Mechanics of Fluids

Providing a modern mathematical approach to classical fluid mechanics, this textbook presents an accessible and rigorous introduction to the field, with a strong emphasis on mathematical exposition.

It includes:

- A consistent treatment of a broad range of fluid mechanics topics, including vortical, potential, compressible, viscous, unstable, and turbulent flows
- Enhanced coverage of geometry, coordinate transformations, kinematics, thermodynamics, heat transfer, and nonlinear dynamics, to round out student understanding
- Robust emphasis on theoretical fundamentals and rigorous mathematical exposition, enabling students to gain confidence and develop a solid framework for further study
- 180 end-of-chapter problems, with full solutions and sample course syllabi available for instructors

With sufficient coverage for a one- or two-semester sequence, this textbook provides an ideal flexible teaching pathway for graduate students in aerospace, mechanical, chemical, and civil engineering, and applied mathematics.

Joseph M. Powers is a professor of Aerospace and Mechanical Engineering at the University of Notre Dame. His research uses computational science to elucidate the dynamics of high-speed reactive fluids as it applies to verification and validation of multiscale systems. He is the Editor-in-Chief of the *Journal of Propulsion and Power* and has previously published *Mathematical Methods in Engineering* (2015) and *Combustion Thermodynamics and Dynamics* (2016).

> "An excellent first-level graduate textbook on fundamentals of fluid mechanics. By starting the book from the very basic vector notation, Professor Powers has made the book accessible to a large number of students who need to strengthen their mathematical background as well. This book will take the students all the way through rigorous understanding of hydrodynamic instabilities and turbulence. This is an excellent comprehensive book."

Bala Balachandar, University of Florida

"A rigorous mathematical treatise on the mechanics of fluids, in the spirit of Batchelor and Truesdell, something rarely seen today, and an exceptional counterpart to the many ad hoc books on this subject. For well-prepared students, this is a deeply technical introduction to this centrally important subject of physics and engineering."

Werner J. A. Dahm, Arizona State University

"A beautiful book on fluid mechanics: clear, insightful, comprehensive, rigorous, and detailed, with no stones unturned in derivations. This book will be a classic, one that I will often refer to when I need clarity and precision."

Tom Shih, Purdue University

"An enlightening 21st-century textbook in fluid mechanics which captures all the essence from the fundamentals of mechanics to the application of fluid dynamics. It comprehensively describes the intricate relationship between mathematics of statistical mechanics and physical observations of Newtonian fluids. This is a unique book which seamlessly relates 20th-century analytical mathematics-based fluid dynamics to 21st-century physics - and CFD-based fluid dynamics. I strongly recommend this book for an advanced undergraduate, or an introductory graduate-level, fluid dynamics course."

Chelakara S. Subramanian, Florida Institute of Technology

"This book achieves a rare combination of accessibility and mathematical rigor. It can provide a point of entry into contemporary fluid dynamics for the beginning graduate student while revealing fresh aspects of the subject to the seasoned researcher. I look forward to teaching from it."

William Eric Uspal, University of Hawai'i at Mānoa

Mechanics of Fluids

Joseph M. Powers University of Notre Dame, Indiana

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India
103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/highereducation/isbn/9781316515693

DOI: 10.1017/9781009026307

© Joseph M. Powers 2024

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2024

A catalogue record for this publication is available from the British Library.

A Cataloging-in-Publication data record for this book is available from the Library of Congress.

ISBN 978-1-316-51569-3 Hardback

Additional resources for this publication at www.cambridge.org/powers.

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press & Assessment 978-1-316-51569-3 — Mechanics of Fluids Joseph M. Powers Frontmatter <u>More Information</u>

Contents

Pr	reface		page xv
Pa	nrt I	Continuum Equations of Fluid Mechanics	
1	Intro	oduction	3
	1.1	Mechanics	4
	1.2	Rational Continuum Mechanics	5
		1.2.1 Notions from Newtonian Mechanics	6
		1.2.2 Continuum Fields	7
		1.2.3 Scalars, Vectors, and Tensors	8
	1.3	Molecular Limits of Continuum Theory	9
	Sum	Imary	13
	Pro	olems	13
	Furt	her Reading	14
	Refe	erences	14
2	Geo	metry	16
	2.1	Scalars, Vectors, and Tensors	17
		2.1.1 Gibbs and Cartesian Index Notation	17
		2.1.2 Rotation of Axes	18
		2.1.3 Scalars	24
		2.1.4 Vectors	24
		2.1.5 Tensors	27
	2.2	Solution of Linear Algebraic Equations	36
	2.3	Eigenvalues, Eigenvectors, and Tensor Invariants	38
	2.4	Grad, Div, Curl, etc.	46
		2.4.1 Gradient	47
		2.4.2 Divergence	48
		2.4.3 Curl	48
		2.4.4 Laplacian	49
		2.4.5 Biharmonic Operator	49
		2.4.6 Time Derivative	49
		2.4.7 Relevant Theorems	50
	2.5	General Coordinate Transformations	53
	2.6	Cylindrical Coordinates	61

v

Cambridge University Press & Assessment 978-1-316-51569-3 — Mechanics of Fluids Joseph M. Powers Frontmatter <u>More Information</u>

:	Contonto
VI	Contents

3

	2.6.1 Centripetal and Coriolis Accelerations	62
	2.6.2 Grad and Div	64
2.7	Spherical Coordinates	70
2.8	Quadratic Forms	72
Sum	mary	75
Prob	lems	76
Furt	her Reading	83
Refe	rences	83
Kine	matics	84
3.1	Motivating Problem	84
3.2	Lagrangian Description	86
3.3	Eulerian Description	87
	3.3.1 One-Dimensional	87
	3.3.2 Multi-Dimensional	88
3.4	Material Derivative	89
	3.4.1 Simple Approach	89
	3.4.2 Coordinate Transformation Approach	90
3.5	Streamlines	92
3.6	Pathlines	93
3.7	Streaklines	94
3.8	Kinematic Decomposition of Motion	95
	3.8.1 Translation	97
	3.8.2 Rigid Body Rotation and Straining	97
	3.8.3 Principal Axes of Strain Rate	100
	3.8.4 Extensional Strain Rate Quadric	102
	3.8.5 Singular Value Decomposition	104
	3.8.6 Polar Decompositions	107
	3.8.7 Decomposition of a Material Line Element	110
3.9	Convected Derivative	112
3.10	Expansion Rate	115
	3.10.1 Material Volume	115
	3.10.2 Arbitrary Volume	116
3.11	Invariants of the Strain Rate Tensor	118
3.12	Two-Dimensional Kinematics	118
	3.12.1 General Two-Dimensional Flows	118
	3.12.2 Relative Motion Along 1 and 2 Axes	120
	3.12.3 Uniform Flow	122
	3.12.4 Pure Rigid Body Rotation	123
	3.12.5 Pure Extensional Motion (a Compressible Flow)	124
	3.12.6 Pure Shear Straining	124
	3.12.7 Ideal Corner Flow	125
	3.12.8 Couette Flow: Shear + Rotation	126

			Contents	vii
		3.12.9 Ideal Irrotational Vortex: Extension + Shear		127
	3.13	Three-Dimensional Kinematics: Summary		128
	3.14	Kinematics as a Dynamical System		129
	Sum	mary		142
	Prob	blems		143
	Furt	her Reading		146
	Refe	rences		146
4	Evol	ution Axioms		148
	4.1	Mass		149
	4.2	Linear Momenta		153
		4.2.1 Preliminary Vector Form		154
		4.2.2 Surface Forces		154
		4.2.3 Final Tensor Form		159
	4.3	Angular Momenta		164
		4.3.1 General Relation for Polar Fluids		164
		4.3.2 Symmetry of the Stress Tensor for Nonpolar Fluids		166
		4.3.3 Cauchy's Stress Quadric		167
		4.3.4 Lamé Stress Ellipsoid		169
	4.4	Energy		171
		4.4.1 Total Energy		171
		4.4.2 Work		172
		4.4.3 Heat Transfer		172
		4.4.4 Conservative Form		173
		4.4.5 Secondary Forms		174
	4.5	Entropy Inequality		179
	4.6	Integral Forms		182
		4.6.1 Mass		182
		4.6.2 Linear Momenta		184
		4.6.3 Energy		185
		4.6.4 General Expression		185
	4.7	Summary of Axioms		185
		4.7.1 Conservative Form		186
		4.7.2 Nonconservative Form		187
		4.7.3 Physical Interpretations		188
	4.8	Incompleteness of the Axioms		189
	Sum	mary		189
	Prob	blems		190
	Refe	rences		192
5	Cons	titutive Equations		194
	5.1	Frame Indifference		196

	5.2	Second Law Restrictions and Onsager Relations	197
		5.2.1 Weak Form of the Clausius–Duhem Inequality	197
		5.2.2 Strong Form of the Clausius–Duhem Inequality	200
	5.3	Fourier's Law	201
	5.4	Stress–Strain Rate Relation for a Newtonian Fluid	206
		5.4.1 Motivating Experiments	207
		5.4.2 Analysis for an Isotropic Newtonian Fluid	208
		5.4.3 Stokes' Assumption	218
		5.4.4 Second Law Restrictions	219
	5.5	Irreversibility Production Rate	223
	5.6	Thermodynamic Equations of State	223
	Sum	Imary	226
	Prob	blems	226
	Refe	erences	228
6	Gov	erning Equations: Summary and Special Cases	229
	6.1	Boundary and Interface Conditions	229
	6.2	Compressible Navier–Stokes Equations	230
		6.2.1 Conservative Form	230
		6.2.2 Nonconservative Form	231
	6.3	Fluid Statics	234
	6.4	Incompressible Navier–Stokes Equations	236
		6.4.1 Mass	236
		6.4.2 Linear Momenta	237
		6.4.3 Energy	237
		6.4.4 Poisson Equation for Pressure	238
		6.4.5 Summary	239
		6.4.6 Limits for One-Dimensional Diffusion	240
	6.5	Boussinesq Approximation	240
		6.5.1 Cartesian Index Form	243
		6.5.2 Gibbs Form	243
	6.6	Euler Equations	243
		6.6.1 Conservative Form	244
		6.6.2 Nonconservative Form	244
		6.6.3 Alternate Forms of the Energy Equation	245
	6.7	Dimensionless Compressible Navier–Stokes Equations	246
		6.7.1 Mass	248
		6.7.2 Linear Momenta	248
		6.7.3 Energy	249
		6.7.4 Thermal State Equation	250
		6.7.5 Caloric State Equation	250
		6.7.6 Upstream Conditions	250
		6.7.7 Reduction in Parameters	250

Cambridge University Press & Assessment 978-1-316-51569-3 — Mechanics of Fluids Joseph M. Powers Frontmatter <u>More Information</u>

6.7.8 Alternate Scaling

	6.8	First Integrals of Linear Momenta	251
		6.8.1 Bernoulli Equation	251
		6.8.2 Crocco's Equation	255
	Sum	mary	259
	Proł	blems	259
	Furt	her Reading	260
	Refe	rences	260
Pa	rt II	Solutions in Various Flow Regimes	
7	Vort	ical Flow	265
	7.1	Streamlines and Vortex Lines	266
	7.2	Incompressible Navier–Stokes Equations in Cylindrical Coordinates	268
	7.3	Ideal Rotational Vortex	269
	7.4	Ideal Irrotational Vortex	272
	7.5	Helmholtz Vorticity Transport Equation	274
		7.5.1 General Development	274
		7.5.2 Bending and Stretching of Vortex Tubes	276
		7.5.3 Baroclinic (Non-Barotropic) Effects	277
		7.5.4 Incompressible, Conservative Body Force Limit	277
	7.6	Kelvin's Circulation Theorem	281
	7.7	Two-Dimensional Potential Flow of Ideal Point Vortices	282
		7.7.1 Two interacting Ideal Vortices	283
		7.7.2 Image Vortex	283
		7.7.3 Vortex Sheets	284
		7.7.4 Potential of an Ideal Irrotational Vortex	285
		7.7.5 Interaction of Multiple Vortices	286
		7.7.6 Pressure Field	289
	Sum	mary	291
	Prob	olems	292
	Furt	her Reading	294
	Refe	rences	295
8	Pote	ntial Flow	296
	8.1	Stream Functions and Velocity Potentials	297
	8.2	Mathematics of Complex Variables	299
		8.2.1 Euler's Formula	300
		8.2.2 Polar and Cartesian Representations	300
		8.2.3 Cauchy–Riemann Equations	303
	8.3	Elementary Complex Potentials	306
		8.3.1 Uniform Flow	306
		8.3.2 Sources and Sinks	307

Contents

ix

251

Cambridge University Press & Assessment 978-1-316-51569-3 — Mechanics of Fluids Joseph M. Powers Frontmatter <u>More Information</u>

x Contents

9

	8.3.3	Point Vortices	309
	8.3.4	Superposition of Sources	309
	8.3.5	Flow in Corners	311
	8.3.6	Doublets	318
	8.3.7	Quadrupoles	320
	8.3.8	Rankine Half Body	320
	8.3.9	Flow over a Cylinder	321
8.4	Forces	s Induced by Potential Flow	325
	8.4.1	Contour Integrals	325
	8.4.2	Laurent Series	327
	8.4.3	Pressure Distribution for Steady Flow	328
	8.4.4	Blasius Force Theorem	328
	8.4.5	Kutta–Zhukovsky Lift Theorem	331
Sum	mary		334
Prob	olems		334
Furt	her Rea	ading	337
Refe	rences		337
One-	Dimen	sional Compressible Flow	338
9.1	Thern	nodynamics of Compressible Fluids	339
	9.1.1	Maxwell Relation	340
	9.1.2	Internal Energy from Thermal Equation of State	340
	9.1.3	Sound Speed	346
9.2	Gener	alized One-Dimensional Flow	349
	9.2.1	Mass	350
	9.2.2	Linear Momentum	351
	9.2.3	Energy	353
	9.2.4	Summary of Equations	356
	9.2.5	Dynamical System Form	359
9.3	Isentr	opic Flow with Area Change	361
	9.3.1	Isentropic Mach Number Relations	361
	9.3.2	Sonic Properties	365
	9.3.3	Effect of Area Change	365
	9.3.4	Choking	367
9.4	Fanno	o Flow	369
9.5	Rayle	igh Flow	372
9.6	Norm	al Shock Waves	376
	9.6.1	Analysis for a General Flux-Conservative System	377
	9.6.2	Rankine–Hugoniot Equations	379
	9.6.3	Rayleigh Line	380
	9.6.4	Hugoniot Curve	380
	9.6.5	Solution Procedure for General Equations of State	381
	9.6.6	Calorically Perfect Ideal Gas Solutions	381

Contents	xi
Contents	Х

	9.6.7 Weak Shock Limit	387
9.7	Contact Discontinuities	389
9.8	Throttling Device	390
9.9	Flow with Area Change and Normal Shocks	392
	9.9.1 Converging Nozzle	392
	9.9.2 Converging–Diverging Nozzle	393
9.10	Acoustics	394
9.11	Method of Characteristics	401
	9.11.1 Inviscid One-Dimensional Equations	403
	9.11.2 Homeoentropic Flow of a Calorically Perfect Ideal Gas	407
	9.11.3 Simple Waves	414
	9.11.4 Centered Rarefaction	417
	9.11.5 Unsteady Inviscid Bateman–Burgers Shock Formation	419
9.12	Viscous Shock Waves	425
	9.12.1 Unsteady Viscous Bateman–Burgers Shock Formation	425
	9.12.2 Steady Viscous Bateman–Burgers Shocks	427
	9.12.3 Steady Navier–Stokes Shocks	431
9.13	Discontinuous Rarefactions for Nonideal Gases	437
9.14	Taylor–Sedov Blast Waves	441
	9.14.1 Governing Equations	442
	9.14.2 Similarity Transformation	443
	9.14.3 Transformed Equations	445
	9.14.4 Dimensionless Equations	447
	9.14.5 Reduction to Nonautonomous Form	448
	9.14.6 Numerical Solution	449
	9.14.7 Contrast with Acoustic Limit	453
Sum	mary	456
Prol	blems	456
Furt	her Reading	458
Refe	erences	459
10 One	Dimensional Viscous Flow	461
10.1	Flow with No Effects of Inertia	462
	10.1.1 Incompressible Poiseuille Flow in a Slot	462
	10.1.2 Incompressible Couette Flow	470
	10.1.3 Incompressible Couette Flow with Pressure Gradient	473
	10.1.4 Compressible Couette Flow	476
10.2	Flow with Effects of Inertia	480
	10.2.1 Stokes' First Problem	480
	10.2.2 General Solution	494
	10.2.3 Momentum Pulse	494
	10.2.4 Unsteady Couette Flow	495
	10.2.5 Stokes' Second Problem	499

Cambridge University Press & Assessment 978-1-316-51569-3 — Mechanics of Fluids Joseph M. Powers Frontmatter <u>More Information</u>

xii Contents

	10.2.6 Decay of an Ideal Vortex	501
	10.3 Non-Newtonian Flow	505
	10.3.1 Strain Rate Dependent Viscosity	505
	10.3.2 Viscoelastic Flow	510
	Summary	516
	Problems	516
	Further Reading	518
	References	519
11	Multi-Dimensional Viscous Flow	520
	11.1 Flow with No Effects of Inertia	521
	11.1.1 Stokes Equations	521
	11.1.2 Generalized Poiseuille Flow	533
	11.1.3 Lubrication Theory	539
	11.2 Flow with Effects of Inertia	542
	11.2.1 Blasius Boundary Layer	542
	11.2.2 Falkner–Skan Flow	557
	11.2.3 Jets	561
	11.2.4 Shear Layers	564
	11.2.5 von Kármán's Viscous Pump	565
	11.2.6 Natural Convection	569
	11.2.7 Compressible Boundary Layer	573
	Summary	576
	Problems	576
	Further Reading	579
	References	579
12	2 Linearly Unstable Flow	580
	12.1 Motivating Problem from Dynamics	581
	12.2 Planar Two-Dimensional Inviscid Instabilities	584
	12.2.1 Stationary Fluids with No Surface Tension: Rayleigh–Taylor Ins	tability 591
	12.2.2 Stationary Fluids with Surface Tension	592
	12.2.3 Surface Waves	593
	12.2.4 Inviscid Shear Layer: Kelvin–Helmholtz Instability	594
	12.2.5 Kelvin–Helmholtz Instability with Surface Tension	594
	12.3 Parallel Viscous Flow Instability	595
	12.4 Thermal Convection: Rayleigh–Bénard Instability	600
	Summary	610
	Problems	610
	Further Reading	611
	References	611

с	ontents	xiii
13 Nonlinear Dynamics for Fluid Flow		613
13.1 Traditional Fourier Series Expansion		615
13.2 Calerkin Projection to a Low-order Dynamical System: Bateman-Bu	raars	616
13.3 Landau Equation	Igers	622
13.4 Lorenz Equations		624
13.4.1 Derivation from Boussinesa Approximation		624
13.4.2 Equilibrium		627
13.4.3 Linear Stability		629
13.4.4 Transition from Order to Chaos to Order		631
Summary		639
Problems		639
Further Reading		640
References		641
14 Turbulent Flow		642
14.1 Scaling Analysis		644
14.1.1 Mechanical Energy Evolution		644
14.1.2 Approximations at the Small Scale		646
14.1.3 Kolmogorov Microscales		647
14.1.4 Connection to the Mean Free Path Scale		648
14.1.5 Turbulent Kinetic Energy Cascade		649
14.2 Reynolds-Averaged Navier–Stokes Equations		650
14.2.1 Time-Averaging		650
14.2.2 Averaged Incompressible Equations		652
14.2.3 Closure Problem		654
14.3 Large Eddy Simulation		655
14.4 Direct Numerical Simulation of a Rayleigh–Bénard Flow		656
Summary		668
Problems		668
Further Reading		669
References		670
Bibliography		672
Index		685

Preface

This book considers the mechanics of fluids with a focus on topics seen in entry level graduate courses in aerospace and mechanical engineering. As reflected in its title and structure, it is first a presentation of mechanics, followed by application to fluids. It provides a rigorous presentation of standard topics with a more complete exposition of underlying mathematical details than is typically found. In an era in which students perhaps too hastily turn to experimental or computational methods to understand fluid behavior, this book provides a detailed presentation of the underlying theoretical foundations in a fashion designed to provide missing links in analysis that students often need to gain confidence in their understanding. An additional reason to include details is so that results may be reproduced by others, an important feature that should distinguish deterministic science from less quantifiable disciplines. The bulk of each chapter has a standard presentation; however, many chapters are augmented with material not always found in common texts. Some topics that receive enhanced emphasis include geometry, coordinate transformations, kinematics, thermodynamics, heat transfer, and nonlinear dynamics.

The book is built on lecture notes for two courses developed over three decades in the Department of Aerospace and Mechanical Engineering of the University of Notre Dame. The first is AME 60635, Intermediate Fluid Mechanics, and the second is AME 70731, Viscous Flow Theory. Additional topics have been included, and so there should be more than enough material available for a two-course sequence in introductory graduate fluid mechanics. Many of the later chapters are self-contained, and some can be omitted to suit instructor needs. The notes from which this book was drawn were themselves initially guided by the fine text of Panton (2013);¹ the reader will notice some similarities in choice of notation and ordering of a few topics. The influence of many other expositions on this subject, listed in an extensive bibliography, is evident as well.

The book is directed towards beginning graduate students and advanced engineering undergraduates. They have typically completed at least one undergraduate fluids course as well as courses in thermodynamics, linear algebra, vector calculus, and differential equations. Additionally, they have experience with basic numerical methods and modern software tools for solving such problems as root-finding, matrix inversion, determination of eigenvalues and eigenvectors, integration of nonlinear systems of ordinary differential equations, and some partial differential equations. A basic knowledge of such material is both necessary and sufficient preparation for the topics presented here.

¹ Panton, R. L. (2013). *Incompressible Flow*, 4th ed. New York: John Wiley.

Cambridge University Press & Assessment 978-1-316-51569-3 — Mechanics of Fluids Joseph M. Powers Frontmatter More Information

xvi Preface

Most of these students will later specialize in either experimental or computational fluid mechanics and will take additional specialized course work to these ends. All can benefit from a thorough preparation in theoretical foundations. As such, this book goes farther than most to bolster the connection between basic mathematical concepts relevant to the mechanics of fluids in an engineering context. While the material is relevant to experimental and computational fluid mechanics, it has minimal discussion either of underlying experiments or computations. Both of these vast subjects are well treated in other texts. That said, most of the topics developed here have clear relevance to problems in nature; however, in a few portions of the text, some unusual limits are considered to allow a more digestible exposition. These may involve specially prescribed flow fields, limits in which some physics are neglected, or limits in which competing mechanisms are unusually scaled so as to be in balance. This is often manifested by posing problems in which fluid properties such as density or viscosity are either zero or unity. A special emphasis is placed on problems that bolster the students' often tenuous confidence in using vector calculus, which is the most efficient language to describe the mechanics of fluids.

The book provides a survey of continuum fluid mechanics. Part I gives an extensive development of the compressible Navier–Stokes equations. It includes a review and exposition of the essential mathematics of differential geometry, kinematics, evolution axioms, constitutive equations, and a delineation of many special limits of the governing equations. Part II focuses on their solution in various limits: vortical, potential, compressible, viscous, unstable, chaotic, and turbulent flows. Most chapters contain example problems; some are mathematically motivated, and others are focused on quantitative problems involving fluid physics. A course that is more oriented towards development of the equations of continuum fluid mechanics may concentrate on Part I. Alternatively, one could give the briefest of introductions to governing equations and move straight to any of the chapters of Part II, which generally are self-supporting.

The expansiveness of these topics is such that many of them are only lightly treated; the reader should turn to more specialized books for additional detail. The emphasis here is on fluid physics and the mathematics necessary to efficiently describe the physics. Each chapter is concluded with exercises appropriate for homework. A detailed solution manual is available for instructors. Some of the problems require numerical methods that are routine for modern and widely available software tools; background for such tools and methods may be found in other sources. Specific hallmarks found throughout the book include (1) consideration of complete thermo-fluid systems so as to enable determination of velocity and temperature fields in compressible, viscous flows, (2) attention to the formalities of coordinate and similarity transformations, and (3) presentation of much classical material as well as a few novel or neglected topics selected to illustrate analysis of fluid physics. Some important topics are considered only briefly, for example (1) non-Newtonian flow, (2) stability, and (3) turbulence. The bulk of the book is devoted to fluids problems that are well described by a set of deterministic model equations with solutions that are well-behaved and amenable to causal inference. In a few instances, these nonlinear deterministic equations are pushed into regimes where the solutions acquire a more chaotic and random behavior. But we do not explicitly model the stochastic nature of fluid behavior or the effect of stochastic uncertainties in constitutive models; nor do we consider non-axiomatic frameworks, such as given by some data-driven modeling approaches that employ machine learning and artificial neural networks. While some

Cambridge University Press & Assessment 978-1-316-51569-3 — Mechanics of Fluids Joseph M. Powers Frontmatter <u>More Information</u>

Preface xvii

computational results are presented, there is no treatment of the methods of computational fluid dynamics. The book provides the foundation for later courses that address these and several more advanced topics that are not typically considered in introductory graduate fluids courses.

The book is intended to be used as an instructional tool for students and advanced professionals who need to understand the fundamental mechanics of fluids. While in places, it gives a modern treatment of old subjects drawing upon recent scholarship, most of its topic matter is correctly described as "classical." As such, the extensive bibliography focuses on scholarly books, both historical and modern; for selected specialized topics, the underlying journal literature is drawn upon.

The author's gratitude is due to many, including former teachers, colleagues who commented on various drafts, inspiring family members, as well as the University of Notre Dame for providing support to bring this work to completion. Of those many, I am especially grateful to my talented colleague at Notre Dame, Prof. Jonathan F. MacArt, who carefully reviewed and contributed to Chapter 14 and skillfully performed the numerical simulations of laminar and turbulent Rayleigh–Bénard convective flow that both illuminate the cover and close the book. That said, my deepest appreciation is given to those who motivated me to prepare this book: the dozens of undergraduate and graduate students of AME 60635 and 70731 who have pushed me for excellence as I have pushed them. Many have gone on to careers of distinction in fluid mechanics, and for what small part I played in that, I am proud. This book is written with the hope that it can reach others who will be similarly motivated to learn and apply this beautiful science.