Skema Business School, University Côte d'Azur; and QuantCube
Technology.
Michael Fleder Massachusetts Institute of Technology; and Covariance Labs,
New York.

<i>Contributors</i> xvii
Jean-Pierre Fouque Department of Statistics and Applied Probability, University of California, Santa Barbara.
Maximilien Germain LPSM, Université de Paris. Aitor Muguruza Gonzalez Imperial College London and Kaiju Capital Manage-
ment. Daniel Giamouridis Bank of America, Data and Innovation Group, London.
Adam Grealish Altruist, Los Angeles. Rafael Grompone von Gioi, ENS Paris-Saclay, CNRS
Olivier Guéant Université Paris 1 Panthéon-Sorbonne, Centre d'Economie de la Sorbonne.
Xin Guo University of California, Berkeley, Department of Industrial Engineer- ing and Operations Research.
Igor Halperin AI Research, Fidelity Investments, Boston. Artur Henrykowski Department of Mathematics, University College London.
Charles Hessel ENS Paris-Saclay, CNRS; and Kayrros, Paris. Blanka Horvath Technical University of Munich; Munich Data Science Institute;
Lisa L. Huang Head of AI Investment Management and Planning, Fidelity.
Apurv Jain MacroXStudio, San Francisco.
Prabhanjan Kambadur Bloomberg, New York.
sity.
Sophie Laruelle Université Paris Est Creteil, CNRS, LAMA; and Université Gus- tave Eiffel, LAMA, Marne-la-Vallée.
Mathieu Laurière Department of Operations Research and Financial Engineer- ing, Princeton University.
Jacky Lee Department of Mathematics, University College London.
Gideon Mann Bloomberg, New York.
Alberto G. Rossi McDonough School of Business, Georgetown University.
Gilles Pagès LPSM, Sorbonne-Université.
Mikko S. Pakkanen Imperial College London.
Georgios V. Papaioannou Bank of America, Data and Innovation Group, Lon- don.
Markus Pelger Stanford University, Department of Management Science & En- gineering.
Huyên Pham LPSM, Université de Paris.
Nicholas G. Poison ChicagoBooth, University of Chicago. Michael Recce CEO AlphaROC Inc. New York
Mathieu Rosenbaum CMAP, École Polytechnique.
Brice Rosenzweig Bank of America, Data and Innovation Group, London.
Leandro Sánchez-Betancourt Oxford University, Mathematical Institute.
Devaviat Snan mussuchusens institute of technology.

xviii

Cambridge University Press & Assessment 978-1-316-51619-5 — Machine Learning and Data Sciences for Financial Markets Edited by Agostino Capponi, Charles-Albert Lehalle Frontmatter More Information

Contributors

Akhtar Siddique Economics Department, Office of the Comptroller of the Currency.
Majeed Simaan School of Business, Stevens Institute of Technology.
Anna Simoni CREST, CNRS, ENSAE, École Polytechnique, Institut Polytechnique de Paris.
Derek Snow The Alan Turing Institute.
Amanda Stent Colby College.
Lukasz Szpruch School of Mathematics, University of Edinburgh.
Jonathan Tuck Stanford University, Department of Electrical Engineering.
Xavier Warin EDF R&D.
Dominic Wright Department of Mathematics, University College London.
Xun Yu Zhou Columbia University, Department of Industrial Engineering and Operations Research; and The Data Science Institute, New York.

Preface

Machine learning, Artificial Intelligence (AI), and data science pervade every aspect of our everyday life. Many of the techniques developed by the Computer Science community are becoming increasingly used in the area of financial engineering, ranging from the use of deep learning methods for hedging and risk management through the exploitation of AI techniques for investment or design of trading systems. These techniques are also having enormous implications on the operations of financial markets. It is thus not surprising to see increasingly the proliferation of AI research groups or recently created "AI Labs" at major banks, centered around topics of key relevance to financial services. Those include, among others, explainable AI, human-machine interaction, and DS methods for extracting information from data and using it to support investment decisions. The integration of AI methods in the decision making process may also have unintended or unanticipated consequences especially in a sector like finance, where bad intermediation of risk can spread over the whole economy. Many of the ethical issues expected from AI systems, including privacy, data manipulation, opacity, and discrimination, can be detrimental to financial markets. For example, data leakage is a key concern for banks; regulatory authorities need to deal with it, and so is fairness in the distribution of debt and issuance of loans. In asset management, the question of bias introduced by a dataset and its stationarity has been known for a long time; the more data dominate decisions, the more important they are. All those issues are getting increasing consideration from major regulatory bodies worldwide.

We should mention that if we come back to the early age of machine learning, the techniques and tools used to provide theoretical grounds to the process of learning from data share their roots with the ones that gave birth to online optimization and stochastic control. They are based on asymptotics of discrete stochastic processes and on stochastic algorithms that support frameworks in which the learned parameters, like the weights of a neural network, are seen as controls that evolve during the learning process. These parameters start at an arbitrary point (they are often randomly initialized) and are meant to follow flows which minimize a criterion usually referred to as a loss function: they are "controls" driving the neural network from a random state to a state where a target task can be performed. These technical tools, designed to capture the behavior of a stochastic system that is driven to a specific state in a noisy environment,

XX

Preface

evolved in parallel to address important problems arising in financial markets. A prominent example is "hedging", where one needs to hedge a portfolio of derivatives by replicating the risks embedded into the derivative constituents of the portfolio. In such a case, this portfolio is a control driving the balance sheet of an institution towards a state with minimal unhedged risk. Other business needs require the design of a portfolio that captures investment goals stated in a more generic way (with no specification in terms of tradable instruments). Hence financial engineering has exploited these tools from the 1980s and contributed to their improvement. This community did it independently from the machine learning community, which also contributed to improving these tools mostly from an algorithmic perspective. In recent years, the disciplines of data science and AI have started to be seriously involved in the analysis of financial markets. It is important to not forget what academics and practitioners understood about these tools, and especially the way they can improve risk management in markets. Since the dream of replacing reasoning and modelling by data and black boxes is dangerous in the non stationary environment of financial markets, it is important to integrate machine learning practices with the structural knowledge developed by quantitative finance during the last 40 years. "Old" knowledge and new approaches should cross-fertilize, injecting the structural nonlinearities of learning machines and their capability to extract structures from data exactly where more formal methods had a lack of adaptiveness.

Inspired by these considerations, we have decided to collect the most relevant sample of cutting edge research developed in the fields of Machine learning, Data Sciences, and AI with application to finance into a book. Our book project has been strongly supported by the academic community. We have invited active researchers with demonstrated expertise and leadership in their own areas of relevance to contribute a chapter to the book. They have enthusiastically responded to our call, and submitted high quality chapters. Their chapters have been reviewed by a team of qualified referees, who have carefully processed the content and provided excellent feedback for improvement. Our project has also received strong support by the Cambridge University Press (CUP), which has kindly agreed to publish the volume. This book follows the tradition of the financial engineering community started in the last decade to spotlight topics of increasing importance for the community and the broad society overall, and culminating then into the Handbook on Systemic Risk published by CUP. The topics of the chapters are highly reflective of the research agenda of the two most prominent financial engineering societies, namely the SIAM-FM Activity group currently chaired by Agostino Capponi, and the Finance and Insurance Reloaded program (FaIR) within the Institute of Louis Bachelier Paris, which Charles-Albert Lehalle started a few years ago. The last two biennial meetings of the SIAM-FM group, held in 2019 and 2021, featured many plenary talks, invited minisymposia, and tutorials in the area of machine learning and data science. Talks given by a mix of academics and industry practitioners, reflected both an algorithmic technical perspective and the integration of ML methodologies

Preface

against financial markets data. Relatedly, the FaIR transverse program has been a unique occasion to meet researchers involved in the use of new technologies for financial markets. The series of thematic workshops organized by FaIR and the ACPR (French regulator for banking), as well as its kick-off workshop at the Collège de France, have specially been places of intense thinking and brainstorming on how machine learning would influence these industries.

Since starting our effort, it has been our intention to structure the book around three main areas of interest: "Interactions with investors and asset owners" which mainly covers robo-advisors and price formation; "Risk intermediation" which covers portfolio construction, and machine learning for dynamic optimization, including optimal trading; and "Connections with the real economy" covers nowcasting, alternative data and ethics of algorithms. This structure offers a comprehensive and easy to read perspective on the areas of machine learning, AI and data science in financial markets.

We believe that now, more than ever, is now a good time to collect the various efforts made by leading and high profile researchers, including academics, practitioners and policy makers, into a book. We have developed this book with the idea that it becomes a key reference in the field. It will serve as the main reference for experienced researchers with training in quantitative methods, who want to increase their awareness of the cutting edge research being done in the area. We have also paid attention to a pedagogic component, and strived to make each chapter comprehensive enough and understandable by advanced graduate students. Those in search of a new topic to explore for their dissertation at the intersection of machine learning, data science, and finance will be inspired by the methodologies and applications presented in the book.

We expect the handbook to be received well beyond the academic community. Financial institutions and policy makers wishing to bring rigor to their business will be able to leverage upon the methodologies discussed in the book, and integrate them with data. As a result, the book will have a high potential of increasing the collaborations of the academia with the public and private sector, and to educate new generations of scientists who will build the new AI technologies in the financial sector.

> The editors, Agostino Capponi and Charles-Albert Lehalle New York and Abu Dhabi

xxii

Preface

Acknowledgments of referees.

The editors and contributors would like to thank the referees who took time to read and comment the contributions of this book:

- Agustin Lifschitz, Capital Fund Management, Paris, France.
- Amine Raboun, Euronext Paris, Courbevoie, France.
- Andrea Angiuli, Department of Statistics and Applied Probability, University of California, Santa Barbara.
- Bobby Shackelton, Head of Geospatial, Bloomberg LP.
- Emmanuel Sérié, Capital Fund Management, Paris, France.
- Frederic Bucci,
- Haoran Wang, CAI Data Science and Machine Learning, The Vanguard Group, Inc., Malvern, PA, USA.
- Haoyang Cao, The Alan Turing Institute.
- Harvey Stein, Head, Quantitative Risk Analytics, Bloomberg and Adjunct Professor, Mathematics Department, Columbia University.
- Ibrahim Ekren, Florida State University, Department of Mathematics, Tallahassee, FL.
- Iuliia Manziuk, Engineers Gate, Quantitative Researcher, London.
- Jiacheng Zhang, Department of Operations Research and Financial Engineering, Princeton University.
- Matthew Dixon, Illinois Institute of Technology, Department of Applied Mathematics.
- Michael Fleder, Massachusetts Institute of Technology and Covariance.AI.
- Michael Reher, University of California San Diego, Rady School of Management.
- Noufel Frikha, Université de Paris, Laboratoire de Probabilités, Statistiques et Modélisation.
- Othmane Mounjid, University of California, Berkeley (IEOR department).
- Renyuan Xu, Industrial and Systems Engineering, University of Southern California.
- Ruimeng Hu, Department of Mathematics, Department of Statistics and Applied Probability, University of California, Santa Barbara.
- Shihao Gu, Booth School of Business, University of Chicago.
- Sveinn Olafsson, Stevens Institute of Technology.
- Sylvain Champonnois, Capital Fund Management, Paris, France.
- Symeon Chouvardas, Independent Researcher.
- Zhaoyu Zhang, Department of Mathematics, USC.