
Cambridge University Press & Assessment
978-1-316-51569-3 — Mechanics of Fluids
Joseph M. Powers 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Part I

Continuum Equations of Fluid Mechanics

www.cambridge.org/9781316515693
www.cambridge.org


Cambridge University Press & Assessment
978-1-316-51569-3 — Mechanics of Fluids
Joseph M. Powers 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

www.cambridge.org/9781316515693
www.cambridge.org


Cambridge University Press & Assessment
978-1-316-51569-3 — Mechanics of Fluids
Joseph M. Powers 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1 Introduction

This book considers the mechanics of a fluid, defined as a material that continuously deforms

under the influence of an applied shear stress, as depicted in Fig. 1.1. Here the fluid, initially at

rest, lies between a stationary wall and a moving plate. Nearly all common fluids stick to solid

surfaces. Thus, at the bottom, the fluid remains at rest; at the top, it moves with the velocity

of the plate. The vectors indicate the fluid displacement, a distance that grows with time.

At early time, the displacement profile varies nonlinearly with distance from the stationary

surface. At later times, the displacement profile becomes linear. For nearly all common fluids, it

is observed that a nonzero shear stress is required to maintain this motion. As configured, this

fluid will never come to rest. Such a definition allows both liquids and gases to be considered

fluids. In contrast, a solid will deform but relax to an equilibrium configuration when subjected

to an applied shear stress.

Motion in response to transverse shear forces is fundamental to fluids and induces such

behavior as fluid rotation in a long persisting vortex such as seen in weather patterns and

aerodynamic applications. In such a swirling environment, fluid particles often veer far from

neighboring fluid particles. In contrast, solid particles almost always retain the same particles

as neighbors; except for rotation as a rigid body, there is no clear counterpart to a vortex in

typical solids. Motion in response to longitudinal normal forces is also fundamental to fluids

and can result in volumetric compression and expansion as well as acceleration in the direction

of the net normal force. Solids respond to longitudinal normal forces in a similar manner; they

may induce weaker volumetric compression and expansion and certainly acceleration in the

direction of the net normal force.

We present an approach to fluid mechanics founded on the general principles of rational

continuum mechanics. These general principles apply to all continuous materials: solids, liquids,

and gases. There are many paths to understanding fluid mechanics, and good arguments can be

Figure 1.1 Diagram demonstrating the defining feature of a fluid: continuous deformation in response

to an applied shear stress: snapshots of the fluid displacement profile at various times.
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4 1 Introduction

made for each. A typical first undergraduate class will combine a mix of basic equations, coupled

with strong physical motivations, and allow the student to develop a knowledge that is of

practical value, often driven by intuition. Such an approach works well within the confines of the

intuition we develop in everyday life. It often fails when the engineer moves into unfamiliar terri-

tory. For example, lack of fundamental understanding of high Mach1 number flows led to many

aircraft and rocket failures in the 1950s. In such cases, a return to the formalism of a careful

theory, one that clearly exposes the strengths and weaknesses of all assumptions, is invaluable in

both understanding the true fluid physics, and applying that knowledge to engineering design.

Probably the most formal of approaches is that of the school of thought promoted by

Truesdell,2 who forcefully advocated for rational continuum mechanics. Truesdell developed

a broadly based theory that encompassed all materials that could be regarded as continua,

including solids, liquids, and gases, in the limit when the smallest volumes considered

were sufficiently large so that the micro- and nanoscopic structure of these materials was

unimportant. For fluids (both liquid and gas), such length scales are often at or below the order

of microns, while for solids, the scales may be smaller, depending on the type of molecular

structure. The difficulty of the Truesdellian approach is that it is burdened with a difficult

notation and tends to become embroiled in proofs and philosophy, which while ultimately

useful, can preclude learning basic fluid mechanics in the time scale of the typical student.

It is possible, however, to give a discussion that respects the approach of Truesdell while also

providing both technical rigor and accessibility. For example, Thorne and Blandford (2017) give

a nuanced, detailed, and useful exposition of fluid mechanics in the context of physics, geometry,

and experiment that complements well the formalism of rational continuum mechanics.

Here, we will attempt to steer between the fallible pragmatism of undergraduate fluid

mechanics and the harsh formalism of the Truesdellian school. The presentation will pay due

homage to rational continuum mechanics and will be geared towards a basic understanding of

fluid behavior. We shall first spend some time carefully developing the governing equations for

a compressible viscous fluid. We shall then study representative solutions of these equations in

a wide variety of physically motivated limits in order to understand how the basic evolution

principles of mass, linear momenta, angular momenta, and energy, coupled with constitutive

relations, influence the behavior of fluids. In the end, it is hoped the reader will have an

enhanced appreciation of the abilities and limitations of deterministic continuum mathematical

physics to predict basic fluid behavior.

1.1 Mechanics

Mechanics is the broad superset of the topic matter of this book. It is the science that seeks

an explanation for the motion of bodies based upon models grounded in axioms. Axioms, as

in geometry, are statements that cannot be proved; they are useful insofar as they give rise to

1 Ernst Mach, 1838–1926, Viennese physicist and philosopher who worked in optics, mechanics, and wave

dynamics, and developed fundamental ideas of inertia.
2 Clifford Ambrose Truesdell III, 1919–2000, American continuum mechanician and natural philosopher.
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1.2 Rational Continuum Mechanics 5

results that are consistent with empirical observation. A hallmark of science has been the strug-

gle to identify the smallest set of axioms that are sufficient to describe our universe. When we

find an axiom to be inconsistent with observation, it must be modified or eliminated. A familiar

example of this is the Michelson3–Morley4 experiment, which motivated Einstein5 to modify the

Newtonian6 axioms of mass and mechanical energy into an axiom for mass-energy. There are

many subsets of mechanics, for example statistical mechanics, relativistic mechanics, quantum

mechanics, continuum mechanics, fluid mechanics, or solid mechanics. Each has its own set of

axioms; often in certain physical limits, the axioms of one framework relax to those of another

framework. For example, as the deviation of the velocity from the speed of light increases, the

more robust axioms of Einstein’s relativistic mechanics relax to those of Newton’s mechanics.

1.2 Rational Continuum Mechanics

Newton introduces the concept of rational mechanics in the preface to the original 1687 edition

of his Principia to distinguish it from both geometry and other types of mechanics that were

common in his era. There Newton (1999, p. 382, originally presented 1687) states:

. . .geometry is commonly used in reference to magnitude, and mechanics in reference to motion. In

this sense rational mechanics will be the science, expressed in exact proportions and demonstrations,

of the motions that result from any forces whatever and of the forces that are required for any motions

whatever.

Early mechanicians, such as Newton, dealt primarily with point masses and finite collections

of distinct particles. Such systems are the easiest to study, and it makes more sense to grasp

the simple before the complex. The discipline that considers such systems is often referred to

as classical mechanics. Mathematically, such systems are generally characterized by a finite

number of ordinary differential equations, and the properties of each particle (e.g. position,

velocity) are taken to be functions of time only.

Continuum mechanics, generally attributed to Euler,7 considers instead an infinite number of

particles, which is in fact easier to analyze than a large finite number of particles. In continuum

mechanics, every physical property (e.g. velocity, density, pressure) is taken to be a function of

both time and space. Infinitesimal property variation from point to point in space is permitted.

While variations are generally continuous, finite numbers of surfaces of discontinuous property

variation are allowed. This models, for example, the contact between one continuous body and

another or a shock wave within a inviscid fluid. Point discontinuities are not allowed, however.

Finite valued material properties are required. Mathematically, such systems are characterized

3 Albert Abraham Michelson, 1852–1931, Prussian-born American physicist.
4 Edward Williams Morley, 1838–1923, American physical chemist.
5 Albert Einstein, 1879–1955, German and later American physicist who developed the theory of relativity

and made fundamental contributions to quantum mechanics and Brownian motion in fluid mechanics.
6 Sir Isaac Newton, 1642–1727, English physicist, mathematician, and chief figure of the scientific revolution.

Developed calculus, theories of gravitation, motion of bodies, and optics.
7 Leonhard Euler, 1707–1783, Swiss-born mathematician and physicist.
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6 1 Introduction

by a finite number of partial differential equations in which the properties of the continuum

material are functions of both space and time. It is possible to show that a partial differential

equation can be thought of as an infinite number of ordinary differential equations, so this is

consistent with our model of a continuum as an infinite number of particles.

In Truesdell’s exposition on continuum mechanics, he suggests the following hierarchy:

• bodies exist,
• bodies are assigned to place,
• geometry is the theory of place,
• change of place in time is the motion of the body,
• a description of the motion of a body is kinematics,
• motion is the consequence of forces,
• the study of forces on a body is dynamics, sometimes called kinetics.

We will adapt this hierarchy in our exposition.

The modifier “rational” was applied by Truesdell to continuum mechanics to distinguish

the formal approach advocated by his school, from less formal, though mainly not irrational,

approaches to continuum mechanics. Rational continuum mechanics is developed with tools

similar to those that Euclid8 used for his geometry and Newton for his physics: formal

definitions, axioms, and theorems, all accompanied by careful language and proofs. One of

the hallmarks of rational continuum mechanics is a distinction between material-independent

axioms, such as mass, momenta, and energy principles, from material-specific relations such

as the ideal gas law. This book will recognize such distinctions, all the while following a

less formal, albeit still rigorous, approach. The extensive literature associated with rational

continuum mechanics considers a broad range of topics, and nuances of some aspects of its

axioms, not relevant for this book, are not universally accepted; see for example Woods (1982)

or Müller (2007) and references within.

1.2.1 Notions from Newtonian Mechanics

The following are useful notions from Newtonian mechanics. Here we use Newtonian to

distinguish our mechanics from Einsteinian relativistic mechanics. Newton himself did not

study continuum mechanics; however, notions from his studies of the mechanics of discrete sets

of point masses extend to the mechanics of continua.

Space is three-dimensional and independent of time. An inertial frame is a reference frame

in which the laws of physics are invariant; further, a body in an inertial frame with zero net

force acting upon it does not accelerate. A Galilean9 transformation specifies how to transform

from one inertial frame to another inertial frame moving at constant velocity relative to the

original frame. If a second inertial frame has constant velocity vo = uoi+ voj+wok relative to

the original inertial frame, the Galilean transformation (x, y, z, t) → (x′, y′, z′, t′) is as follows:

8 Euclid, Greek geometer of profound influence.
9 Galileo Galilei, 1564–1642, Pisa-born Italian astronomer, physicist, and developer of experimental methods,

first employed a pendulum to keep time, builder and user of telescopes used to validate the Copernican view

of the universe, developer of the principle of inertia and relative motion.
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1.2 Rational Continuum Mechanics 7

x′ = x− uot, y′ = y − vot, z′ = z − wot, t′ = t. (1.1)

This must be accompanied with a transformation of the velocities:

u′ = u− uo, v′ = v − vo, w′ = w − wo. (1.2)

1.2.2 Continuum Fields

In contrast to a single particle or finite set of particles for which time is the only independent

variable, a fluid is modeled as a continuum field with properties that depend on both time and

space. The notion of a continuum is rooted in Newtonian calculus; an example of a continuum

from mathematics is the set of real numbers. A real number x ∈ R
1 is a member of the set of real

scalars, R1. It is often considered to reside on the x axis. The x axis may be finely partitioned. At

the edges of a particular partition, xmay have the respective values of xn and xn+1. The essence

of the continuum assumption is that no matter how fine the partition, there exists an intermedi-

ate value x̃ with xn ≤ x̃ ≤ xn+1. Here x is a geometrical property. Ordered pairs of real numbers

(x, y)T ∈ R
2 reside in a plane, and ordered triples of real numbers (x, y, z)T ∈ R

3, reside in a

volume. Here T is the transpose operator, employed so that the ordered pairs and triples are

column vectors, by standard convention. We can extend these notions to fluid properties.

Density, ρ, is a material property of a fluid describing the concentration of its mass m within

a volume V . Consider a sequence of shrinking volumes V1 > V2 > V3, . . . ,Vn, each containing

a sequence of shrinking masses, m1 > m2 > m3, . . . ,mn, sketched in Fig. 1.2. We expect the

mass to be a function of the volume. Define the average density ρn as

ρn =
mn

Vn

. (1.3)

In a true continuum, as we let n → ∞, we could define the density at P to be

ρ(P ) = lim
n→∞

mn

Vn

, (1.4)

and importantly, expect the limiting value ρ(P ) to be finite and smoothly approaching its

limiting value as n → ∞. In this limit, we expect Vn to approach the infinitesimal volume dV

surrounding the point P and mn to approach the infinitesimal value dm. This gives

Figure 1.2 Diagram of sequence of volumes, each enclosing a respective mass, with the volume shrinking

to a point P .

www.cambridge.org/9781316515693
www.cambridge.org


Cambridge University Press & Assessment
978-1-316-51569-3 — Mechanics of Fluids
Joseph M. Powers 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

8 1 Introduction

ρ =
dm

dV
. (1.5)

Every point P in the continuum would possess a set of spatial coordinates and a local value

of ρ at each point. One can also allow for time variation so ρ = ρ(x, y, z, t). Then with dV =

dx dy dz, one could integrate Eq. (1.5) over a finite volume to get

m(t) =

∫ z2

z1

∫ y2

y1

∫ x2

x1

ρ(x, y, z, t) dx dy dz. (1.6)

In this book, properties such as ρ(x, y, z, t) will be assumed to exist and contain all the features

of a mathematical continuum, except at jumps associated with material interfaces or shock

waves. This approach has proven to work well as long as the volumes being considered are

sufficiently large to contain many fluid molecules.

Density is not used in classical Newtonian mechanics, as that discipline only considers

point masses. Continuum mechanics will treat macroscopic effects only and ignore individual

molecular effects. For example, molecules bouncing off a wall exchange momentum with the

wall and induce pressure. We could use Newtonian mechanics for each particle collision to

calculate the net wall force. Instead our approach amounts to considering the average over

space and time of the net effect of millions of collisions on a wall.

1.2.3 Scalars, Vectors, and Tensors

We briefly introduce here the notion of fields composed of what are known as scalars, vectors,

and tensors. This important topic will be considered in more detail in Section 2.1. A diagram

depicting the nature of scalars, vectors, and tensors is given in Fig. 1.3.

Density is an example of a scalar property. A scalar property associates a single number

with each point in time and space. Scalars possess magnitude but not direction. We can think

of this by writing the usual notation

ρ = ρ(x, y, z, t), (1.7)

indicating that ρ has functional variation with position and time. Other properties are not

scalar, but are vector properties. For example, the velocity vector

Figure 1.3 Diagram depicting the nature of scalars, vectors, and tensors.
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1.3 Molecular Limits of Continuum Theory 9

v(x, y, z, t) = u(x, y, z, t)i+ v(x, y, z, t)j+ w(x, y, z, t)k =

⎛

⎝

u(x, y, z, t)

v(x, y, z, t)

w(x, y, z, t)

⎞

⎠, (1.8)

associates three scalars u, v,w with each point in space and time. Here i, j, and k are the

familiar set of orthonormal basis vectors associated with a Cartesian coordinate system. We

will see that a vector can be characterized as a scalar associated with a particular direction in

space; that is, vectors possess both magnitude and direction. Here we use a boldfaced notation

for a vector. This is known as Gibbs10 notation. We will study in Section 2.1 an alternate

notation, developed by Einstein, known as Cartesian11 index notation.

Other properties are not scalar or vector, but are what is known as tensors. The best known

example is the stress tensor, whose physics and mathematics will be fully described in Section

4.2.2. One can think of a tensor as a quantity that associates a vector with a plane inclined at

a selected angle passing through a given point in space. Tensors possess magnitude, direction,

and orientation relative to a plane. For an infinitesimal cube surrounding a point, each of the

faces of the cube can be associated with a unique vector. This is shown in Fig. 1.3, in which a

distinct vector is associated with three orthogonal surfaces. Each vector on each surface is itself

the sum of three orthogonal components. An example is the stress tensor T. It can be thought

of as associating three vectors (or nine scalars) with each spatial point. It is best expressed as

a matrix:

T(x, y, z, t) =

⎛

⎝

Txx(x, y, z, t) Txy(x, y, z, t) Txz(x, y, z, t)

Tyx(x, y, z, t) Tyy(x, y, z, t) Tyz(x, y, z, t)

Tzx(x, y, z, t) Tzy(x, y, z, t) Tzz(x, y, z, t)

⎞

⎠. (1.9)

The stress tensor will be important in the mechanics of fluids. It will describe, among other

things, pressure forces normal to a surface and frictional forces tangential to a surface. It will

be considered fully in Chapters 4 and 5. The set of spatial coordinates x, y, and z form a vector

we call x:

x = xi+ yj+ zk =

⎛

⎝

x

y

z

⎞

⎠. (1.10)

Our scalar, vector, and tensor fields are typically functions of the vector x and time t, and may

be compactly written in the form ρ(x, t), v(x, t), T(x, t).

1.3 Molecular Limits of Continuum Theory

Continuum theory fails in scenarios in which the length and time scales are of comparable

magnitude to molecular scales. Important applications for which the continuum assumption

is inappropriate include rarefied gas dynamics (relevant for low Earth orbit vehicles), and

10Josiah Willard Gibbs, 1839–1903, American mechanical engineer who made fundamental contributions to

vector analysis, statistical mechanics, thermodynamics, and chemistry.
11René Descartes, 1596–1650, French mathematician and philosopher who developed analytic geometry.
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10 1 Introduction

Figure 1.4 Diagram of possible density variation of a gas near atmospheric pressure as a function of

length scale.

nanoscale heat transfer (relevant in cooling of computer chips). In commonly encountered

physical scenarios, we expect the density to vary with distance on a macroscale, approach

a limiting value at the microscale, and become ill-defined below a cutoff scale below which

molecular effects are important. That is to say, when Vn from Fig. 1.2 becomes too small, such

that only a few molecules are contained within it, we expect wild oscillations in ρ, and a unique

value of ρ in the limit as Vn → 0 formally does not exist.

To get some idea of the scales involved, we note that for air at atmospheric pressure and

temperature, the time and distance between molecular collisions provide the limits of the

continuum. Under these conditions, we observe for air that lengths > 0.1µm, and times

> 0.1 ns will be sufficient to admit the continuum assumption. For denser gases, these cutoff

scales are smaller. For lighter gases, these cutoff scales are larger. A depiction of a possible

density variation in a gas near atmospheric pressure as a function of length scale is given in

Fig. 1.4.

Details of collision theory can be found in texts such as that of Vincenti and Kruger (1965,

pp. 12–26). The simplest model treats gases as composed of elastic spheres of diameter d

moving within a volume that is mainly a vacuum. The model is valid in the limit in which the

mean free path length λ between collisions is large relative to d. They show for air that λ is

well modeled by:

λ =
M√

2πNρd2
. (1.11)

Here M is the molecular mass, N is Avogadro’s number, and d is the molecular diameter,

sometimes known as the Lennard-Jones12 diameter.

Example 1.1 Find the variation of mean free path with density for air.

Solution

For a typical air mixture, the mixture molecular mass is taken as M = 28.97 kg/kmole. We turn

to Vincenti and Kruger for other numerical parameter values: N = 6.022 52 × 1023 molecule/mole,

12John Edward Lennard-Jones, 1894–1954, British mathematician and physicist.
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